JP2851771B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP2851771B2
JP2851771B2 JP21376293A JP21376293A JP2851771B2 JP 2851771 B2 JP2851771 B2 JP 2851771B2 JP 21376293 A JP21376293 A JP 21376293A JP 21376293 A JP21376293 A JP 21376293A JP 2851771 B2 JP2851771 B2 JP 2851771B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
semiconductor light
type
type region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21376293A
Other languages
Japanese (ja)
Other versions
JPH0766451A (en
Inventor
元一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21376293A priority Critical patent/JP2851771B2/en
Publication of JPH0766451A publication Critical patent/JPH0766451A/en
Application granted granted Critical
Publication of JP2851771B2 publication Critical patent/JP2851771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体発光素子に関し、
特にLEDプリントヘッドなどに用いられる半導体発光
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device,
In particular, the present invention relates to a semiconductor light emitting device used for an LED print head or the like.

【0002】[0002]

【従来の技術】従来の半導体発光素子は、図1に示すよ
うに、n型GaAs基板1上に、窒化シリコン(SiN
x )や酸化シリコン(SiO2 )などから成る拡散マス
ク2を設け、この拡散マスク2が開口した部分から亜鉛
(Zn)をn型GaAs基板1に10〜50μmの深さ
で同一ピッチに拡散することによって、p型の伝導性を
もつp型領域3を形成して半導体発光素子を形成してい
た。なお、n型GaAs基板1の裏面とp型領域3部分
には、オーミック電極4、5がそれぞれ形成されてい
る。
2. Description of the Related Art As shown in FIG. 1, a conventional semiconductor light emitting device has a structure in which silicon nitride (SiN) is formed on an n-type GaAs substrate 1.
x ), a diffusion mask 2 made of silicon oxide (SiO 2 ) or the like is provided, and zinc (Zn) is diffused into the n-type GaAs substrate 1 at the same pitch at a depth of 10 to 50 μm from the opening of the diffusion mask 2. Thus, the semiconductor light emitting device is formed by forming the p-type region 3 having p-type conductivity. Note that ohmic electrodes 4 and 5 are formed on the back surface of the n-type GaAs substrate 1 and the p-type region 3 respectively.

【0003】このようなn型GaAs基板1を用いて半
導体発光素子を形成する場合、電子の拡散長の絶対値
は、GaAs基板1中の欠陥密度、キャリア密度によっ
ても異なるが、エッチピット密度(EPD)が103
104 /cm2 程度の結晶のとき、10〜50μmであ
り、正孔のそれに比べて約一桁大きくなる。そのため、
図1に示すような構造の半導体発光素子では、大部分が
p型領域3で発光することになる。
When a semiconductor light emitting device is formed using such an n-type GaAs substrate 1, the absolute value of the electron diffusion length varies depending on the defect density and carrier density in the GaAs substrate 1, but the etch pit density ( EPD) is 10 3 or more
In the case of a crystal of about 10 4 / cm 2 , the thickness is 10 to 50 μm, which is about one digit larger than that of holes. for that reason,
Most of the semiconductor light emitting device having the structure as shown in FIG. 1 emits light in the p-type region 3.

【0004】n型GaAs基板1に同一ピッチでZnを
拡散してp型領域3を形成した半導体発光素子の発光ス
ペクトルは、図3に示すように、ピーク発光波長が91
0〜960nmである。
The emission spectrum of a semiconductor light emitting device in which Zn is diffused at the same pitch into an n-type GaAs substrate 1 to form a p-type region 3 has a peak emission wavelength of 91 as shown in FIG.
0 to 960 nm.

【0005】一方、吸収係数αの物質に強度IO の光が
入射したとき、距離tにおける光の強度Iは、下記式1
で表される。 I=IO exp(−αt) ・・・・・・ 式1
On the other hand, when light having an intensity I O is incident on a substance having an absorption coefficient α, the light intensity I at a distance t is given by the following equation (1).
It is represented by I = I o exp (−αt) Equation 1

【0006】[0006]

【発明が解決しようとする課題】ところで、図4に示す
ように、910nm以上(エネルギーギャップで1.3
6eV以下)の波長に対するn型GaAs結晶の吸収係
数αは10cm-1以下である。なお、図4は高濃度に不
純物をドープしたn型GaAs結晶の25℃のときの吸
収係数を示す図であり、縦軸は吸収係数αを、また横軸
はエネルギーEを示す。式1より、厚み300μmのn
型GaAs基板1に対して、p型領域3で発光した波長
90nm以上の光のうち、74%以上はn型GaAs基
板1の裏面に到達して裏面で反射される。反射率100
%で反射されたとすると、図5に示すように、p型領域
3で発生した光のうち、55%以上が再びn型GaAs
基板1の表面側に現れ、p型領域3と隣接するp型領域
3’との間や隣接するp型領域3’からも光が漏れる。
p型領域3と隣接するp型領域3’との間から漏れる光
は、発光滲みとなり、隣接するp型領域3’から漏れる
光は、漏れ発光となる。この発光滲みや漏れ発光は、プ
リントヘッドとして電子写真プロセスに用いると印画品
質を著しく低下させてしまう。
As shown in FIG. 4, by the way, as shown in FIG.
The absorption coefficient α of the n-type GaAs crystal at a wavelength of 6 eV or less is 10 cm -1 or less. FIG. 4 is a diagram showing the absorption coefficient of an n-type GaAs crystal doped with impurities at a high concentration at 25 ° C., wherein the vertical axis represents the absorption coefficient α and the horizontal axis represents the energy E. From equation 1, n of 300 μm thickness
74% or more of the light having a wavelength of 90 nm or more emitted from the p-type region 3 with respect to the n-type GaAs substrate 1 reaches the back surface of the n-type GaAs substrate 1 and is reflected by the back surface. Reflectance 100
%, 55% or more of the light generated in the p-type region 3 is again n-type GaAs, as shown in FIG.
Light appears on the front surface side of the substrate 1 and leaks between the p-type region 3 and the adjacent p-type region 3 ′ and also from the adjacent p-type region 3 ′.
Light leaking from between the p-type region 3 and the adjacent p-type region 3 ′ becomes light emission blur, and light leaking from the adjacent p-type region 3 ′ becomes leak light emission. Such light emission bleeding and leakage light emission significantly reduce print quality when used in an electrophotographic process as a print head.

【0007】発光滲み対策として、特開平1−1848
79号公報では、窒化シリコンや二酸化シリコンなどの
拡散マスク2上に、ポリイミド薄膜から成る滲み遮断層
6を形成することが提案されている。また、特開平1−
184880号公報では、拡散マスク2を酸化アルミニ
ウム(Al2 3 )で形成して、滲み遮断層と兼用する
ことが提案されている。さらに、特開平1−46946
号公報では、絶縁体/金属/絶縁体の構造を有する滲み
遮断層を形成することが提案されている。
As a countermeasure against light emission bleeding, Japanese Patent Laid-Open Publication No.
No. 79 proposes to form a bleeding barrier layer 6 made of a polyimide thin film on a diffusion mask 2 such as silicon nitride or silicon dioxide. Further, Japanese Patent Laid-Open No.
Japanese Patent Publication No. 184880 proposes that the diffusion mask 2 is formed of aluminum oxide (Al 2 O 3 ) and is also used as a bleeding blocking layer. Further, Japanese Unexamined Patent Publication No.
In the publication, it is proposed to form a bleeding barrier layer having an insulator / metal / insulator structure.

【0008】これらの発光滲み対策のうち、酸化アルミ
ニウムの薄膜を拡散マスク2と兼用するもの以外は、い
ずれも半導体発光素子の製造工程を複雑にするものであ
る。また、これらの対策は、いずれも一つのp型領域3
周辺からの発光滲みを防止するのみで、n型GaAs基
板1の裏面で反射した光が隣接するp型領域3’から漏
れる漏れ発光は防止できず、結局プリントヘッドとして
電子写真プロセスに用いると印画品質を低下させるとい
う問題があった。
All of these measures against light emission bleeding complicate the manufacturing process of the semiconductor light emitting device, except that the thin film of aluminum oxide is also used as the diffusion mask 2. In addition, all of these countermeasures are applied to one p-type region 3
Only by preventing light emission bleeding from the periphery, it is not possible to prevent light reflected from the back surface of the n-type GaAs substrate 1 from leaking from the adjacent p-type region 3 ′. There was a problem of deteriorating the quality.

【0009】[0009]

【課題を解決するための手段】本発明に係る半導体発光
素子は、このような従来技術の問題点に鑑みて発明され
たものであり、その特徴とするところは、n型GaAs
基板にp型領域を設け、このn型GaAs基板とp型領
域に電極を設けた半導体発光素子において、前記n型G
aAs基板の厚みを250μm以上にすると共に、発光
スペクトルの最大発光強度をIO としたときに、IO
2部分の最長波長端λmが910nm以下になるように
Znを拡散して前記p型領域を形成した点にある。
SUMMARY OF THE INVENTION A semiconductor light emitting device according to the present invention has been invented in view of such problems of the prior art, and is characterized by n-type GaAs.
In a semiconductor light emitting device in which a p-type region is provided in a substrate and an electrode is provided in the n-type GaAs substrate and the p-type region,
When the thickness of the aAs substrate is 250 μm or more and the maximum emission intensity of the emission spectrum is I O , I O /
The point is that the p-type region is formed by diffusing Zn so that the longest wavelength end λm of the two portions is 910 nm or less.

【0010】[0010]

【作用】上記のように構成すると、p型領域周辺部にお
ける発光滲みと隣接すp型領域子からの漏れ発光を防止
することができ、もって電子写真プロセスの印画品質を
著しく向上させることができる。また、製造プロセスを
複雑化させることなく、製造歩留りの高い、安価な半導
体発光素子を提供できる。さらに、本発明では、量子効
率の高い直接遷移型のGaAsを発光領域とできるた
め、発光強度が大きく、高速プリンター用の半導体発光
素子アレイを供給できる。
With the above construction, it is possible to prevent bleeding of light at the periphery of the p-type region and leakage of light from the adjacent p-type region, thereby significantly improving the printing quality of the electrophotographic process. . Further, an inexpensive semiconductor light emitting device having a high production yield can be provided without complicating the production process. Further, according to the present invention, since a direct transition type GaAs having high quantum efficiency can be used as a light emitting region, a semiconductor light emitting element array having a high light emitting intensity and a high speed printer can be supplied.

【0011】[0011]

【実施例】以下、本発明の実施例を添付図面に基づき詳
細に説明する。本発明に係る半導体発光素子の断面構造
は、図1に示す半導体発光素子と同じである。すなわ
ち、n型GaAs基板1に、窒化シリコン(SiNx
や酸化シリコン(SiO2 )などから成る拡散マスク2
を設け、この拡散マスク2が開口したn型GaAs基板
1に亜鉛(Zn)を10〜50μmの深さに同一ピッチ
で拡散することによって、p型の伝導性をもつp型領域
3を形成して半導体発光素子を形成する。なお、n型G
aAs基板1の裏面とp型領域3部分には、オーミック
電極4、5をそれぞれ形成する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. The sectional structure of the semiconductor light emitting device according to the present invention is the same as the semiconductor light emitting device shown in FIG. That is, silicon nitride (SiN x ) is formed on the n-type GaAs substrate 1.
Mask 2 made of silicon or silicon oxide (SiO 2 )
Is formed, and zinc (Zn) is diffused at the same pitch to a depth of 10 to 50 μm in the n-type GaAs substrate 1 in which the diffusion mask 2 is opened, thereby forming a p-type region 3 having p-type conductivity. To form a semiconductor light emitting device. Note that n-type G
Ohmic electrodes 4 and 5 are formed on the back surface of the aAs substrate 1 and on the p-type region 3 respectively.

【0012】本発明に係る半導体発光素子では、n型G
aAs基板1の厚みを250μm以上とする。すなわ
ち、n型GaAs基板1の厚みが250μm未満である
と、発光滲みや漏れ発光が発生して電子写真プロセスの
印画品質が低下する。n型GaAs基板1の厚みが25
0μm以上であると、p型領域3で発光した光がn型G
aAs基板1の裏面に到達するまでに可及的に吸収で
き、発光滲みや漏れ発光はみられず、また電子写真プロ
セスによる印画もその品質を損なわないことが確認され
た。すなわち、基板1の厚みが250μmのとき、裏面
で反射した光が表面に出てくるときの往復の光路は50
0μm=0.05cmである。910nm以上(1.3
6eV以下)の光に対して、GaAs基板の吸収係数は
10cm-1であるから、式1より、裏面の反射率が10
0%の場合、60%程度の光が表面側に出ることにな
る。厚みを250μmより薄くすると、光はさらに表面
側に出る。したがって、60%を越える光が表面に出な
いようにするために、厚みを250μm以上とする。
In the semiconductor light emitting device according to the present invention, the n-type G
The thickness of the aAs substrate 1 is 250 μm or more. That is, when the thickness of the n-type GaAs substrate 1 is less than 250 μm, light emission bleeding or leakage light emission occurs, thereby deteriorating the printing quality of the electrophotographic process. The thickness of the n-type GaAs substrate 1 is 25
When the thickness is 0 μm or more, the light emitted from the p-type region 3 becomes n-type G
It was confirmed that the light was absorbed as much as possible before reaching the rear surface of the aAs substrate 1, and no light emission bleeding or leakage light emission was observed. Further, it was confirmed that printing by the electrophotographic process did not impair the quality. That is, when the thickness of the substrate 1 is 250 μm, the reciprocating optical path when the light reflected on the back surface comes out to the front surface is 50 μm.
0 μm = 0.05 cm. 910 nm or more (1.3
(6 eV or less), since the absorption coefficient of the GaAs substrate is 10 cm −1 , the reflectance of the back surface is 10
In the case of 0%, about 60% of light is emitted to the surface side. When the thickness is smaller than 250 μm, light is further emitted to the surface side. Therefore, in order to prevent more than 60% of the light from being emitted to the surface, the thickness is set to 250 μm or more.

【0013】拡散マスク2は、例えば窒化シリコンや酸
化シリコンなど、n型GaAs基板1に対して良好な密
着性があり、Zn拡散時にZnの透過を阻止し、マスク
形成時にHFなどにより拡散用の窓明けが可能なもので
あればいずれでもよい。
The diffusion mask 2 has good adhesion to the n-type GaAs substrate 1 such as silicon nitride or silicon oxide, and prevents the transmission of Zn during the diffusion of Zn and the diffusion mask HF or the like during the formation of the mask. Any window can be opened.

【0014】発光領域であるp型領域3のエネルギーギ
ャップは、その正孔濃度により、下記の式2に従って変
化する。 Eg(p−GaAs)=1.424−1.6×10-8O 1/3 (eV) ・・・・・・ 式2 正孔濃度 PO cm-3 このことから、p型領域3を形成するために、Znの拡
散を過剰に行うと正孔濃度が増加してエネルギーギャッ
プが小さくなり、発光波長が長くなる。発光波長が長く
なると、光はn型GaAs基板1をより透過しやすくな
る。そこで、本発明では、発光スペクトルに対するn型
GaAs基板の吸収係数αを高くするために、正孔濃度
を過剰にせず、p領域3のエネルギーギャップをできる
だけ1.424(eV)に近づけ、LED発光スペクト
ル中の910nm以上の波長(n型GaAs結晶中での
吸収係数αが10(cm-1)以下となる波長)をできる
だけ減少させる。すなわち、図2に示すように、発光ス
ペクトルのピーク強度がIo のとき、IO /2部分の最
長波長端λmが910nm以下となるように、p型領域
3へのZnドーピング濃度を決定する。図2のスペクト
ルにおいて、910nm以上の光は40%以下であり、
910nm以上の光は250μmの厚みの基板を用いる
と60%程度の光が表面に出てくることを考え合わせる
と、40%×60%=24%となり、本発明に係る半導
体発光素子では24%の光が表面に出ることになるが、
この値は電子写真プロセスにおいて、何ら問題のない値
である。亜鉛は、熱拡散法やイオン注入法によって、n
型GaAs基板1の表面から内部に拡散させる。そのた
め、表面から深さ方向に濃度勾配がつくが、例えば表面
から10〜20μmの位置で1018cm-3程度にZnを
拡散させれば、発光スペクトルのピーク強度がIo のと
き、IO /2部分の最長波長端λmが910nm以下の
発光スペクトルとなる。なお、Znの拡散原としては、
ZnAs2 やZn/Ga/Asなどを用いることができ
る。拡散時間、温度を特に規定するものではなく、Zn
の拡散濃度をLED発光スペクトル中の波長λmが91
0nm以下となるように拡散条件を設定する。
The energy gap of the p-type region 3, which is a light emitting region, changes according to the following equation 2 depending on the hole concentration. Eg (p-GaAs) = 1.424-1.6 × 10 −8 P O 1/3 (eV) Equation 2 Hole Concentration P O cm −3 From this, p-type region 3 If Zn is excessively diffused in order to form, the hole concentration increases, the energy gap decreases, and the emission wavelength increases. When the emission wavelength becomes longer, the light is more easily transmitted through the n-type GaAs substrate 1. Therefore, in the present invention, in order to increase the absorption coefficient α of the n-type GaAs substrate with respect to the emission spectrum, the energy gap of the p region 3 is made as close as possible to 1.424 (eV) without increasing the hole concentration, and the LED emission is increased. The wavelength of 910 nm or more in the spectrum (the wavelength at which the absorption coefficient α in the n-type GaAs crystal becomes 10 (cm −1 ) or less) is reduced as much as possible. That is, as shown in FIG. 2, when the peak intensity of the emission spectrum is I o , the Zn doping concentration in the p-type region 3 is determined so that the longest wavelength end λm of the I O / 2 portion is 910 nm or less. . In the spectrum of FIG. 2, the light of 910 nm or more is 40% or less,
Considering that about 60% of light having a thickness of 910 nm or more emerges from the surface when a substrate having a thickness of 250 μm is used, 40% × 60% = 24%, and 24% in the semiconductor light emitting device according to the present invention. Light will come out on the surface,
This value has no problem in the electrophotographic process. Zinc is obtained by thermal diffusion or ion implantation.
The GaAs substrate 1 is diffused from the surface to the inside. Therefore, it attaches a concentration gradient from the surface to the depth direction, for example, if caused to diffuse Zn from the surface to about 10 18 cm -3 at the position of 10 to 20 [mu] m, when the peak intensity of the emission spectrum of the I o, I O The emission spectrum has a longest wavelength end λm of / 2 nm or less at 910 nm or less. In addition, as a diffusion source of Zn,
ZnAs 2 or Zn / Ga / As can be used. The diffusion time and temperature are not particularly specified.
The diffusion density of is 91 when the wavelength λm in the LED emission spectrum is 91.
The diffusion conditions are set so as to be 0 nm or less.

【0015】n型GaAs基板1の裏面側に形成する電
極4は、Cr、GeAu、Auなどで10〜100nm
程度の厚みに形成する。また、p型領域3に形成する電
極5は、Cr、Zn、Au、Al、Tiなどで10〜1
00nm程度に形成する。また、配線抵抗を低減するた
めに、これら電極4、5上に、更にAl、Auなどを1
00nm〜10μm程度形成してもよい。
The electrode 4 formed on the back side of the n-type GaAs substrate 1 is made of Cr, GeAu, Au, etc.
It is formed to a thickness of about. The electrode 5 formed in the p-type region 3 is made of Cr, Zn, Au, Al, Ti, or the like.
It is formed to a thickness of about 00 nm. Further, in order to reduce the wiring resistance, Al, Au, etc.
It may be formed in a thickness of about 00 nm to 10 μm.

【0016】[0016]

【発明の効果】以上のように、本発明に係る半導体発光
素子によれば、n型GaAs基板の厚みを250μm以
上にすると共に、発光スペクトルの最大発光強度をIO
としたときに、IO /2部分の最長波長端λmが910
nm以下になるように、Znをn型GaAs基板に拡散
してp型領域を形成したことから、発光滲みや漏れ発光
を防止することができる。もって、電子写真プロセスの
印画品質を著しく向上させることができる。また、発光
スペクトルの最大発光強度をIO としたときに、IO
2部分の最長波長端λmが910nm以下になるよう
に、Znをn型GaAs基板に拡散してp型領域を形成
することから、製造プロセスを複雑化させることなく、
製造歩留りの高い、安価な半導体発光素子を提供でき
る。AlGaAs、GaAsP、InAlGaPなどの
単結晶薄膜を用いると、870nmから短波長化ができ
るが、870nmから短波長になるほど間接遷移の寄与
が大きくなり量子効率が下がって、発光強度が低下する
が、本発明では、量子効率の高い直接遷移型のGaAs
を発光領域とできるため、発光強度が大きく、高速プリ
ンター用の半導体発光素子アレイを供給できる。
As described above, according to the semiconductor light emitting device of the present invention, the thickness of the n-type GaAs substrate is set to 250 μm or more, and the maximum emission intensity of the emission spectrum is set to I O.
, The longest wavelength end λm of the I O / 2 portion is 910
Since Zn is diffused into the n-type GaAs substrate to form a p-type region so as to be not more than nm, light emission bleeding and leakage light emission can be prevented. Thus, the printing quality of the electrophotographic process can be significantly improved. When the maximum emission intensity of the emission spectrum is I O , I O /
Since Zn is diffused into an n-type GaAs substrate to form a p-type region so that the longest wavelength end λm of the two portions is 910 nm or less, the manufacturing process is not complicated,
An inexpensive semiconductor light emitting device having a high production yield can be provided. When a single crystal thin film of AlGaAs, GaAsP, InAlGaP, or the like is used, the wavelength can be shortened from 870 nm. In the invention, a direct transition type GaAs having high quantum efficiency is used.
Can be used as a light emitting region, so that the light emitting intensity is high and a semiconductor light emitting element array for a high-speed printer can be supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半導体発光素子の断面を示す図で
ある。
FIG. 1 is a diagram showing a cross section of a semiconductor light emitting device according to the present invention.

【図2】本発明に係る半導体発光素子の発光スペクトル
を示す図である。
FIG. 2 is a diagram showing an emission spectrum of the semiconductor light emitting device according to the present invention.

【図3】従来の半導体発光素子の発光スペクトルを示す
図である。
FIG. 3 is a diagram showing an emission spectrum of a conventional semiconductor light emitting device.

【図4】n型GaAs結晶の吸収係数を示す図である。FIG. 4 is a diagram showing an absorption coefficient of an n-type GaAs crystal.

【図5】従来の半導体発光素子における発光滲みや漏れ
発光を示す図である。
FIG. 5 is a diagram showing light emission bleeding and leakage light emission in a conventional semiconductor light emitting element.

【符号の説明】[Explanation of symbols]

1・・・n型GaAs基板、2・・・拡散マスク、3・
・・p型領域、4・・・電極、5・・・電極
1 ... n-type GaAs substrate, 2 ... diffusion mask, 3 ...
..P-type region, 4 ... electrodes, 5 ... electrodes

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 n型GaAs基板にp型領域を設け、こ
のn型GaAs基板とp型領域に電極を設けた半導体発
光素子において、前記n型GaAs基板の厚みを250
μm以上にすると共に、発光スペクトルの最大発光強度
をIO としたときに、IO /2部分の最長波長端λmが
910nm以下になるようにZnを拡散して前記p型領
域を形成したことを特徴とする半導体発光素子。
1. A semiconductor light emitting device having a p-type region provided on an n-type GaAs substrate and electrodes provided on the n-type GaAs substrate and the p-type region, wherein the n-type GaAs substrate has a thickness of 250.
μm or more, and when the maximum emission intensity of the emission spectrum is I O , Zn is diffused so that the longest wavelength end λm of the I O / 2 portion is 910 nm or less, and the p-type region is formed. A semiconductor light emitting device characterized by the above-mentioned.
JP21376293A 1993-08-30 1993-08-30 Semiconductor light emitting device Expired - Fee Related JP2851771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21376293A JP2851771B2 (en) 1993-08-30 1993-08-30 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21376293A JP2851771B2 (en) 1993-08-30 1993-08-30 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH0766451A JPH0766451A (en) 1995-03-10
JP2851771B2 true JP2851771B2 (en) 1999-01-27

Family

ID=16644612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21376293A Expired - Fee Related JP2851771B2 (en) 1993-08-30 1993-08-30 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2851771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016826A (en) * 2006-06-07 2008-01-24 Nec Electronics Corp Light emitting diode and photocoupler equipped with it
JP7060508B2 (en) * 2016-08-26 2022-04-26 スタンレー電気株式会社 Group III nitride semiconductor light emitting device and wafer including the device configuration

Also Published As

Publication number Publication date
JPH0766451A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
US5162878A (en) Light-emitting diode array with projections
US5226053A (en) Light emitting diode
US5260588A (en) Light-emitting diode array
US4495514A (en) Transparent electrode light emitting diode and method of manufacture
US5077587A (en) Light-emitting diode with anti-reflection layer optimization
JPH04132274A (en) Light emitting diode
US5135877A (en) Method of making a light-emitting diode with anti-reflection layer optimization
US4243996A (en) Electroluminescent semiconductor device
JP2851771B2 (en) Semiconductor light emitting device
US7679076B2 (en) Optical semiconductor device and method of manufacturing the same
JP3782230B2 (en) Manufacturing method of semiconductor laser device and manufacturing method of group III-V compound semiconductor element
US4759025A (en) Window structure semiconductor laser
US6625190B1 (en) Semiconductor laser device having thickened impurity-doped aluminum-free optical waveguide layers
US6674095B1 (en) Compound semiconductor surface stabilizing method, semiconductor laser device fabricating method using the stabilizing method, and semiconductor device
US9935423B2 (en) Semiconductor laser device
JP2002111058A (en) Light emitting diode and exposure system
JPH07122780A (en) Led array and manufacture thereof
US6709884B2 (en) Light emitting device, semiconductor device, and method of manufacturing the devices
JP2001068782A (en) Semiconductor light-emitting device and manufacture thereof
US6888165B2 (en) Light-emitting diode
JPH07273368A (en) Light-emitting diode
US5119387A (en) Semiconductor laser of visible ray region having window structure
JP2000022262A (en) Semiconductor laser
US5006907A (en) Crosstalk preventing laser diode array
US11127880B2 (en) Optoelectronic semiconductor device and method for producing an optoelectronic semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees