JP2851578B2 - Gas turbine blades - Google Patents

Gas turbine blades

Info

Publication number
JP2851578B2
JP2851578B2 JP8054845A JP5484596A JP2851578B2 JP 2851578 B2 JP2851578 B2 JP 2851578B2 JP 8054845 A JP8054845 A JP 8054845A JP 5484596 A JP5484596 A JP 5484596A JP 2851578 B2 JP2851578 B2 JP 2851578B2
Authority
JP
Japan
Prior art keywords
blade
cooling
passage
supply
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8054845A
Other languages
Japanese (ja)
Other versions
JPH09250302A (en
Inventor
康意 富田
卓 一柳
潔 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8054845A priority Critical patent/JP2851578B2/en
Publication of JPH09250302A publication Critical patent/JPH09250302A/en
Application granted granted Critical
Publication of JP2851578B2 publication Critical patent/JP2851578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、翼幅方向に冷却媒
体を通過させる冷却通路が、複数列動翼の翼幹部に形成
されるとともに、冷却通路と連結され、冷却通路に冷却
媒体を供給する供給側通路、および冷却通路を通過した
冷却媒体を排出する排出側通路が、動翼の翼根部に形成
されるガスタービン翼に関する。
BACKGROUND OF THE INVENTION The present invention relates to a cooling passage for passing a cooling medium in a blade width direction, which is formed in a blade trunk portion of a plurality of rows of moving blades, is connected to the cooling passage, and supplies the cooling medium to the cooling passage. The present invention relates to a gas turbine blade in which a supply-side passage that discharges and a discharge-side passage that discharges a cooling medium that has passed through the cooling passage are formed at a blade root portion of a moving blade.

【0002】[0002]

【従来の技術】最近のタービン入口温度の高いガスター
ビンに用いる動翼では、動翼の内部に、翼幅方向に冷却
空気の通路を複数列設け、低温の圧縮空気を流して、動
翼を内部から冷却し、高温ガスにさらされる動翼自身の
温度を、動翼メタル温度より低い、構造強度を保持でき
る、許容値以下に抑えるようにしている。このような、
動翼の空気冷却では、動翼に供給された冷却空気は、冷
却通路を通過するとき、動翼を内部から対流冷却すると
共に、動翼の構造上高温化しやすい前縁部、翼端部、又
は後縁部に設けた穴から、動翼の外周を流れる高温ガス
中に放出され、これらの部分を、フィルム冷却するよう
にしている。
2. Description of the Related Art Recently, in a moving blade used for a gas turbine having a high turbine inlet temperature, a plurality of rows of cooling air passages are provided in the moving blade in a blade width direction, and low-temperature compressed air is flown to form the moving blade. The temperature of the rotor blade itself, which is cooled from the inside and is exposed to high-temperature gas, is kept below the allowable value, which is lower than the blade metal temperature and can maintain the structural strength. like this,
In the air cooling of the moving blade, the cooling air supplied to the moving blade cools the moving blade from the inside when passing through the cooling passage, and at the same time, the leading edge, the blade tip, which tends to become high in temperature due to the structure of the moving blade, Alternatively, the gas is discharged into the high-temperature gas flowing around the outer periphery of the moving blade from a hole provided in the trailing edge portion, and these portions are film- cooled.

【0003】図4は、このような内部を通過する冷却空
気で、動翼を冷却するようにしたガスタービン翼の縦断
面図である。図に示すように、動翼01の翼幹部04の
内部には、翼根部02と翼端部03とを結ぶ翼幅方向
に、冷却通路05が設けられている。この冷却通路05
は、動翼01の前後方向である翼弦方向に複数列設けら
れ、翼根部02を外周面に植設する、図示しないロータ
の内部に穿設した空気流路から、翼根部02の内部に設
けた供給側通路010を介して、導入した冷却空気06
を翼根部02と翼端部03を結ぶ翼幅方向に通過させ、
動翼01を内部から対流冷却するようにしている。
FIG. 4 is a longitudinal sectional view of a gas turbine blade in which a moving blade is cooled by cooling air passing through the inside. As shown in the figure, a cooling passage 05 is provided in a blade width direction connecting a blade root portion 02 and a blade tip portion 03 inside a blade trunk portion 04 of a rotor blade 01. This cooling passage 05
Are provided in a plurality of rows in the chord direction which is the front-rear direction of the rotor blade 01, and the blade root 02 is implanted on the outer peripheral surface. Introduced cooling air 06 via the supply side passage 010 provided
Through the blade width direction connecting the blade root 02 and the blade tip 03,
The bucket 01 is convectively cooled from the inside.

【0004】また、供給側通路010から流入した冷却
空気06の一部は、動翼01を対流冷却した後、動翼0
1の前縁部011に穿設した開口07等から翼01
の外周を流れる高温ガス013中に高速で放出され、
幹部04のフィルム冷却を行うようにしている。また、
冷却空気06の一部は、翼後縁部012を対流冷却した
後、後縁部012に穿設した穴08、および翼端部03
に穿設した開口部09を通って高温ガス013中に放出
される。なお、同図において、014は冷却通路05に
冷却空気06の流れと交叉するように配設し、冷却空気
06の流れを乱流状態にして、冷却効率を高めるように
したタービュレータである。
[0004] A part of the cooling air 06 flowing from the supply side passage 010, after the blades 01 and convection cooled, blades 0
From the opening 07 or the like which is formed in the first leading edge 011, rotor blades 01
Released at high speed the periphery of into the hot gas 013 flowing wings
The film cooling of the trunk 04 is performed. Also,
Part of the cooling air 06 convectively cooled the wing trailing edge 012
Later, a hole 08 drilled in the trailing edge 012 and a wing tip 03
Released into hot gas 013 through opening 09
Is done. In the figure, reference numeral 014 denotes a turbulator which is disposed in the cooling passage 05 so as to intersect with the flow of the cooling air 06 so as to make the flow of the cooling air 06 turbulent, thereby increasing the cooling efficiency.

【0005】このように、従来のガスタービン翼では
様々な冷却構造を採用て冷却を強化し、動翼01の作
動効率上、翼厚が薄く、構造強度が小さく、高温強度が
シビアになる部分の高温化を防止して、構造強度を保持
し、動翼01の作動効率の低下を防止するようにしてい
る。
As described above, in the conventional gas turbine blade ,
Adopted various cooling structures to enhance cooling, the operating efficiency of the blade 01, the blade thickness is rather thin, structural strength is small, the high temperature strength to prevent high temperature parts partial severe in ing, The structural strength is maintained, and a decrease in the operating efficiency of the rotor blade 01 is prevented.

【0006】また、近年では、さらにガスタービンの熱
効率改善のために、従来よりも、高い高温ガスを作動ガ
スに使用することが求められており、このためには、動
翼01をより高温強度に富む材料にするとともに、動翼
の冷却を強化することが必要となってきている。このた
め、前述した冷却媒体である圧縮空気では冷却効果が充
分得られないため、熱容量が大きく、冷却効率を高くで
きる水蒸気を冷却媒体として使用して、冷却することが
必要となってきている。
In recent years, in order to further improve the thermal efficiency of a gas turbine, it has been required to use a higher temperature gas as a working gas than in the past. In addition, it is necessary to enhance the cooling of the rotor blades while making the material rich in material. Thus, since the compressed air is a cooling medium mentioned above can not be obtained sufficiently that cooling effect, large heat capacity, using steam which can increase the cooling efficiency as a cooling medium, has become necessary to cool I have.

【0007】しかしながら、動翼01の内部に水蒸気を
通して冷却するガスタービン翼では、冷却に使用された
水蒸気を、前述した冷却空気06のように、高温ガス0
13中に放出するとガスタービンの熱効率が大幅に下が
るため、冷却に使った水蒸気の全てを動翼01の内部か
ら回収して、回収した水蒸気の熱エネルギーを蒸気ター
ビンで回収する必要がある。
[0007] However, in the gas turbine blade that cools the inside of the moving blade 01 by passing steam, the steam used for cooling is cooled by the high-temperature gas 0 like the cooling air 06 described above.
Release into 13 significantly reduces the thermal efficiency of the gas turbine
Because all the steam that was used to cool recovered from the interior of the rotor blade 01, the thermal energy of the recovered water vapor it must be recovered in a steam turbine.

【0008】すなわち、冷却空気06のように、水蒸気
を高温ガス013中に放出するようにした場合、水蒸気
の放出による高温ガス013の温度低下が著しく、ター
ビンの内部効率が大きく低下するとともに、動翼01の
冷却で回収された熱エネルギーが、ガスタービンプラン
トの熱効率改善に寄与されず、目的とするガスタービン
の熱効率改善が阻害される不具合があるからである。
Namely, as in the cooling air 06, if you choose to release the water vapor into the hot gas 013, significantly decrease in temperature of the hot gases 013 due to the release of water vapor, along with the internal efficiency of the turbine is greatly reduced, the dynamic This is because the thermal energy recovered by cooling the blades 01 does not contribute to the improvement of the thermal efficiency of the gas turbine plant, and the improvement of the thermal efficiency of the target gas turbine is hindered.

【0009】従って、冷却に必要とする流量の水蒸気を
冷却通路05に供給する供給側通路を翼根部02に設け
る点は、前述した空気冷却の場合と同様であるが、高温
強度がシビアになる動翼01の前縁部011および後縁
部012近傍にできるだけ、低温の水蒸気を供給する必
要があり、供給側通路を前縁部011および後縁部01
2側の双方に於ける必要がある。また、冷却に使用され
た水蒸気を、冷却通路から排出する排出側通路を翼根部
02に設ける必要もある。
Accordingly, the point that a supply side passage for supplying steam at a flow rate required for cooling to the cooling passage 05 is provided in the blade root portion 02 is the same as in the case of air cooling described above, but the high temperature strength is severe. It is necessary to supply low-temperature steam as close as possible to the vicinity of the leading edge portion 011 and the trailing edge portion 012 of the rotor blade 01, and the supply-side passage is provided with the leading edge portion 011 and the trailing edge portion 01.
Need to be on both sides. Further, it is necessary to provide a discharge-side passage for discharging steam used for cooling from the cooling passage in the blade root portion 02.

【0010】すなわち、動翼01の前縁部011および
後縁部012に、それぞれ設けた冷却通路に、低温の水
蒸気を供給するために、供給側通路を、前縁部011お
よび後縁部012近傍の翼根部02に、それぞれ設ける
とともに、冷却通路を通過して温度上昇した水蒸気を回
収するために、動翼01の中央部近傍に設けた冷却通路
から水蒸気を排出する排出側通路を、供給側通路の間に
配置して、翼根部02に設ける必要がある。このため
に、冷却媒体が空気から水蒸気に代ることにより増大す
る流路面積の大きい供給側通路を2系統、および供給側
通路の間に配置される排出側通路を1系統、それぞれ容
積の小さい翼根部02内に形成することが難しくなると
いう問題が発生する。
That is, in order to supply low-temperature steam to the cooling passages provided at the leading edge portion 011 and the trailing edge portion 012 of the moving blade 01, the supply side passage is formed by the leading edge portion 011 and the trailing edge portion 012. In order to collect the steam whose temperature has risen by passing through the cooling passage, a discharge-side passage for discharging steam from the cooling passage provided near the center of the moving blade 01 is provided in the vicinity of the blade root portion 02. It is necessary to dispose it between the side passages and provide it on the blade root part 02. For this reason, two systems of supply-side passages having a large flow path area, which increase as the cooling medium is replaced with water vapor from air, and one system of a discharge-side passage arranged between the supply-side passages, each having a small volume. There arises a problem that it is difficult to form the inside of the blade root portion 02.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上述したガ
スタービンの熱効率改善に伴い生じる問題を解消するた
め、動翼の翼根部内部に設けられ、動翼の前縁部又は後
縁部に設けた冷却通路のうちの一方の冷却通路に冷却媒
体を供給するようにした供給側通路から分岐して、翼根
部の側面に区画された通路を通って、供給側通路とは直
接連通しない後縁部又は前縁部に設けた、他方の冷却通
路に冷却媒体を供給できるようにして、翼根部内に単一
の供給側通路を設けるようにして、前縁部および後縁部
の両方の冷却通路に同時に、冷却媒体を供給するように
したガスタービン翼を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention is provided inside a blade root portion of a moving blade, and is provided at a leading edge or a trailing edge of the moving blade in order to solve the above-mentioned problem caused by improving the thermal efficiency of a gas turbine. After branching off from the supply-side passage configured to supply the cooling medium to one of the provided cooling passages and passing through a passage defined on the side surface of the blade root portion, and not directly communicating with the supply-side passage. The cooling medium can be supplied to the other cooling passage provided at the edge or the leading edge, and a single supply-side passage is provided in the root portion of the blade so that both the leading edge and the trailing edge are provided. It is an object to provide a gas turbine blade that supplies a cooling medium to a cooling passage at the same time.

【0012】[0012]

【課題を解決するための手段】このため、本発明のガス
タービン翼は、次の手段とした。動翼の翼根部側面から
突出して設けられた翼プラットフォームの下方の外周面
上で被包され、内部に通路が動翼の前後方向に設けら
れ、動翼の前縁側に設けた冷却通路、又は後縁側に設け
た冷却通路の一方と連通して、冷却媒体を供給する、翼
根部の内部に設けられた供給側通路に、通路の一端側を
開口させて、供給側通路から分岐して導入した冷却媒体
を、供給側通路と直接連通してない、後縁側に設けた冷
却通路、又は前縁側に設けた冷却通路に供給する開口
を、通路の他端側にあけたポケットを設けた。
Therefore, the gas turbine blade of the present invention has the following means. A cooling passage provided on the outer peripheral surface below the blade platform provided so as to protrude from the blade root side surface of the moving blade, wherein a passage is provided in the front-rear direction of the moving blade and provided on a leading edge side of the moving blade, or One end of the passage is opened to the supply side passage provided inside the blade root portion, which communicates with one of the cooling passages provided on the trailing edge side and supplies the cooling medium, and is branched from the supply side passage and introduced. A pocket was provided at the other end of the passage, through which an opening for supplying the cooling medium to the cooling passage provided at the trailing edge or the cooling passage provided at the leading edge, which was not directly connected to the supply-side passage, was provided.

【0013】なお、ポケットは、動翼の翼プラットフォ
ーム、および翼プラットフォームの下方で翼根部側面か
ら穿設される翼車板を、構造体の一部として形成するよ
うにしても良い。またポケットは、動翼の腹側、若しく
は背側の翼根部1側面だけに設けるようにしても、両側
面に設けるようにしても良いものである。
[0013] The pocket may be formed as a part of a structure including a blade platform of a rotor blade and a blade plate that is drilled from the side of the blade root below the blade platform. The pockets may be provided only on the side surface of the blade root 1 on the ventral side or the back side of the moving blade, or may be provided on both side surfaces.

【0014】本発明のガスタービン翼は、上述の手段に
より、容積の小さい翼根部の内部に、供給側通路を前縁
側、若しくは後縁側の一方にだけ設け、前縁若しくは後
縁に近接して設けた一方の冷却通路に、供給側通路に導
入した冷却媒体の一部を直接供給できるとともに、残り
の冷却媒体は、供給通路から分岐し、ポケットの内部を
通過して、供給側通路が直接連通していない後縁、若し
くは前縁に近接して設けた、他方の冷却通路に供給する
ことができる。
According to the gas turbine blade of the present invention, the supply passage is provided only on one of the leading edge and the trailing edge inside the blade root portion having a small volume by the above-mentioned means, and is provided near the leading edge or the trailing edge. A portion of the cooling medium introduced into the supply-side passage can be directly supplied to one of the provided cooling passages, and the remaining cooling medium branches off from the supply passage, passes through the inside of the pocket, and is directly connected to the supply-side passage. It can be supplied to the other cooling passage, which is provided adjacent to the trailing edge which is not in communication or the leading edge.

【0015】このように、翼根部の供給側通路から直
接、又はポケットを通って前縁側と後縁側に、先ず低温
の冷却媒体が供給されるので、構造強度に劣る前縁側、
および後縁側の高温化が防止でき、より高い、高温ガス
を作動ガスに使用することができ、ガスタービンの熱効
率を高いものにすることができる。
[0015] Thus, directly from the supply side passage of the blade root portion, or the edge and the trailing edge side before through the pocket, firstly because low-temperature cooling medium is supplied, edge before poor structural strength,
Further, it is possible to prevent the trailing edge from being heated to a higher temperature, use a higher temperature gas as the working gas, and increase the thermal efficiency of the gas turbine.

【0016】さらに、冷却通路に供給された冷却媒体
は、動翼を内部から冷却した後、冷却負荷の相対的に低
い中央部から動翼の外部へ回収できるので、高温ガスへ
の放出による高温の作動ガスを冷却することがなくな
り、また、冷却により冷却媒体中に蓄積された熱エネル
ギーで、動力を余分に発生させることができるようにな
り、ガスタービンの熱効率を向上させることができる。
Further, the cooling medium supplied to the cooling passage can be recovered from the central portion having a relatively low cooling load to the outside of the moving blade after cooling the moving blade from the inside. The working gas is not cooled, and the heat energy accumulated in the cooling medium by the cooling can generate extra power, thereby improving the thermal efficiency of the gas turbine.

【0017】また翼根部内では、1系統の供給側通路だ
けが設けられ、翼根部の外側面に設けたポケットで、前
縁側と後縁側に冷却媒体分岐させるようにしているの
で、容積の小さい翼根部内に、流路面積の大きくなる水
蒸気が通過する供給側通路、および排出側通路を配置上
の困難を伴うことなく、設置することができるととも
に、配置上の制約から、これらの通路を複雑な構造のも
のとすることなく、単純な構造のものにして形成でき
る。
In the blade root portion, only one supply-side passage is provided, and the cooling medium is branched to the leading edge side and the trailing edge side by pockets provided on the outer surface of the blade root portion, so that the volume is small. In the blade root portion, the supply-side passage and the discharge-side passage through which steam having a large flow area passes can be installed without difficulty in arrangement, and these passages are restricted due to restrictions on arrangement. It can be formed into a simple structure without having a complicated structure.

【0018】[0018]

【発明の実施の形態】以下、本発明のガスタービン翼の
実施の一形態を、図面にもとづき説明する。図1は、本
発明のガスタービン翼の実施の第1形態を示す縦断面
図、図2は、図1に示す矢視A−Aにおける断面図、図
3は、図1に示す矢視B−Bにおける部分断面図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a gas turbine blade according to the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a first embodiment of a gas turbine blade according to the present invention, FIG. 2 is a sectional view taken along the line AA shown in FIG. 1, and FIG. It is a fragmentary sectional view in -B.

【0019】図1に示すように、動翼1の翼幹部04の
の内部には、翼根部2と翼端部3とを結ぶ翼幅方向に、
水蒸気6を通過させて、動翼1を内部から冷却する冷却
通路5が設けられている。また、冷却通路5には、水蒸
気6の流れと交叉するように配設し、冷却通路5を通過
する水蒸気6の流れを乱流状態にして、冷却効率を高め
るようにした、図示しないタービュレータが図4と同様
に設けられている。
As shown in FIG. 1, inside the blade trunk portion 04 of the rotor blade 1, in the blade width direction connecting the blade root 2 and the blade tip 3,
A cooling passage 5 that allows the steam 6 to pass through and cools the bucket 1 from the inside is provided. A turbulator (not shown) is provided in the cooling passage 5 so as to intersect with the flow of the steam 6 so as to make the flow of the steam 6 passing through the cooling passage 5 in a turbulent state to increase the cooling efficiency. It is provided similarly to FIG.

【0020】また、この冷却通路5は、動翼1の前縁か
ら後縁に向う前後方向の翼弦方向に複数列設けられ、翼
根部2を外周面に植設する、図示しないロータの内部に
穿設した蒸気流路15から、翼根部2の前縁側11内部
に設けた供給側通路10に流入した、低温の水蒸気6の
一部が、冷却通路5のうちの、前縁側11に設けた前縁
側冷却通路51を翼端部3方向に流れ、翼端部3で折返
し、冷却通路51の後方に設けられた冷却通路5を翼根
部2方向に流れ、動翼1を内部から対流冷却する。さら
に、翼根部2と翼端部3の間の冷却通路5を1往復した
水蒸気6は、翼根部2に設けた排出側通路16から、ロ
ータ内部に穿設され、供給側通路10とは遮断された蒸
気流路17へ流出する。
The cooling passages 5 are provided in a plurality of rows in the front-rear chord direction from the leading edge to the trailing edge of the moving blade 1, and the inside of a rotor (not shown) for implanting the blade root 2 on the outer peripheral surface. A part of the low-temperature steam 6 flowing into the supply-side passage 10 provided inside the leading edge 11 of the blade root portion 2 from the steam passage 15 formed in the cooling passage 5 is provided on the leading edge 11 of the cooling passage 5. Through the leading edge side cooling passage 51 in the direction of the blade tip 3, turns at the blade tip 3, flows through the cooling passage 5 provided behind the cooling passage 51 in the direction of the blade root 2, and convection cools the moving blade 1 from the inside. I do. Further, the steam 6 that has reciprocated in the cooling passage 5 between the blade root 2 and the blade tip 3 is perforated into the rotor from the discharge-side passage 16 provided in the blade root 2 and cut off from the supply-side passage 10. The steam flows out to the steam flow path 17.

【0021】さらに、供給側通路10に流入した低温の
水蒸気6の他の部分は、供給側通路10に開口する連結
穴18を通って、後述するポケット19を経由して後縁
側12へ流れ、連結穴20を通って、冷却通路5のうち
の後縁側12に設けた、後縁側冷却通路52に流入す
る。後縁側冷却通路52に流入した低温の水蒸気は、後
縁側冷却通路52を翼端部3方向に流れ、翼端部3で折
返し、冷却通路54の前方に設けられた冷却通路5を翼
根部2方向に流れ、動翼1を内部から対流冷却する。さ
らに、翼根部2と翼端部3の間の冷却通路5を1往復し
た水蒸気6は、翼根部2に設けた排出側通路16から、
ロータ内部に穿設され、供給側通路10とは遮断された
蒸気流路17へ流出する。
Further, another portion of the low-temperature steam 6 flowing into the supply-side passage 10 flows through the connection hole 18 opened in the supply-side passage 10 to the trailing edge 12 through a pocket 19 described later. Through the connection hole 20, it flows into the trailing edge side cooling passage 52 provided on the trailing edge side 12 of the cooling passage 5. The low-temperature steam flowing into the trailing edge side cooling passage 52 flows through the trailing edge side cooling passage 52 in the direction of the blade tip 3, turns at the blade tip 3, and passes through the cooling passage 5 provided in front of the cooling passage 54 to the blade root 2. In the direction, and convectively cools the bucket 1 from the inside. Further, the steam 6 that has reciprocated through the cooling passage 5 between the blade root 2 and the blade tip 3 is discharged from the discharge-side passage 16 provided in the blade root 2.
The steam flows into a steam passage 17 that is bored inside the rotor and is isolated from the supply-side passage 10.

【0022】次に、ポケット19は、図2,図3に示す
ように、翼根部2の側面から突出して設けられた翼プラ
ットフォーム21、および翼車板22を構成部材の一部
にするとともに、翼プラットフォーム21の下端部と翼
車板22の外側面との間をプレート23で被包して、内
部に、前縁部11から後縁部12に向う通路を、翼根部
2側面に形成したものである。ポケット19の前縁側1
1は、翼根部2側面にあけた連結穴18で供給側通路1
0に連結し、後縁側12は翼根部2側面にあけた連結穴
20で後縁側冷却通路52に連結していることは、前述
の通りである。
Next, as shown in FIG. 2 and FIG. 3, the pocket 19 forms a wing platform 21 and a wing car plate 22 which are provided so as to protrude from the side surface of the wing root portion 2 as a part of components. The space between the lower end of the wing platform 21 and the outer surface of the wing wheel plate 22 is covered with the plate 23, and a passage from the leading edge 11 to the trailing edge 12 is formed inside the wing root 2 side. Things. Front edge side 1 of pocket 19
Reference numeral 1 denotes a supply-side passage 1 which is a connection hole 18 formed in the side surface of the blade root 2.
As described above, the trailing edge side 12 is connected to the trailing edge side cooling passage 52 by the connecting hole 20 formed in the side surface of the blade root 2.

【0023】本実施の形態のガスタービン翼は、上述の
様に構成されているので、供給側通路10に供給された
水蒸気6の一部は、前縁側冷却通路51に導入されると
ともに、他の部分は翼根部側面にあけられた連結穴18
から、翼プラットフォーム21と翼車板22外周との間
に設けられ、翼前後方向に設けられた、ポケット19内
を流れ、後縁側の翼根部2側面にあけられた連結穴20
から後縁側冷却通路52に入り、低温の水蒸気6で熱負
荷の高い動翼1の前縁側11、および後縁側12を効果
的に冷却し、高温化を防止する。また、前縁側冷却通路
51および後縁側冷却通路52を通過した水蒸気は、そ
れぞれ翼中央部4に向って、翼幅方向に設けた冷却通路
5を往復しながら流れ、回収側通路16から回収され
る。
Since the gas turbine blade of the present embodiment is configured as described above, a part of the steam 6 supplied to the supply side passage 10 is introduced into the leading edge side cooling passage 51 and Is a connection hole 18 drilled on the side of the blade root.
A connection hole 20 is provided between the wing platform 21 and the outer periphery of the wing wheel plate 22, and flows in the pocket 19, which is provided in the front-rear direction of the wing, and is formed in the side surface of the wing root 2 on the trailing edge side.
The cooling water enters the trailing edge side cooling passage 52 from below, and the low temperature steam 6 effectively cools the leading edge side 11 and the trailing edge side 12 of the moving blade 1 having a high heat load, thereby preventing a high temperature. Further, the steam that has passed through the leading edge side cooling passage 51 and the trailing edge side cooling passage 52 flows toward the blade center portion 4 while reciprocating in the cooling passage 5 provided in the blade width direction, and is recovered from the recovery side passage 16. You.

【0024】このように、低温の水蒸気6は、供給側通
路10から直接前縁側冷却通路52に供給されるととも
に、ポケット19によって、熱負荷の高い前縁側11と
共に、熱負荷の高い後縁側12に同時に供給され、次に
冷却負荷の低い中央部に供給されるので、冷却効率が高
められ、インピンジメント冷却構造にしなくても、構造
強度に劣る前縁側11、および後縁側12の高温化が防
止でき、ひいては、より高い高温ガスを作動ガスに使用
することができ、ガスタービンの熱効率を高いものにす
ることができる。
As described above, the low-temperature steam 6 is directly supplied from the supply-side passage 10 to the leading-edge cooling passage 52, and the pocket 19 causes the leading-edge side 11 having a higher heat load and the trailing-edge side 12 having a higher heat load to be supplied. At the same time, and then to the central portion where the cooling load is low, so that the cooling efficiency is improved, and the front edge side 11 and the rear edge side 12 which are inferior in structural strength can be heated without impingement cooling structure. Thus, a higher temperature gas can be used for the working gas, and the thermal efficiency of the gas turbine can be increased.

【0025】また、フィルム冷却を採用しなくても、動
翼1の前縁側11の冷却ができるので、高温ガス中への
水蒸気6放出により高温の作動ガスを冷却することがな
くなり、また、冷却により水蒸気6中の蓄積された熱エ
ネルギーによって蒸気タービン等を駆動して、動力を余
分に発生させることができるようになり、ガスタービン
の熱効率を向上させることができる。さらに、翼根部2
内では、1系統の供給側通路10だけを設ければ良く、
容積の小さい翼根部内に、流路面積の大きい供給側通路
10、および排出側通路16を設ける配置上の困難さが
なくなり、構造も簡単にすることができる。
Further, even without employing the film cooling, it is cooled leading edge side 1 1 of the blade 1, it is not possible to cool the high-temperature working gas by steam 6 discharged into the hot gas, also, By cooling, the steam turbine and the like can be driven by the heat energy stored in the steam 6 to generate extra power, and the thermal efficiency of the gas turbine can be improved. Furthermore, wing root 2
Only one supply-side passage 10 need be provided.
The arrangement difficulty of providing the supply-side passage 10 and the discharge-side passage 16 having a large flow passage area in the blade root portion having a small volume is eliminated, and the structure can be simplified.

【0026】[0026]

【発明の効果】以上説明したように、本発明のガスター
ビン翼によれば、特許請求の範囲に示す構成により、冷
却に供した冷却媒体を高温の作動ガス中に放出せずに回
収することができるうえ、冷却蒸気を先ず動翼の熱負荷
の高い方に供給し、熱負荷の低い方から回収するので、
冷却効率が頗る良好となり、高温強度の低い前縁部、お
よび後縁部の高温化が防止できるとともに、ガスタービ
ン効率向上に寄与する効果を大きいものにできる。さら
に、翼根部の構造が簡素化でき、製造コストを低減でき
るとともに、信頼性の高いものにできる利点もある。
As described above, according to the gas turbine blade of the present invention, the cooling medium used for cooling can be recovered without being released into the high-temperature working gas, by the structure shown in the claims. In addition, cooling steam is first supplied to the higher heat load of the rotor blades and recovered from the lower heat load.
The cooling efficiency becomes very good, and it is possible to prevent the front edge portion and the rear edge portion having low high-temperature strength from becoming hot, and to increase the effect of contributing to the improvement of gas turbine efficiency. Further, there is an advantage that the structure of the blade root can be simplified, the manufacturing cost can be reduced, and the blade can be made highly reliable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガスタービン翼の実施の第1形態を示
す縦断面図、
FIG. 1 is a longitudinal sectional view showing a first embodiment of a gas turbine blade of the present invention,

【図2】図1に示す矢視A−Aにおける断面図、FIG. 2 is a sectional view taken along the line AA shown in FIG.

【図3】図1に示す矢視B−Bにおける部分断面図、FIG. 3 is a partial cross-sectional view taken along a line BB shown in FIG.

【図4】従来の冷却空気で冷却を行うガスタービン翼の
縦断面図である。
FIG. 4 is a longitudinal sectional view of a conventional gas turbine blade cooled by cooling air.

【符号の説明】[Explanation of symbols]

1,01 動翼 2,02 翼根部 3,03 翼端部 4,04 翼幹部 5,05 冷却通路 51 前縁側冷却通路 52 後縁側冷却通路 6 水蒸気 10,010 供給側通路 11,011 前縁部 12,012 後縁部 13,013 高温ガス 014 タービュレータ 15 蒸気流路 16 排出側通路 17 蒸気流路 18 連結穴 19 ポケット 20 連結穴 21 翼プラットフォーム 22 翼車板 23 プレート 1,01 Blade 2,02 Blade root 3,03 Blade tip 4,04 Blade trunk 5,05 Cooling passage 51 Leading edge cooling passage 52 Trailing edge cooling passage 6 Steam 10,010 Supply side passage 11,011 Leading edge 12,012 trailing edge 13,013 hot gas 014 turbulator 15 steam flow path 16 discharge side passage 17 steam flow path 18 connection hole 19 pocket 20 connection hole 21 wing platform 22 wing car plate 23 plate

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高温ガス中で作動する動翼の翼幹部内
を、翼幅方向に複数列穿設された冷却通路と、前記動翼
の翼根部内で前記冷却通路と連結され、前記冷却通路に
冷却媒体を供給する供給側通路、および前記冷却通路を
通過した冷却媒体を排出する排出側通路とを設け、前記
動翼を前記冷却媒体で内部から冷却するとともに、冷却
した前記冷却媒体を前記動翼の内部から回収するガスタ
ービン翼において、前記動翼の翼根部に形成された翼プ
ラットフォームの下方外側面上を前後方向に区画して設
けられ、前記供給側通路から前記動翼の前縁側、若しく
は後縁側に設けた前記冷却通路の一方に供給する前記冷
却媒体を分岐して供給するとともに、前記動翼の後縁側
若しくは前縁側に設けた他方の前記冷却通路に供給する
ポケットを設けたことを特徴とするガスタービン翼。
The cooling blade is connected to a cooling passage formed in a plurality of rows in a blade width direction in a blade trunk portion of a moving blade operating in a high-temperature gas, and connected to the cooling passage in a blade root portion of the moving blade. A supply-side passage that supplies a cooling medium to the passage, and a discharge-side passage that discharges the cooling medium that has passed through the cooling passage are provided, and the moving blades are cooled from the inside with the cooling medium, and the cooled cooling medium is cooled. In a gas turbine blade recovered from the inside of the moving blade, a lower outer surface of a blade platform formed at a blade root portion of the moving blade is provided so as to be partitioned in a front-rear direction, and is provided in front of the moving blade from the supply-side passage. The cooling medium supplied to one of the cooling passages provided on the edge side or the trailing edge side is branched and supplied, and a pocket is provided for supplying the other cooling passage provided on the trailing edge side or the leading edge side of the bucket. Was it A gas turbine blade.
JP8054845A 1996-03-12 1996-03-12 Gas turbine blades Expired - Fee Related JP2851578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8054845A JP2851578B2 (en) 1996-03-12 1996-03-12 Gas turbine blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8054845A JP2851578B2 (en) 1996-03-12 1996-03-12 Gas turbine blades

Publications (2)

Publication Number Publication Date
JPH09250302A JPH09250302A (en) 1997-09-22
JP2851578B2 true JP2851578B2 (en) 1999-01-27

Family

ID=12981953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8054845A Expired - Fee Related JP2851578B2 (en) 1996-03-12 1996-03-12 Gas turbine blades

Country Status (1)

Country Link
JP (1) JP2851578B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6390774B1 (en) * 2000-02-02 2002-05-21 General Electric Company Gas turbine bucket cooling circuit and related process
US7144215B2 (en) * 2004-07-30 2006-12-05 General Electric Company Method and apparatus for cooling gas turbine engine rotor blades
US7198467B2 (en) * 2004-07-30 2007-04-03 General Electric Company Method and apparatus for cooling gas turbine engine rotor blades
US7131817B2 (en) * 2004-07-30 2006-11-07 General Electric Company Method and apparatus for cooling gas turbine engine rotor blades
US8814518B2 (en) * 2010-10-29 2014-08-26 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US9810070B2 (en) * 2013-05-15 2017-11-07 General Electric Company Turbine rotor blade for a turbine section of a gas turbine

Also Published As

Publication number Publication date
JPH09250302A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
US5915923A (en) Gas turbine moving blade
US5120192A (en) Cooled turbine blade and combined cycle power plant having gas turbine with this cooled turbine blade
US6471480B1 (en) Thin walled cooled hollow tip shroud
US6932571B2 (en) Microcircuit cooling for a turbine blade tip
US6283708B1 (en) Coolable vane or blade for a turbomachine
JP2851575B2 (en) Steam cooling wings
US8047790B1 (en) Near wall compartment cooled turbine blade
US6099252A (en) Axial serpentine cooled airfoil
JP3411775B2 (en) Gas turbine blade
US5690473A (en) Turbine blade having transpiration strip cooling and method of manufacture
US7556476B1 (en) Turbine airfoil with multiple near wall compartment cooling
EP0916810B1 (en) Airfoil cooling circuit
EP2388437B2 (en) Cooling circuit flow path for a turbine section airfoil
US8398370B1 (en) Turbine blade with multi-impingement cooling
EP1953343B1 (en) Cooling system for a gas turbine blade and corresponding gas turbine blade
JP2668207B2 (en) Aerof oil section of gas turbine engine turbine
JP4801513B2 (en) Cooling circuit for moving wing of turbomachine
US6506013B1 (en) Film cooling for a closed loop cooled airfoil
US6092991A (en) Gas turbine blade
US8011888B1 (en) Turbine blade with serpentine cooling
JP4436500B2 (en) Airfoil leading edge isolation cooling
US20030059305A1 (en) Air cooled aerofoil
JP2000213304A (en) Rear flowing and meandering aerofoil cooling circuit equipped with side wall impingement cooling chamber
JP2851578B2 (en) Gas turbine blades
JP2953842B2 (en) Turbine vane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981013

LAPS Cancellation because of no payment of annual fees