JP2851490B2 - Pumped storage generator - Google Patents

Pumped storage generator

Info

Publication number
JP2851490B2
JP2851490B2 JP4214751A JP21475192A JP2851490B2 JP 2851490 B2 JP2851490 B2 JP 2851490B2 JP 4214751 A JP4214751 A JP 4214751A JP 21475192 A JP21475192 A JP 21475192A JP 2851490 B2 JP2851490 B2 JP 2851490B2
Authority
JP
Japan
Prior art keywords
circuit
rotation speed
excitation
pumped
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4214751A
Other languages
Japanese (ja)
Other versions
JPH0638599A (en
Inventor
浩 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4214751A priority Critical patent/JP2851490B2/en
Publication of JPH0638599A publication Critical patent/JPH0638599A/en
Priority to JP10175154A priority patent/JP3053612B2/en
Priority to JP10175146A priority patent/JP3073719B2/en
Priority to JP10175145A priority patent/JP3043707B2/en
Priority to JP10175148A priority patent/JP3053611B2/en
Application granted granted Critical
Publication of JP2851490B2 publication Critical patent/JP2851490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は例えばポンプ水車に交
流励磁同期機を接続した揚水発電装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pumped-storage power generator in which, for example, an AC excitation synchronous machine is connected to a pump turbine.

【0002】[0002]

【従来の技術】従来のこの種の揚水発電装置としては、
次のようなものが知られている。
2. Description of the Related Art Conventional pumped-storage power generators of this type include:
The following are known.

【0003】(1)図は例えば特開昭62−7708
2号公報に示された可変速揚水発電装置の原理を説明す
るブロック図であり、図において、Mは巻線形誘導発電
電動機の2次側をスベリ周波数により2次励磁し、可変
速度で指定された電力にて運転される交流励磁同期機M
(以下、AESMと略称する)、1はその巻線形誘電発
電電動機の電機子、2はその誘電発電電動機の回転子
(2次コイル)、3は可逆式ポンプ水車、4はシャフ
ト、5はサイクロコンバータ用変圧器、6は励磁用変換
器としてのサイクロコンバータ(以下、EXと略称す
る)、7は回転数検出器、8はサイクロコンバータの制
御器である。
(1) FIG. 4 shows, for example, Japanese Patent Application Laid-Open No. 62-7708.
FIG. 2 is a block diagram for explaining the principle of the variable speed pumped-storage power generator disclosed in Japanese Patent Publication No. 2 (hereinafter referred to as “No. 2”). In FIG. Excitation Synchronous Machine M Operated with Electric Power
(Hereinafter abbreviated as AESM), 1 is an armature of the wound type induction motor, 2 is a rotor (secondary coil) of the induction motor, 3 is a reversible pump turbine, 4 is a shaft, 5 is a cyclone. A transformer for converter, 6 is a cycloconverter (hereinafter abbreviated as EX) as a converter for excitation, 7 is a rotation speed detector, and 8 is a controller of the cycloconverter.

【0004】図は上記可変速揚水発電装置の揚水方向
運転特性を示すもので、縦軸はポンプ入力を%表示、横
軸はポンプの揚程である。揚程の100%は最高揚程
で、最低揚程が90%の場合を示している。点P1〜P
4,P13,P14は特定のポイントを示しており、ラ
インL12は最大ポンプ入力、L5は100%ポンプ入
力、L6は安定なるポンプ運転の限界線、L7は最低揚
程におけるポンプ入力の最小しぼり込み値の限界、ライ
ンL8〜L11は回転数を各々102,100,97.
5,95%に変えた場合の運転特性曲線である。
FIG. 5 shows the pumping direction operation characteristics of the above-mentioned variable speed pumping power generator. The vertical axis indicates the pump input in%, and the horizontal axis indicates the pump head. 100% of the head is the highest head and the lowest head is 90%. Points P1 to P
4, P13, P14 indicate specific points, line L12 is the maximum pump input, L5 is the 100% pump input, L6 is the limit line of stable pump operation, L7 is the minimum pump input value at the minimum head. , The lines L8 to L11 have the rotational speeds of 102, 100, 97.
It is an operation characteristic curve when changing to 5,95%.

【0005】可変速機でない常に定格回転数(n=10
0%)で運転される揚水発電装置の揚水方向運転特性
は、図のラインL9に示す特性で揚程によって一義的
にポンプ入力が決められてしまうのに対し、上記可変速
揚水発電装置の場合は回転を定格の回転数より下げるこ
とにより、点P2〜P4を結ぶ範囲内でポンプ入力の調
整が可能であり、回転を定格回転数より上げることによ
り点P13,P14,P2,P3を結ぶ範囲内でポンプ
入力の調整が可能であり、合せてP13,P2,P4,
P14で囲まれた範囲が運転可能である。
[0005] Always a rated speed (n = 10
Pumping direction driving characteristics pumped storage device which is operated at 0%) based on the thus uniquely pump input is determined by the lift in the characteristics shown in line L9 in FIG. 5, the case of the variable-speed pumped-storage power generator The pump input can be adjusted within the range connecting the points P2 to P4 by lowering the rotation below the rated rotation speed, and the range connecting the points P13, P14, P2 and P3 by increasing the rotation above the rated rotation speed. Adjustment of pump input is possible within P13, P2, P4
The area surrounded by P14 is operable.

【0006】(2)図は例えば平成3年電気学会全国
大会、第11−55,第11−56の「可変速揚水発電
システムの励磁装置保護方式」に示されたサイクロコン
バータ形可変速揚水発電装置のブロック図であり、前記
と同一部分には同一符号を付して重複説明を省略す
る。図において、9は周波数変換装置としてのサイク
ロコンバータであり、この入力側にそれぞれ並列に過電
圧抑制用サイリスタ10、過電圧抑制アレスタ11、過
電圧検出回路12が接続されている。
(2) FIG. 6 shows a cycloconverter type variable speed pumping system shown in, for example, "Exciting System Protection Method for Variable Speed Pumping Power Generation System", 11th-55th and 11th-56th, IEEJ National Convention 1991. FIG. 5 is a block diagram of a power generator, in which the same parts as those in FIG. 4 are denoted by the same reference numerals, and redundant description will be omitted. In FIG. 6 , reference numeral 9 denotes a cycloconverter as a frequency conversion device, and an overvoltage suppression thyristor 10, an overvoltage suppression arrester 11, and an overvoltage detection circuit 12 are connected in parallel to its input side.

【0007】次に動作について説明する。AESMを可
変速で運転するには、AESMを2次励磁する方式が通
常採用される。回転数が変っても、系統周波数と一致す
るようにスベリ分だけ2次励磁により周波数を補正して
やれば、系統との並列運転が可能である。
Next, the operation will be described. In order to operate the AESM at a variable speed, a method of secondary excitation of the AESM is usually adopted. Even if the rotational speed changes, parallel operation with the system is possible if the frequency is corrected by secondary excitation by the amount of slip so as to match the system frequency.

【0008】系統事故が発生すると、AESMの2次に
過電圧が発生することが知られており、過電圧検出回路
12で過電圧を検出し、過電圧抑制用アレスタ11を点
弧して過電圧を抑制していた。
It is known that when a system fault occurs, an overvoltage occurs secondarily to the AESM. The overvoltage detection circuit 12 detects the overvoltage, and the overvoltage suppression arrester 11 is fired to suppress the overvoltage. Was.

【0009】(3)図は例えば特開平3−11739
6号公報に示されたサイクロコンバータ形可変速揚水発
電装置の概要を示すブロックであり、前記図と同一部
分には同一符号を付して重複説明を省略する。図にお
いて、13は計器用変流器、14は計器用変圧器であ
る。図は上記装置に適用する12相非循環電流方式サ
イクロコンバータの回路図である。
(3) FIG. 7 shows, for example, JP-A-3-11739.
Is a block diagram showing an outline of a cycloconverter form variable-speed pumped-storage power apparatus shown in 6 discloses, in FIG. 4, the same parts for a repeated explanation thereof are denoted by the same reference numerals. In FIG. 7 , 13 is a current transformer for an instrument, and 14 is a transformer for an instrument. FIG. 8 is a circuit diagram of a 12-phase non-circulating current type cycloconverter applied to the above device.

【0010】次に動作について説明する。まず、AES
Mを可変速で同期運転するには、該AESMの電機子1
を2次励磁する交流励磁方式が通常採用される。この励
磁方式は、例えば、図示のように、AESMの電機子1
の出力電圧をコンバータ用変圧器5で電圧変換した2次
電圧をEX6に入力する。
Next, the operation will be described. First, AES
To operate the M synchronously at a variable speed, the armature 1 of the AESM is used.
An AC excitation method for secondary excitation of the magnetic field is usually adopted. This excitation method is, for example, as shown in FIG.
The secondary voltage obtained by converting the output voltage of the above by the converter transformer 5 is input to EX6.

【0011】一般に同期発電機を並列運転するには、特
に両機の周波数,電圧の大きさ、及び位相の3要素が一
致していなければ並列投入と同時にじょう乱が発生する
ので、常に回転子2の回転数が高まっても系統周波数と
一致するように、スベリ分だけ2次励磁により周波数を
補正してやる必要がある。
In general, in order to operate the synchronous generators in parallel, if the three elements of frequency, voltage magnitude, and phase of both machines do not match, disturbance occurs at the same time as the parallel operation, so that the rotor 2 is always used. It is necessary to correct the frequency by the secondary excitation by the amount of the slip so that the frequency coincides with the system frequency even when the rotational speed of the motor increases.

【0012】そこで、EX6の周波数変換機能として、
交流電源からサイリスタのスイッチ作用を利用して直接
に周波数の異る交流電力を得、これをAESMの回転子
2に供給するサイクロコンバータ制御方式が使用され
る。
Therefore, as a frequency conversion function of EX6,
A cycloconverter control method is used in which AC power having different frequencies is directly obtained from an AC power supply by using the switching action of a thyristor and supplied to the rotor 2 of the AESM.

【0013】前記EX6としてはAESMの回転子2の
回転位置検出機(例えば、レゾルバ)7の位置信号や変
流器13による発電機出力電流,及び計器用変圧器14
による発電機出力電圧等を制御要素として入力したサイ
クロコンバータ制御器8によって制御し、最終的に設定
された電力及び最適回転数になるようにAESMをシス
テム制御している。
The EX 6 includes a position signal of a rotational position detector (for example, a resolver) 7 of the rotor 2 of the AESM, a generator output current by the current transformer 13, and an instrument transformer 14.
The AESM is controlled by a cycloconverter controller 8 which receives the generator output voltage and the like as a control element, and controls the AESM so that the finally set power and optimum rotational speed are obtained.

【0014】(4)図は例えば電学誌、107巻3
号、昭62,第210頁、図12に示された揚水発電装
置のブロックであり、図において、Mは電機子1と回転
子2を有するAESM、3はAESMに直結されたポン
プ水車、15はサイクロコンバータ、16は自動電流制
御回路、17は負荷調整回路、18は出力設定器、19
はポンプ水車3の入出力制御サーボ、20はガバナ、2
1は回転速度演算回路、22は弁開度演算回路、P,
N,H,GVOは各々実際の発生電力、回転数、落差、
ガイドベーン開度である。各々のサフィックスの零は指
令値を示す。
(4) FIG. 9 shows, for example, IEEJ, 107, 3
No., No. 62, pp. 210, FIG. 12 is a block diagram of a pumped-storage generator shown in FIG. 12, where M is an AESM having an armature 1 and a rotor 2, 3 is a pump-turbine directly connected to the AESM, 15 Is a cycloconverter, 16 is an automatic current control circuit, 17 is a load adjustment circuit, 18 is an output setter, 19
Is the input / output control servo of the pump turbine 3, 20 is the governor, 2
1 is a rotation speed calculation circuit, 22 is a valve opening calculation circuit,
N, H, and GVO are actual generated power, rotation speed, head,
This is the guide vane opening. Zero of each suffix indicates a command value.

【0015】上記の構成において、図10に示すごとく
設定された電力(65P)になるように、出力設定器1
8、負荷調整回路17、自動電流制御回路16によりサ
イクロコンバータ15を制御して電力をPのごとく制御
し、最適回転数(N0 )になるように、出力設定器1
8、回転速度演算回路21、ガバナ20、弁開度演算回
路22により入出力制御サーボ19を制御して回転数N
でAESMを運転する。
[0015] In the above configuration, so that the set power as shown in FIG. 10 (65P), the output setter 1
8, the load setting circuit 17 and the automatic current control circuit 16 control the cycloconverter 15 to control the power as P, and to set the output setting unit 1 to the optimum rotation speed (N 0 ).
8, the input / output control servo 19 is controlled by the rotation speed calculation circuit 21, the governor 20, and the valve opening degree calculation circuit 22, and the rotation speed N
Drive the AESM.

【0016】(5)図11は前記図に示す可変速揚水
発電装置の始動装置を示すブロック図であり、図と同
一部分には同一符号を付して重複説明を省略する。図
において、23はAESM用しゃ断器、24はAES
Mの相切替断路器、25は主変圧器、26はEX用しゃ
断器、27は始動用しゃ断器、28は始動用変圧器、2
9は始動変圧器用しゃ断器、30はサイリスタ始動装置
である。
[0016] (5) Figure 11 is a block diagram showing a starting device for a variable speed pumped storage power generation apparatus shown in Figure 9, the duplicated description thereof is omitted with like reference numerals denote the same parts as FIG. Figure 1
In 1 , 23 is the circuit breaker for AESM, 24 is AES
M phase switching disconnector, 25 a main transformer, 26 an EX circuit breaker, 27 a starting circuit breaker, 28 a starting transformer, 2
9 is a circuit breaker for a starting transformer, and 30 is a thyristor starting device.

【0017】次に上記始動装置の動作を説明する。相切
替断路器24の揚水方向断路器(P側)を投入し、しゃ
断器26,29を投入しておき、始動指令によりまずポ
ンプ水車3の水面を押下げてからしゃ断器27を投入
し、サイリスタ始動装置30にて始動を開始する。サイ
リスタ始動装置30にて昇速し、昇速中の励磁はEX6
によりDCまたは低周波(スベリ3%以下)励磁とし、
同期速度近くまで加速したら始動用しゃ断器27を解放
し、EX6を制御して揃速制御を行ない、発電機しゃ断
器23で同期投入する。水面押下げ用空気排気後、プラ
イミング圧力を確立し、ガイドベーンを開けて揚水運転
に入る。なお、図の揚水発電装置および図11の始動
装置に関連する従来例として、特開昭60−20107
8号公報、特開平2−111300号公報、特公平3−
51910号公報等がある。
Next, the operation of the starting device will be described. The pumping direction disconnector (P side) of the phase switching disconnector 24 is turned on, the breakers 26 and 29 are turned on, the water surface of the pump turbine 3 is first pushed down by a start command, and then the breaker 27 is turned on. The thyristor starting device 30 starts the starting. The speed is increased by the thyristor starting device 30, and the excitation during the speed increase is EX6.
DC or low frequency (slip 3% or less) excitation by
When the vehicle is accelerated to near the synchronous speed, the starting circuit breaker 27 is released, the EX 6 is controlled to perform uniform speed control, and the generator circuit breaker 23 synchronously turns on. After exhausting the air for pushing down the water surface, the priming pressure is established, the guide vanes are opened, and the pumping operation starts. Incidentally, as a conventional example relating to the starting device pumped storage devices and 11 of Figure 9, Sho 60-20107
8, Japanese Patent Application Laid-Open No. 2-111300,
No. 51910 and the like.

【0018】[0018]

【発明が解決しようとする課題】従来の揚水発電装置は
以上のように構成されているので、それぞれ次のような
問題点があった。
Since the conventional pumped-storage power generator is configured as described above, it has the following problems.

【0019】まず、前記(1)の揚水発電装置は、スベ
リ零(S=0)即ち、定格回転数(n=100%)付近
では、EX6の出力が非常に低周波で直流に近くなるた
め、3相の1アームに長く通電することにより、熱的に
EX6の容量を大きくしなければならず、不経済とな
る。
First, in the pumped storage power generator of the above (1), the output of EX6 is very low frequency and close to DC at very low frequency (S = 0), that is, near the rated speed (n = 100%). By energizing one arm of the three phases for a long time, the capacity of EX6 must be thermally increased, which is uneconomical.

【0020】前記(2)のサイクロコンバータ形可変速
揚水発電装置は、一度過電圧保護回路を動作させると、
復帰が困難となったり、復帰回路が複雑になったり、E
X6の出力側に過電圧保護装置を設ける必要があり、構
成も複雑なため装置スペースも大きく、不経済である。
In the cycloconverter type variable speed pumped storage power generator of the above (2), once the overvoltage protection circuit is operated,
If the return becomes difficult, the return circuit becomes complicated,
It is necessary to provide an overvoltage protection device on the output side of X6, and since the configuration is complicated, the device space is large and uneconomical.

【0021】また、EX6は常に回転子2の回転数を検
出し、系統周波数や位相との差によるスベリ周波数でA
ESMを励磁しているため、系統並入指令が出たら、A
ESMの発生電圧と系統電圧が一致すればすぐ並入して
いた。これは周波数と位相に常に一致しているものとし
て確認せず、従来の同期機と同じように電圧や位相を3
相回路で比較し、同期判定していたため、不十分な条件
で並入したり、装置が複雑になるなどの問題点があっ
た。
The EX 6 always detects the number of revolutions of the rotor 2 and outputs A at a slip frequency due to a difference between the system frequency and the phase.
Since the ESM is excited, A
As soon as the generated voltage of the ESM and the system voltage matched, they were connected. This does not confirm that the frequency and phase always match, but the voltage and phase are set to 3 as in the case of the conventional synchronous machine.
Since the phase circuits are compared and the synchronization is determined, there have been problems such as parallel connection under insufficient conditions and a complicated device.

【0022】前記(3)のサイクロコンバータ形可変速
揚水発電装置は、EX6の容量は変換器の使用素子の容
量によって制限を受け、大容量の変換器への適用が難し
く、AESMの容量を大きくできなかったり、変換器で
AESMを自己始動できない等の問題点があった。
In the cycloconverter type variable speed pumped storage power generator of the above (3), the capacity of EX6 is limited by the capacity of the elements used in the converter, it is difficult to apply it to a large capacity converter, and the capacity of AESM is increased. There were problems such as the inability to start the AESM and the self-start of the AESM by the converter.

【0023】前記(4)の揚水発電装置は、入出力設定
器を操作した時、電力は出力設定器18により電気的に
EX6により即応するが、ガイドベーン動作が機械的で
遅いために、一時的に回転速度が反対方向に応動する。
また早い制御が電力でフィードバックされているため、
電力が一定に保たれることからガバナ系ループの安定性
が悪くなり、回転速度が可変速範囲を逸脱するおそれも
あり、AFC信号での応動に問題がある場合があった。
In the pumped storage power generator of the above (4), when the input / output setting device is operated, the electric power is immediately responded to the EX6 electrically by the output setting device 18, but since the guide vane operation is mechanical and slow, the power is temporarily reduced. The rotation speed responds in the opposite direction.
In addition, because early control is fed back with electric power,
Since the electric power is kept constant, the stability of the governor loop is degraded, the rotational speed may deviate from the variable speed range, and there is a case where there is a problem in response to the AFC signal.

【0024】前記(5)の揚水発電装置は、揚水始動時
にサイリスタ始動装置の設置を必要としたり、EX6で
ベクトル制御のみで自己始動する場合は該EXの容量を
大きくしなければならず、不経済である。
The pumped-storage power generator of the above (5) requires the installation of a thyristor starting device at the time of pumping start, and when the self-start is performed only by the vector control in the EX6, the capacity of the EX must be increased. Economy.

【0025】この発明は上記のような問題点を解消する
ためになされたもので、経済的な揚水運転時の自動周波
数調整(以下、AFCと略称する)が可能な揚水発電装
置を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a pumped-storage power generator capable of automatic frequency adjustment (hereinafter, abbreviated as AFC) during economical pumping operation. Aim.

【0026】[0026]

【課題を解決するための手段】請求項1の発明に係る揚
水発電装置は、スベリ零付近の運転を避けるために一定
以下のスベリにならないように運転禁止帯を設け、指令
回転数がスベリ零付近の運転禁止帯に入ったら該運転禁
止帯の外側で運転するように指令回転数を修正する回転
修正装置と、前記運転禁止帯を通過中は励磁電流を絞る
電流絞り回路とを具備したものである。
According to the first aspect of the present invention, there is provided a pumped storage power generator having an operation prohibition zone for preventing slippage below a certain value in order to avoid operation near zero slippage, and instructing the command rotation speed to be zero slippage. A device comprising a rotation correcting device for correcting a command rotation speed so as to operate outside the driving prohibited zone when entering a nearby driving prohibited zone, and a current restricting circuit for reducing an exciting current while passing through the driving prohibited zone. It is.

【0027】[0027]

【作用】請求項1の発明における揚水発電装置は、スベ
リ零付近の運転を禁止するように制御し、運転禁止帯を
通過中は励磁電流を絞り込む制御を行なうことにより、
容量が小さくても揚水運転中の自動周波数調整を可能と
する。
The pumped storage power generator according to the first aspect of the present invention controls so as to prohibit operation near slippery zero, and performs control to narrow down the excitation current while passing through the operation prohibition zone.
Automatic frequency adjustment during pumping operation is possible even with a small capacity.

【0028】[0028]

【実施例】実施例1. 以下、この発明の実施例を図について説明する。図1は
この発明の一実施例を示す可変速揚水発電装置のブロッ
ク図であり、図において、Mは巻線形誘導発電 電動機の
2次側をスベリ周波数により2次励磁し、可変速度で指
定された電力にて運転される交流励磁同期機M(以下、
AESMと略称する)、1はその巻線形誘電発電電動機
の電機子、2はその誘電発電電動機の回転子(2次コイ
ル)、3は可逆式ポンプ水車、4はシャフト、5はサイ
クロコンバータ用変圧器、6は励磁用変換器としてのサ
イクロコンバータ(以下、EXと略称する)、7は回転
数検出器、8はインバータ制御回路(サイクロコンバー
タの制御器)である。
[Embodiment 1] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a variable-speed pumped-storage power generator showing one embodiment of the present invention. In the drawing, M denotes a winding type induction generator motor.
The secondary side is secondarily excited by the sliding frequency, and the finger is
AC-excited synchronous machine M (hereinafter, referred to as "operated")
AESM), 1 is the wound-type dielectric generator motor
Armature, 2 is a rotor (secondary coil) of the induction generator motor.
3) reversible pump turbine, 4 shaft, 5
6 is a transformer for a black converter, and 6 is a transformer as a converter for excitation.
Micro converter (hereinafter abbreviated as EX), 7 is rotating
Number detector, 8 is an inverter control circuit (cycloconverter)
Controller).

【0029】上記EX6はインバータ6aとコンバータ
6bとで構成され、インバータ制御回路8はψ検出回路
8a、3相−2相変換回路8b、励磁系制御指令演算回
路8c、q軸制御回路8d、d軸制御回路8e、電圧、
無効電力制御回路8f、2相−3相変換回路8g等で構
成されている。
The EX 6 comprises an inverter 6a and a converter 6b. The inverter control circuit 8 includes a .SIGMA. Detection circuit 8a, a three-phase / two-phase conversion circuit 8b, an excitation system control command operation circuit 8c, and a q-axis control circuit 8d, d. Axis control circuit 8e, voltage,
It comprises a reactive power control circuit 8f, a two-phase to three-phase conversion circuit 8g, and the like.

【0030】31は電力設定器、32は運転禁止帯のス
ベリ運転を避けるための回転指令回路、33は運転禁止
帯を通過中は電流を絞り込む電流絞り回路、34は回転
数修正装置としての最適回転数演算回路、35はガバナ
系制御指令演算回路、36はガバナ、37は電力検出回
路である。
Reference numeral 31 denotes a power setting device; 32, a rotation command circuit for avoiding slippage operation in a prohibited operation zone; 33, a current restricting circuit for restricting a current while passing through the prohibited operation zone; A rotation speed calculation circuit, 35 is a governor system control command calculation circuit, 36 is a governor, and 37 is a power detection circuit.

【0031】次に上記実施例の動作を図2のポンプ水車
の特性曲線を参照しながら説明する。なお、図2におい
て、前記図と同一部分には同一符号を付して重複説明
を省略する。
Next, the operation of the above embodiment will be described with reference to the characteristic curve of the pump turbine shown in FIG. In FIG. 2, the same parts as those in FIG. 5 are denoted by the same reference numerals, and redundant description will be omitted.

【0032】図2において、ラインL15,L16で囲
まれた範囲が運転禁止帯(例えば±0.5Hz)であ
る。一例として揚程が95%でAFC信号のポンプ入力
指令値が点P17と同P18の中間であれば、点P18
の回転数になるように図1の回転指令回路32で判定し
て、ガバナ系制御指令演算回路35で回転数を制御し、
ポンプ入力指令値が点P17と同19の中間であれば、
点19の回転数になるように動作する。更に運転禁止帯
を通過中であれば、電流を絞り込む回路33で励磁電流
を絞り込むように制御する。このようにすることにより
容量が小さくても回転数調整が可能になる。
In FIG. 2, a range surrounded by lines L15 and L16 is a driving prohibited zone (for example, ± 0.5 Hz). As an example, if the head is 95% and the pump input command value of the AFC signal is intermediate between the points P17 and P18, the point P18
1 is determined by the rotation command circuit 32 of FIG. 1 and the governor-system control command calculation circuit 35 controls the rotation speed.
If the pump input command value is between the points P17 and P19,
The operation is performed so that the rotation speed at the point 19 is obtained. Further, when the vehicle is passing through the operation prohibition zone, the current narrowing circuit 33 controls the excitation current to be narrowed. By doing so, the rotation speed can be adjusted even if the capacity is small.

【0033】図3で横軸がスベリ(S)、縦軸がEX容
量である。L−1は理論的特性、L−2は実現上の特
性、L−3はスベリが大きい場合のEX6の容量、L−
4は運転禁止帯スベリをラインL−8から同L−9の間
とした場合の理論上の容量、L−5はL−4に余裕を付
した実現上の容量、L−6は従来の理論的必要容量、L
−7は従来の実現上の容量を示している。
In FIG. 3, the horizontal axis is the slip (S) and the vertical axis is the EX capacity. L-1 is the theoretical characteristic, L-2 is the actual characteristic, L-3 is the capacity of EX6 when the slip is large, L-
Numeral 4 indicates a theoretical capacity when the driving prohibited zone slip is between lines L-8 and L-9, L-5 indicates a practical capacity with a margin added to L-4, and L-6 indicates a conventional capacity. Theoretical required capacity, L
-7 indicates a conventional realization capacity.

【0034】即ちスベリ零は完全に直流となるため、3
相で次々に点弧して各相素子に均等に流れていた電流が
一相素子のみに連続して流れるため、理論的にはスベリ
が大きい場合、熱容量に対し3倍の容量を必要とし、実
現レベルでは更に余裕を付ける必要があるため、非常に
大容量とせざるを得ないが、本発明によれば容量L−5
で良いため、経済的な可変速揚水発電装置を提供するこ
とができる。
That is, since the slip zero is completely DC, 3
Since the currents that were ignited one after another in the phases and flowed evenly in each phase element continuously flow only in the one-phase element, theoretically when the slip was large, three times the heat capacity was required, At the implementation level, it is necessary to provide a further margin, so that the capacity must be very large, but according to the present invention, the capacity L-5
Therefore, it is possible to provide an economical variable speed pumped storage power generator.

【0035】実施例2. また上記実施例1では、EX6の制御を電力フィードバ
ックの場合について説明したが、回転数フィードバック
でも、電力フィードバックに回転数補正回路を付加して
も良く、回転数フィードバックに電力補正回路を付加し
ても良い。また、EX6がインバータ6aとコンバータ
6bで構成された場合について説明したが、サイクロコ
ンバータの場合でも良く、更に可変速発電のみの場合で
も、可変速機の応用としての可変速調相機、フライホイ
ール付可変速発電機でも上記実施例と同様の効果を奏す
る。
Embodiment 2 FIG. Further, in the first embodiment, the control of the EX 6 is described in the case of the power feedback. However, in the rotation speed feedback, a rotation speed correction circuit may be added to the power feedback, or the power correction circuit may be added to the rotation speed feedback. Is also good. Also, the case where the EX 6 is composed of the inverter 6a and the converter 6b has been described. However, a cyclo converter may be used, and even in the case of variable speed power generation alone, a variable speed phase adjuster as an application of the variable speed machine, with a flywheel The variable speed generator has the same effect as the above embodiment.

【0036】[0036]

【発明の効果】以上のように、請求項1の発明によれ
ば、励磁用変換器のスベリ零付近の運転を避けるように
し、また、スベリ零付近を通過中は励磁電流を絞り込む
ように構成したので、励磁用変換器の容量が小さくても
揚水運転中の自動周波数調整を可能とする。
As described above, according to the first aspect of the present invention, it is possible to avoid the operation of the exciting converter near slippery zero and to reduce the exciting current while passing near the slippery zero. Therefore, even if the capacity of the excitation converter is small, automatic frequency adjustment during the pumping operation is enabled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 請求項1の発明の一実施例を示す揚水発電装
置のブロック図である。
FIG. 1 is a block diagram of a pumped storage power generator according to an embodiment of the present invention.

【図2】 図1の実施例装置によるポンプ水車の揚水運
転特性曲線図である。
FIG. 2 is a pumping operation characteristic curve diagram of the pump-turbine according to the embodiment apparatus of FIG. 1;

【図3】 スベリ対励磁用変換器容量の特性曲線図であ
る。
FIG. 3 is a characteristic curve diagram of slip versus excitation converter capacity.

【図4】 従来の揚水発電装置の原理を説明するブロッ
ク図である。
FIG. 4 is a block diagram illustrating the principle of a conventional pumped storage power plant.

【図5】 従来装置によるポンプ水車の揚水運転特性曲
線図である。
FIG. 5 is a pump operation characteristic curve diagram of a pump-turbine according to a conventional apparatus.

【図6】 従来のサイクロコンバータ形可変速揚水発電
装置のブロック図である。
FIG. 6 is a block diagram of a conventional cycloconverter type variable speed pumped storage power generator.

【図7】 従来の他のサイクロコンバータ形可変速揚水
発電装置のブロック図である。
FIG. 7 is a block diagram of another conventional cycloconverter-type variable speed pumped storage power generator.

【図8】 従来装置における12相非循環電流方式サイ
クロコンバータの回路図である。
FIG. 8 is a circuit diagram of a 12-phase non-circulating current type cycloconverter in a conventional device.

【図9】 従来の揚水発電装置のブロック図である。FIG. 9 is a block diagram of a conventional pumped storage power plant.

【図10】 励磁用変換器を電力制御した場合の応答特
性図である。
FIG. 10 is a response characteristic diagram in the case where the exciting converter is power-controlled.

【図11】 従来装置における始動装置のブロック図で
ある。
FIG. 11 is a block diagram of a starting device in a conventional device.

【符号の説明】[Explanation of symbols]

3 可逆式ポンプ水車、6 励磁用変換器、6a イン
バータ、6b コンバータ、33 電流絞り回路、34
最適回転数演算回路(回転数修正装置)、35 ガバ
ナ系制御指令演算回路、M 交流励磁同期機。
3 Reversible pump-turbine, 6 Excitation converter, 6a Inverter, 6b converter, 33 Current throttle circuit, 34
Optimal rotation speed calculation circuit (rotation speed correction device), 35 governor system control command calculation circuit, M AC excitation synchronous machine.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 可逆式ポンプ水車に直結された交流励磁
同期機と、この交流励磁同期機の2次側電圧を制御して
該交流励磁同期機の可変速運転を行なう励磁用変換器と
を有する揚水発電装置において、指令回転数がスベリ零
付近の運転禁止帯に入ったら、該運転禁止帯の外側で運
転するように指令回転数を修正する回転数修正装置と、
前記運転禁止帯を通過中は励磁電流を絞る電流絞り回路
とを具備したことを特徴とする揚水発電装置。
1. An AC excitation synchronous machine directly connected to a reversible pump-turbine, and an excitation converter for controlling a secondary voltage of the AC excitation synchronous machine to perform a variable speed operation of the AC excitation synchronous machine. In the pumped-storage power generator having, when the commanded rotation speed enters an operation prohibition zone near zero slip, a rotation speed correction device that corrects the command rotation speed to operate outside the operation prohibition band,
And a current restricting circuit for restricting an exciting current while passing through the operation prohibition zone.
JP4214751A 1992-07-21 1992-07-21 Pumped storage generator Expired - Lifetime JP2851490B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4214751A JP2851490B2 (en) 1992-07-21 1992-07-21 Pumped storage generator
JP10175154A JP3053612B2 (en) 1992-07-21 1998-06-22 Pumped storage generator
JP10175146A JP3073719B2 (en) 1992-07-21 1998-06-22 Pumped storage generator
JP10175145A JP3043707B2 (en) 1992-07-21 1998-06-22 Pumped storage generator
JP10175148A JP3053611B2 (en) 1992-07-21 1998-06-22 Pumped storage generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4214751A JP2851490B2 (en) 1992-07-21 1992-07-21 Pumped storage generator

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP10175148A Division JP3053611B2 (en) 1992-07-21 1998-06-22 Pumped storage generator
JP10175154A Division JP3053612B2 (en) 1992-07-21 1998-06-22 Pumped storage generator
JP10175145A Division JP3043707B2 (en) 1992-07-21 1998-06-22 Pumped storage generator
JP10175146A Division JP3073719B2 (en) 1992-07-21 1998-06-22 Pumped storage generator

Publications (2)

Publication Number Publication Date
JPH0638599A JPH0638599A (en) 1994-02-10
JP2851490B2 true JP2851490B2 (en) 1999-01-27

Family

ID=16660974

Family Applications (5)

Application Number Title Priority Date Filing Date
JP4214751A Expired - Lifetime JP2851490B2 (en) 1992-07-21 1992-07-21 Pumped storage generator
JP10175154A Expired - Fee Related JP3053612B2 (en) 1992-07-21 1998-06-22 Pumped storage generator
JP10175146A Expired - Fee Related JP3073719B2 (en) 1992-07-21 1998-06-22 Pumped storage generator
JP10175148A Expired - Fee Related JP3053611B2 (en) 1992-07-21 1998-06-22 Pumped storage generator
JP10175145A Expired - Fee Related JP3043707B2 (en) 1992-07-21 1998-06-22 Pumped storage generator

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP10175154A Expired - Fee Related JP3053612B2 (en) 1992-07-21 1998-06-22 Pumped storage generator
JP10175146A Expired - Fee Related JP3073719B2 (en) 1992-07-21 1998-06-22 Pumped storage generator
JP10175148A Expired - Fee Related JP3053611B2 (en) 1992-07-21 1998-06-22 Pumped storage generator
JP10175145A Expired - Fee Related JP3043707B2 (en) 1992-07-21 1998-06-22 Pumped storage generator

Country Status (1)

Country Link
JP (5) JP2851490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9344015B2 (en) 2013-05-24 2016-05-17 Kabushiki Kaisha Toshiba Variable speed control apparatus and operation method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4940719B2 (en) * 2006-03-22 2012-05-30 東京電力株式会社 Generator output correction control method for supply and demand control system
JP4834691B2 (en) * 2008-05-09 2011-12-14 株式会社日立製作所 Wind power generation system
JP5797511B2 (en) * 2011-09-30 2015-10-21 日立三菱水力株式会社 Control method of variable speed synchronous generator motor
JP2014087141A (en) 2012-10-23 2014-05-12 Hitachi Ltd Rotary machine and drive system therefor
CN104612891B (en) * 2014-11-27 2017-04-26 国家电网公司 Emergent switchover starting control method from water pumping to power generation of pump storage group
JP6453107B2 (en) * 2015-02-25 2019-01-16 東芝三菱電機産業システム株式会社 Power generation system
CN105262353B (en) * 2015-10-14 2017-09-29 北京曙光航空电气有限责任公司 A kind of regulating circuit of airborne threephase alternator controller
CN107591846A (en) * 2017-11-03 2018-01-16 中国南方电网有限责任公司 The automatic startup-shutdown control method of pumped storage unit based on Automatic Generation Control
CN110868119B (en) * 2019-12-10 2020-11-13 广东蓄能发电有限公司 Method for adjusting voltage of all-state stator of pumped storage unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9344015B2 (en) 2013-05-24 2016-05-17 Kabushiki Kaisha Toshiba Variable speed control apparatus and operation method

Also Published As

Publication number Publication date
JPH0638599A (en) 1994-02-10
JPH10313597A (en) 1998-11-24
JP3053612B2 (en) 2000-06-19
JPH10313595A (en) 1998-11-24
JP3073719B2 (en) 2000-08-07
JPH10313596A (en) 1998-11-24
JP3043707B2 (en) 2000-05-22
JP3053611B2 (en) 2000-06-19
JPH10313598A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
US4949021A (en) Variable speed constant frequency start system with selectable input power limiting
EP2043241B1 (en) Motor Drive Using Flux Adjustment to Control Power Factor
US5029263A (en) Electric start control of a VSCF system
US6784634B2 (en) Brushless doubly-fed induction machine control
US5587641A (en) VSCF start system with precise voltage control
JP2851490B2 (en) Pumped storage generator
JPH01231698A (en) Ac exciting generator motor apparatus
JP2000308398A (en) Pumping power generation device
JP2891030B2 (en) Secondary excitation device for AC excitation synchronous machine
JP2581560B2 (en) Power adjustment method
JP2617310B2 (en) Start-up control method for turbine generator
JP3130192B2 (en) Secondary excitation control method for AC excitation synchronous machine
JP3495140B2 (en) Voltage control device for wound induction machine
JPH06217600A (en) Secondary exciting system for ac excitation synchronous machine
JPH0370498A (en) Controller for ac rotary magnet electric machine
JPS6315684A (en) Pumped storage generator system
JP3853426B2 (en) AC excitation synchronous machine operation control device
WO1990006015A1 (en) Vscf start system with a constant acceleration
JP2652033B2 (en) Operation control method of variable speed pumped storage power generation system
JPH04265684A (en) Operating method and device for synchronous motor employing cycloconverter
Bonfiglioli Riduttori SpA Inverter Drives
JPH03117396A (en) Secondary exciter for ac exciting synchronous machine
JPH0576279B2 (en)
JPH04236199A (en) Controller for variable-speed pumped-storage power system
JPH04165995A (en) Secondary exciter for ac-excited synchronous machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 14