JP2850187B2 - Vibration control method using buried flat block - Google Patents

Vibration control method using buried flat block

Info

Publication number
JP2850187B2
JP2850187B2 JP5172363A JP17236393A JP2850187B2 JP 2850187 B2 JP2850187 B2 JP 2850187B2 JP 5172363 A JP5172363 A JP 5172363A JP 17236393 A JP17236393 A JP 17236393A JP 2850187 B2 JP2850187 B2 JP 2850187B2
Authority
JP
Japan
Prior art keywords
foundation
vibration
ground
flat plate
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5172363A
Other languages
Japanese (ja)
Other versions
JPH073829A (en
Inventor
宏和 竹宮
昭彦 西村
龍一郎 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP5172363A priority Critical patent/JP2850187B2/en
Publication of JPH073829A publication Critical patent/JPH073829A/en
Application granted granted Critical
Publication of JP2850187B2 publication Critical patent/JP2850187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、例えばプレス機等を
設置した基礎構造物或いは鉄道構造物などの周辺の地表
面への振動伝播の抑制、及び振動の伝播による、基礎構
造物に設置された建物等の構造物やその地表面の振動を
抑制するための制振方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a base structure provided with a press machine or the like, which suppresses the propagation of vibration to the surrounding ground surface, such as a base structure or a railway structure, and which propagates the vibration. TECHNICAL FIELD The present invention relates to a vibration damping method for suppressing a vibration of a structure such as a building or a ground surface thereof.

【0002】[0002]

【従来の技術】近年、機械振動や交通振動によって構造
物周辺への振動障害が多発しており、振動障害を防ぐ対
策が強く望まれている。特に軟弱地盤上の杭基礎の場
合、振動が軟弱層内へ伝播されてその周辺の地表面への
影響が大きく、又表層地盤の卓越振動が誘発されること
もある。
2. Description of the Related Art In recent years, vibrations around a structure have frequently occurred due to mechanical vibrations and traffic vibrations, and measures to prevent the vibrations have been strongly desired. Particularly in the case of a pile foundation on soft ground, the vibration is propagated into the soft layer and greatly affects the surrounding ground surface, and predominant vibration of the surface ground may be induced.

【0003】このような振動障害を防止する方法の一つ
として、振動を発する基礎構造物の周囲にトレンチを設
ける場合がある。しかしこの方法では、完全なトレンチ
を保持することは実際には不可能なため、土留や支保部
材を設置する必要があり、土留などによって制振効果が
減少する。又トレンチ部分の土地利用ができなくなる。
As one method of preventing such a vibration disturbance, there is a case where a trench is provided around a substructure that generates vibration. However, in this method, since it is actually impossible to hold a complete trench, it is necessary to install a soil retaining member and a support member, and the vibration damping effect is reduced by the soil retaining and the like. In addition, land use in the trench portion becomes impossible.

【0004】又剛性の高い地中鉛直壁を、振動を発する
基礎構造物の周囲に設置する方法もある。
There is also a method of installing a rigid underground vertical wall around a substructure that generates vibration.

【0005】[0005]

【発明が解決しようとする課題】この発明が解決しよう
とする課題は、土地の有効利用を図りつつ、従来の制振
方法より高い制振効果を得ることにある。
The problem to be solved by the present invention is to obtain a higher damping effect than the conventional damping method while effectively utilizing land.

【0006】[0006]

【課題を解決するための手段】この発明の特徴は、次の
とおりである。即ち、振動を発する又は振動を受ける基
礎構造物の下方の地中、或いは基礎構造物の周囲の地申
に、周辺地盤より剛性の高い平板ブロックを水平方向に
設ける。
The features of the present invention are as follows. That is, a flat plate block having higher rigidity than the surrounding ground is provided in the ground under the substructure that emits or receives the vibration or on the ground around the substructure in the horizontal direction.

【0007】そしてある層状地盤に対して振動数、深
さ、幅、厚み、剛性を変化させて有限要素法による解析
を行なった結果、この平板ブロックに、基礎構造物の基
礎幅と同程度以上の幅と、平板ブロックの幅の1/5程
度以上の厚みと、剪断波速度で周辺地盤の3〜5倍以上
の剛性とを持たせ、α・Vs/4f(但しα=0.5〜
0.8、Vsは地盤の剪断波速度、fは振動数)の深さ
に設置する。このように平板ブロックを埋設すると、制
振に有効であることがわかった。さらにこれを実験によ
り確認した。
[0007] Analysis of a certain layered ground by the finite element method while changing the frequency, depth, width, thickness, and rigidity shows that this flat plate block has a width equal to or greater than the foundation width of the foundation structure. , A thickness of about 1/5 or more of the width of the flat plate block, and a rigidity of 3 to 5 times or more of the surrounding ground at the shear wave velocity, α · Vs / 4f (α = 0.5 to
0.8, Vs is the depth of the shear wave velocity of the ground, f is the frequency). It was found that burying a flat plate block in this way is effective for vibration suppression. This was further confirmed by experiments.

【0008】[0008]

【作用】成層地盤では、実体波のP波及びS波の伝播に
つき、それぞれ層厚Hに対する卓越周期が次のように定
義される。 P波の伝播については、Tp=4H/Vp S波の伝播については、Ts=4H/Vs 但しTpはP波周期、TsはS波周期、Hは地表面から
剛基面盤までの距離である。
In the stratified ground, the dominant periods for the layer thickness H for the propagation of the P wave and the S wave of the body wave are defined as follows. For the propagation of the P wave, Tp = 4H / Vp For the propagation of the S wave, Ts = 4H / Vs, where Tp is the P wave period, Ts is the S wave period, and H is the distance from the ground surface to the rigid base. is there.

【0009】基礎構造物の載荷の代表周期をToとする
と、To=λo/V=1/fとして表される。解析上の
バラメ−タ−として、Tp/To、Ts/Toをとる
と、これらのパラメ−タ−は、 Tp/To、Ts/To=4H/λo=4Hf/V=α となる。λoは代表波波長、Vは波の伝播速度、fは波
の振動数である。
Assuming that the representative period of loading of the substructure is To, it is expressed as To = λo / V = 1 / f. If Tp / To and Ts / To are taken as analysis parameters, these parameters are as follows: Tp / To, Ts / To = 4H / λo = 4Hf / V = α. λo is the wavelength of the representative wave, V is the propagation speed of the wave, and f is the frequency of the wave.

【0010】Tp/To、Ts/Toを変化させ、解析
的に求めた基礎の最大応答値Aと半無限地盤上の最大応
答値Aoとの比と、Tp/To、Ts/Toの関係を調
べた結果、Tp/To、Ts/To=1のとき地盤の共
振が顕著に見られ、A/Aoはピ−クになる。Tp/T
o、Ts/To>1の場合は基礎からの波動伝播現象が
起き、層厚とともにロッキング、鉛直、水平の順に半無
限地盤の応答状態に近づく。Tp/To、Ts/To<
1の場合は半無限地盤の応答状態よりも小さくなり、基
礎の応答に制振効果を与えるようになった。
By changing Tp / To and Ts / To, the relationship between the ratio of the maximum response value A of the foundation obtained analytically to the maximum response value Ao on the semi-infinite ground, and the relationship between Tp / To and Ts / To is shown. As a result of the investigation, when Tp / To and Ts / To = 1, the resonance of the ground is remarkably observed, and A / Ao becomes a peak. Tp / T
In the case of o, Ts / To> 1, a wave propagation phenomenon from the foundation occurs, and approaches the response state of the semi-infinite ground in the order of rocking, vertical, and horizontal with the layer thickness. Tp / To, Ts / To <
In the case of 1, the response state becomes smaller than the response state of the semi-infinite ground, and the response of the foundation has a damping effect.

【0011】つまり、Tp/To、Ts/To=αが1
以下になるように仮想剛基面盤として剛性の高い平板を
設計することにより,基礎の制振メカニズムとすること
が可能となる。即ち、 H=α・V/4f に於けるαを1以下とする位置に平板を設置すること
で、制振効果をもたらすことができる。
That is, Tp / To and Ts / To = α are 1
By designing a highly rigid flat plate as a virtual rigid base plate as follows, it becomes possible to provide a foundation vibration control mechanism. That is, by setting the flat plate at a position where α in H = α · V / 4f is 1 or less, a vibration damping effect can be provided.

【0012】上記の解析結果を図7で表す。同図に於い
て縦軸に最大応答値比A/Aoを、横軸にTp/To、
Ts/Toをとり、水平振動を実線で、鉛直振動を鎖線
で、又ロッキングを1点鎖線でそれぞれ示している。
FIG. 7 shows the result of the above analysis. In the figure, the vertical axis represents the maximum response value ratio A / Ao, the horizontal axis represents Tp / To,
Ts / To is shown, horizontal vibration is indicated by a solid line, vertical vibration is indicated by a chain line, and rocking is indicated by a one-dot chain line.

【0013】次に埋設平板ブロックによる制振効果を実
験結果で示す。実験場所は岡山市旭川下流域に位置し、
上部に砂質土と非常に軟弱な粘土層で構成される沖積層
が分布し、GL−18m付近よりN値50以上の砂礫層
が分布している。又PS検層を実施した結果、Vsにつ
いては100〜340m/secでほぼN値に対応した
速度分布を示した。
Next, experimental results show the vibration damping effect of the buried flat block. The experiment site is located in the lower Asahikawa area of Okayama city,
An alluvium composed of sandy soil and a very soft clay layer is distributed at the top, and a gravel layer with an N value of 50 or more is distributed from around GL-18m. As a result of PS logging, the velocity distribution of Vs was 100 to 340 m / sec, which substantially corresponded to the N value.

【0014】図8で示すように、本実験に採用した基礎
構造は、フ−チング1の対角線上に打設した砂礫層を支
持地盤とするH型鋼2による杭基礎とした。さらに制振
方法としては、1方向に平板ブロック3を、GL−1.
9mの位置に高圧噴射攪拌工法により設置し、比較対象
として別方向に機械攪拌工法による鉛直壁4を設けた。
As shown in FIG. 8, the foundation structure employed in this experiment was a pile foundation made of H-shaped steel 2 having a gravel layer cast on the diagonal of the footing 1 as a supporting ground. Further, as a vibration damping method, the flat plate block 3 is moved in one direction by GL-1.
It was installed at a position of 9 m by a high-pressure injection stirring method, and a vertical wall 4 by a mechanical stirring method was provided in another direction as a comparison object.

【0015】フ−チング1は平面形状が1辺3000m
mの正方形で、厚さ500mm、H型鋼2は縦350m
m、横350mm、平行な両側部の厚み19mm、両側
部の連結部の厚み12mm、長さ17.5mで基礎上に
立設されている。そしてH型鋼2の中心間隔は1600
mmで、先端の100mmがフ−チング1に埋め込まれ
ている
The footing 1 has a planar shape of 3000 m per side.
m square, thickness 500mm, H-shaped steel 2 is 350m long
m, 350 mm in width, 19 mm in thickness on both sides in parallel, 12 mm in thickness on both sides, and 17.5 m in length. And the center interval of the H-section steel 2 is 1600
mm, 100 mm at the tip is embedded in the footing 1

【0016】平板ブロック3は平面形状が底辺1100
0mm、上辺9200mm、高さ5300mmのほぼ台
形であり、厚さは1000mmである。又鉛直壁4は平
面形状が縦750mm、横6350mmのほぼ矩形をな
し、厚さは6000mmで、地表から760mmの深さ
に設けられた。
The flat plate block 3 has a bottom surface 1100
It has a substantially trapezoidal shape of 0 mm, an upper side of 9200 mm and a height of 5300 mm, and has a thickness of 1000 mm. The vertical wall 4 had a substantially rectangular shape with a plane shape of 750 mm in length and 6350 mm in width, a thickness of 6000 mm, and was provided at a depth of 760 mm from the ground surface.

【0017】実験は自由振動試験を採用し、フ−チング
1の上面への鉛直落下試験と、フ−チング1の側面への
水平打撃試験を行なった。図9は鉛直落下試験の結果を
示すもので、振動数10Hzの鉛直加振に於いて、横軸
にフ−チング1からの距離を、縦軸に平板ブロック3及
び鉛直壁4の施工前鉛直応答値に対する施工後鉛直応答
値の比、即ち鉛直応答値比をとっている。又図10は水
平打撃試験の結果を示し、振動数9Hzの水平加振に於
いて、同様に横軸にフ−チング1からの距離を、縦軸に
平板ブロック3及び鉛直壁4の施工前水平応答値に対す
る施工後水平応答値の比、即ち水平応答値比をとってい
る。
In the experiment, a free vibration test was employed, and a vertical drop test on the top surface of the footing 1 and a horizontal impact test on the side surface of the footing 1 were performed. FIG. 9 shows the results of the vertical drop test. In a vertical vibration at a frequency of 10 Hz, the horizontal axis represents the distance from the footing 1 and the vertical axis represents the vertical length of the flat plate block 3 and the vertical wall 4 before construction. The ratio of the vertical response value after construction to the response value, that is, the vertical response value ratio is taken. FIG. 10 shows the results of the horizontal impact test. In the horizontal vibration at a frequency of 9 Hz, the horizontal axis represents the distance from the footing 1 and the vertical axis represents the distance before the flat plate block 3 and the vertical wall 4 were installed. The ratio of the horizontal response value after construction to the horizontal response value, that is, the horizontal response value ratio is taken.

【0018】又鉛直落下試験と水平打撃試験との結果か
ら、平板ブロック3の直上の点と鉛直壁4のフ−チング
1から10mの点に於ける、鉛直応答値と水平応答値と
の、平板ブロック3及び鉛直壁4の施工前と施工後のそ
れぞれの最大値の比をとって比較すると、鉛直加振で
は、鉛直応答値が平板ブロック0.787、鉛直壁で
0.670、水平応答値が平板ブロック0.568、鉛
直壁0.740である。水平加振では、鉛直応答値が平
板ブロック0.263、鉛直壁0.907、又水平応答
値が平板ブロック0.324、鉛直壁0.808であ
る。
From the results of the vertical drop test and the horizontal impact test, the vertical response value and the horizontal response value at the point directly above the flat plate block 3 and at a point 10 m from the footing 1 of the vertical wall 4 are shown. Comparing the ratios of the maximum values before and after the construction of the flat block 3 and the vertical wall 4, the vertical response value is 0.787 for the flat block, 0.670 for the vertical wall, and horizontal response for the vertical excitation. The values are 0.568 for the flat block and 0.740 for the vertical wall. In the horizontal vibration, the vertical response value is 0.263 for the flat plate block and 0.907 for the vertical wall, and the horizontal response value is 0.324 for the flat plate and 0.808 for the vertical wall.

【0019】上記解析結果、試験結果により、特に平板
ブロックが鉛直壁に比べて制振効果が高いことが明らか
になった。
As a result of the above analysis, the test results have revealed that the flat plate block has a higher damping effect than the vertical wall.

【0020】[0020]

【実施例】図1及び図2の実施例は、振動を発する構造
物11をケ−ソン基礎12aで支持した場合を示す。1
3aは平板ブロックで、内周面がケ−ソン基礎12aに
接触しない程度に離して円盤状に設置されている。ケ−
ソン基礎12aに替えて杭基礎を用いてもよい。
1 and 2 show a case in which a structure 11 which generates vibration is supported by a caisson foundation 12a. 1
Reference numeral 3a denotes a flat plate block, which is arranged in a disk shape so that the inner peripheral surface thereof does not contact the casing 12a. K
A pile foundation may be used instead of the son foundation 12a.

【0021】振動を発する基礎構造物として、例えば鉄
道用の軌道を載せた盛土基礎12bの実施例を図3で示
す。この場合平板ブロック13bは盛土基礎12bと平
行に設置される。なお図示しないが直接基礎の場合は、
直接基礎の直下にそれと同じ幅で、又は図1、図2と同
様にその直下の地下周囲に同じ幅で平板ブロックを設置
する。
FIG. 3 shows an embodiment of an embankment foundation 12b on which a railroad track is mounted, for example, as a substructure that generates vibration. In this case, the flat block 13b is installed in parallel with the embankment foundation 12b. Although not shown, in case of direct foundation,
A flat block is installed directly under the foundation with the same width, or the same width around the underground just below it as in FIGS.

【0022】図4の実施例は、直接基礎12c上に立設
した建物14が地盤の振動を防ぐ場合を示す。この実施
例では平板ブロック13cは、直接基礎12cの直下に
設置されている。図示しないが、直接基礎12cの直下
の地下周囲に平板ブロックを設置してもよい。
The embodiment shown in FIG. 4 shows a case where a building 14 directly erected on a foundation 12c prevents ground vibration. In this embodiment, the flat plate block 13c is installed directly under the foundation 12c. Although not shown, a flat block may be directly installed around the basement immediately below the foundation 12c.

【0023】以上の実施例で図中Bは基礎12a〜12
cの幅、Wは平板ブロック13a〜13cの幅で、W≧
1.00B、tは平板ブロック13a〜13cの厚み
で、Wの1/5以上である。又Hは地表からの平板ブロ
ック13a〜13cの深さであって、H≒α.Vs/4
・fである。但しVs=地盤の剪断速度(m/se
c)、α=0.5〜0.8、f=振動数(Hz)であ
る。そして平板ブロック13a〜13cは、周辺地盤の
剪断波速度Vsの3〜5倍以上の剛性を有すコンクリ−
トで形成され、前記剛性を保持するようセメント量が調
節されている。
In the above embodiment, B represents the foundations 12a to 12a.
c, W is the width of the flat plate blocks 13a to 13c, and W ≧
1.00B, t is the thickness of the flat plate blocks 13a to 13c, which is 1/5 or more of W. H is the depth of the flat plate blocks 13a to 13c from the ground surface, and H ≒ α. Vs / 4
-It is f. Where Vs = ground shear rate (m / sec)
c), α = 0.5 to 0.8, f = frequency (Hz). The flat blocks 13a to 13c have a rigidity of 3 to 5 times or more the shear wave velocity Vs of the surrounding ground.
And the amount of cement is adjusted to maintain the rigidity.

【0024】平板ブロック13a〜13c、例えば13
cは、作業スペ−スを取れる場合には図5のように土留
鋼矢板15で土留め工施工後、支保工16を施しながら
所定の深さに掘削したのち、コンクリ−ト打設により形
成され、土留め鋼矢板15及び支保工16を撤去して埋
め戻される。
The flat plate blocks 13a to 13c, for example, 13
When the work space can be taken, as shown in FIG. 5, after the earth retaining work is carried out with the earth retaining sheet pile 15, as shown in FIG. Then, the earth retaining sheet pile 15 and the shoring 16 are removed and buried.

【0025】作業スペ−スが取れない場合、平板ブロッ
ク13a〜13cは、図6のように地盤改良機17を用
いた高圧噴射攪拌工法により形成される。この工法によ
ると平板ブロック13a〜13cは、円盤を周縁部が互
いに重なり合うように形成される。
When the work space cannot be secured, the flat plate blocks 13a to 13c are formed by a high-pressure jet stirring method using a ground improvement machine 17 as shown in FIG. According to this method, the flat plate blocks 13a to 13c are formed such that the peripheral portions of the disks overlap each other.

【0026】なお平板ブロック13a〜13cの平面形
状は、基礎12a〜12cの形状に応ずるもので、例え
ば基礎の平面形状が円形、矩形であれば、直下に設ける
場合はそれぞれ円形、矩形に、又直下の周囲に設ける場
合には内周縁は円形、矩形に、外周縁は円形、矩形に形
成する。又線状構造物、例えば鉄道構造物などに対して
は、構造物に沿って直下或いは周辺地下に構造物と平行
に形成する。
The planar shape of the flat plate blocks 13a to 13c corresponds to the shape of the foundations 12a to 12c. For example, if the planar shape of the foundation is circular or rectangular, when it is provided immediately below, the shape is circular or rectangular, respectively. When it is provided immediately below, the inner peripheral edge is formed in a circular or rectangular shape, and the outer peripheral edge is formed in a circular or rectangular shape. For a linear structure, for example, a railway structure, it is formed directly under the structure or in the surrounding basement in parallel with the structure.

【0027】[0027]

【発明の効果】ケ−ソン基礎、杭基礎、直接基礎、盛土
などの土基礎など多くの基礎構造物について、土地の利
用を妨げることなく、能動的にも受動的にも高い制振効
果をもたらす。従ってス−パ−堤防上に設けられた建築
物の受動的振動の防止なども期待できる。
According to the present invention, for many foundation structures such as a caisson foundation, a pile foundation, a direct foundation, and an earth foundation such as embankment, a high damping effect can be obtained both actively and passively without hindering land use. Bring. Therefore, it can be expected to prevent passive vibration of the building provided on the super levee.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ケ−ソン基礎の実施例を示す縦断面略図であ
る。
FIG. 1 is a schematic longitudinal sectional view showing an embodiment of a caisson foundation.

【図2】図1の平面略図である。FIG. 2 is a schematic plan view of FIG.

【図3】盛土基礎の実施例を示す縦断面略図である。FIG. 3 is a schematic longitudinal sectional view showing an embodiment of an embankment foundation.

【図4】受動的制振の実施例を示す縦断面略図である。FIG. 4 is a schematic longitudinal sectional view showing an embodiment of passive vibration damping.

【図5】掘削による平板ブロックの設置を示す縦断面略
図である。
FIG. 5 is a schematic longitudinal sectional view showing installation of a flat plate block by excavation.

【図6】高圧噴射攪拌工法による平板ブロックの設置を
示す縦断面略図である。
FIG. 6 is a schematic longitudinal sectional view showing installation of a flat plate block by a high-pressure jet stirring method.

【図7】平板ブロックの制振原理を説明するための解析
図である。
FIG. 7 is an analysis diagram for explaining the principle of vibration suppression of a flat plate block.

【図8】平板ブロックの制振効果を実験するための設備
の縦断面略図である。
FIG. 8 is a schematic longitudinal sectional view of a facility for experimenting a damping effect of a flat plate block.

【図9】基礎を鉛直加振した実験の解析値と実験値との
比較図である。
FIG. 9 is a comparison diagram between an analysis value and an experimental value of an experiment in which a foundation was vertically excited.

【図10】基礎を水平加振した実験の解析値と実験値と
の比較図である。
FIG. 10 is a comparison diagram between an analysis value and an experimental value of an experiment in which a foundation was horizontally vibrated.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 昭彦 東京都国分寺市光町2丁目8番地38 財 団法人鉄道総合技術研究所内 (72)発明者 成瀬 龍一郎 岡山県岡山市惣爪136番地の1 (56)参考文献 特開 昭56−67024(JP,A) 特開 昭53−142010(JP,A) 特開 昭51−31009(JP,A) 特開 昭55−155829(JP,A) 特表 平3−500430(JP,A) (58)調査した分野(Int.Cl.6,DB名) E02D 31/08────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Akihiko Nishimura 2-8-8 Hikaricho, Kokubunji-shi, Tokyo Inside the Railway Technical Research Institute (72) Inventor Ryuichiro Naruse 136-1 Sozume, Okayama-shi, Okayama Pref. 56) References JP-A-56-67024 (JP, A) JP-A-53-142010 (JP, A) JP-A-51-31009 (JP, A) JP-A-55-155829 (JP, A) Hei3-500430 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) E02D 31/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 振動を発する又は振動を受ける基礎構造
物の下方の地中、或いは基礎構造物の周囲の地中に、周
辺地盤より剛性の高い平板ブロックを水平方向に設ける
制振方法に於いて、平板ブロックは、基礎構造物の基礎
幅と同程度以上の幅と、平板ブロックの幅の1/5程度
以上の厚みと、剪断波速度で周辺地盤の3〜5倍以上の
剛性とを有し、α・Vs/4f(但しα=0.5〜0.
8、Vsは地盤の剪断波速度、fは振動数)の深さに設
置される埋設平板ブロックによる制振方法。
1. A vibration damping method in which a flat plate block having higher rigidity than the surrounding ground is provided in the ground below a substructure that emits or receives vibration, or in the ground around the substructure. In addition, the flat block has a width equal to or greater than the foundation width of the foundation structure, a thickness equal to or greater than about 1/5 of the width of the flat block, and a rigidity of 3 to 5 times or more of the surrounding ground at a shear wave velocity. Α · Vs / 4f (where α = 0.5-0.
8. Vs is the shear wave velocity of the ground, and f is the frequency of vibration.
JP5172363A 1993-06-18 1993-06-18 Vibration control method using buried flat block Expired - Lifetime JP2850187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5172363A JP2850187B2 (en) 1993-06-18 1993-06-18 Vibration control method using buried flat block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5172363A JP2850187B2 (en) 1993-06-18 1993-06-18 Vibration control method using buried flat block

Publications (2)

Publication Number Publication Date
JPH073829A JPH073829A (en) 1995-01-06
JP2850187B2 true JP2850187B2 (en) 1999-01-27

Family

ID=15940524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5172363A Expired - Lifetime JP2850187B2 (en) 1993-06-18 1993-06-18 Vibration control method using buried flat block

Country Status (1)

Country Link
JP (1) JP2850187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048473B2 (en) 2002-11-05 2006-05-23 Hirokazu Takemiya Vibration-proof construction method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5779397A (en) * 1996-05-24 1998-07-14 Takemiya; Hirokazu Method of improving soil body against vibration and liquefaction
JP6474753B2 (en) * 2016-04-07 2019-02-27 竹宮 哲士 Construction method of ground vibration prevention structure
JP7132012B2 (en) * 2018-07-24 2022-09-06 積水化学工業株式会社 Ground improvement foundation structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5667024A (en) * 1979-11-06 1981-06-05 Fudo Constr Co Ltd Vibration-shielding wall
SE459189B (en) * 1987-09-09 1989-06-12 Pieux Armes Int PROCEDURE AND DEVICE MAKE SUBJECT TO INTERACTION BETWEEN AN EARTH STORE AND ANY CONSTRUCTION EXISTING IN CONNECTION

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048473B2 (en) 2002-11-05 2006-05-23 Hirokazu Takemiya Vibration-proof construction method

Also Published As

Publication number Publication date
JPH073829A (en) 1995-01-06

Similar Documents

Publication Publication Date Title
JP4222812B2 (en) Anti-vibration method
US4911583A (en) Structure and method for shoring a face of an excavation
JP2850187B2 (en) Vibration control method using buried flat block
JPH06116942A (en) Construction method of critical sheathing wall
JPH08184064A (en) Foundation structure of building
JP2764696B2 (en) Ground consolidation method for vibration suppression and liquefaction prevention
JPH11280087A (en) Ground solidifying construction method for damping and preventing liquefaction
JP3811907B2 (en) Seismic foundation and its construction method
Takemiya et al. Environmental vibration control by active piezo-actuator system
JP2000160559A (en) Landslide protection wall and construction method therefor
JP4189078B2 (en) Construction method of underground structure in liquefied ground
JPH1161849A (en) Base isolation structure foundation on soft ground
JP2651507B2 (en) Basic structure of structure
JP3006710B2 (en) Building structures using piles as pillars
JP2000282501A (en) Solidified ground for damping and preventing liquuefaction
RU64650U1 (en) SPATIAL FUNDAMENTAL PLATFORM FOR BUILDINGS AND CONSTRUCTIONS FOR CONSTRUCTION ON WEAK, LOWING, EMBEDDED SOILS AND IN SEISMIC ZONES
JP2892304B2 (en) How to protect substructures from formation migration
Teparaksa Behavior of deep excavations using sheet pile bracing system in soft Bangkok clay
KR200340952Y1 (en) The freeway using a steel pile and sheet pile
JPH10317486A (en) Bearing structure of floor slab in building structure utilizing pile for column
JP3027340B2 (en) Building structures using piles as pillars
JP2000273890A (en) Vibrationproof construction method for banking part for railroad and road
JP4588821B2 (en) Marine artificial ground and its construction method
KR100257630B1 (en) An improvement-method of a soft-ground
RU2081246C1 (en) Method for providing seismic insulation of building foundation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 15

EXPY Cancellation because of completion of term