JP2847323B2 - Magnetic field adjustment method for magnetic circuit for insertion light source - Google Patents

Magnetic field adjustment method for magnetic circuit for insertion light source

Info

Publication number
JP2847323B2
JP2847323B2 JP33719890A JP33719890A JP2847323B2 JP 2847323 B2 JP2847323 B2 JP 2847323B2 JP 33719890 A JP33719890 A JP 33719890A JP 33719890 A JP33719890 A JP 33719890A JP 2847323 B2 JP2847323 B2 JP 2847323B2
Authority
JP
Japan
Prior art keywords
magnetic field
value
magnet
electron
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33719890A
Other languages
Japanese (ja)
Other versions
JPH04204300A (en
Inventor
浩二 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP33719890A priority Critical patent/JP2847323B2/en
Publication of JPH04204300A publication Critical patent/JPH04204300A/en
Application granted granted Critical
Publication of JP2847323B2 publication Critical patent/JP2847323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、挿入光源用磁気回路の磁場調整方法に関
し、特にアンジュレータ(後述)の磁場調整方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a magnetic field adjustment method for a magnetic circuit for an insertion light source, and more particularly to a magnetic field adjustment method for an undulator (described later).

[従来技術と問題点] 周知のように、高エネルギー電子を周期磁場の中で運
動させると指向性が高く且つ極めて輝度の高い放射光が
得られる。このような放射光を得る装置が挿入(型)光
源である。
[Prior Art and Problems] As is well known, when high-energy electrons are moved in a periodic magnetic field, emitted light having high directivity and extremely high brightness can be obtained. An apparatus for obtaining such radiation light is an insertion (type) light source.

挿入光源は多数の磁極(通常20〜200極)で構成され
ており、磁場の強さによってウィグラー(強磁場型)或
いはアンジュレータ(弱磁場型)と呼ばれる。挿入光源
という名称はこの装置を電子蓄積リング内の直線部に挿
入設置することに由来する。
The insertion light source is composed of many magnetic poles (usually 20 to 200 poles), and is called a wiggler (strong magnetic field type) or an undulator (weak magnetic field type) depending on the strength of the magnetic field. The name insertion light source comes from the fact that this device is inserted and installed in a straight section in the electron storage ring.

ウィグラーは超伝導電磁石により電子軌道を急激に曲
げて短波長の放射光を取り出すものである。一方、アン
ジュレータは多数の永久磁石を磁場の向きを交互に逆向
きにして周期的に並べたものであり、その磁極間を通る
電子ビームを蛇行させ、各磁極間で発生する光を干渉さ
せて、狭い特定帯域の光の強度を100〜1000倍程度強め
て準単色光源を得る装置である。
The wiggler uses a superconducting electromagnet to sharply bend the electron orbit to extract short-wavelength radiation. On the other hand, the undulator is composed of a number of permanent magnets arranged periodically with the direction of the magnetic field being alternately reversed.The undulator meanders the electron beam passing between the magnetic poles, and interferes with the light generated between the magnetic poles. This is a device for obtaining a quasi-monochromatic light source by increasing the intensity of light in a narrow specific band by about 100 to 1000 times.

本発明は、上述したように、アンジュレータに分類さ
れる挿入光源(以下単に装置と称する場合がある)の磁
場調整方法に関する。
As described above, the present invention relates to a magnetic field adjustment method for an insertion light source (hereinafter, may be simply referred to as an apparatus) classified as an undulator.

挿入光源に要求される条件として: (a) 挿入光源への電子ビームの入射方向と挿入光源
からの電子ビームの出射方向に差がなく、 (b) 電子ビームが挿入光源を通過することによって
電子ビームに変位が生じない ことである。
The conditions required for the insertion light source are as follows: (a) there is no difference between the direction of incidence of the electron beam on the insertion light source and the direction of emission of the electron beam from the insertion light source; That is, no displacement occurs in the beam.

このために従来の装置では、装置の入口及び出口に磁
場調整用の永久磁石または電磁石を設け、これらの磁石
の方向叉は磁石に流す電流値を試行錯誤的に調整して上
記の2つの条件を満足させていた。
For this purpose, in the conventional apparatus, permanent magnets or electromagnets for adjusting the magnetic field are provided at the entrance and the exit of the apparatus, and the direction of these magnets or the value of the current flowing through the magnets are adjusted by trial and error to satisfy the above two conditions. Was satisfied.

しかしながら、このような従来の試行錯誤的な調整方
法では、調整に非常な時間を要していた。
However, such a conventional trial-and-error adjustment method requires an extremely long time for adjustment.

更に、調整個所が装置の入口と出口の2個所しかない
ので入口と出口での変位は生じないが、装置内で蛇行す
る電子の軌道の山及び谷が揃わないという問題があっ
た。即ち、電子軌道の山及び谷が揃わないため放射光が
広がり、所望の波長の光が得られなかったり、或いは、
輝度が弱まるという問題があった。
Furthermore, since there are only two adjustment locations, the entrance and the exit of the device, no displacement occurs at the entrance and the exit, but there is a problem that the peaks and valleys of the orbits of the meandering electrons in the device are not aligned. That is, since the peaks and valleys of the electron orbit are not aligned, the emitted light spreads, and light of a desired wavelength cannot be obtained, or
There was a problem that the luminance was weakened.

以下、第4図乃至第6図を参照して、従来の装置を更
に詳しく説明する。
Hereinafter, the conventional apparatus will be described in more detail with reference to FIGS.

第4図は従来のアンジュレータ(ハルバック型)の概
略側面図、第5図は第4図の装置において磁場調整前の
電子軌道を説明する図、第6図は第4図の装置において
磁場調整後の電子軌道を説明する図である。
FIG. 4 is a schematic side view of a conventional undulator (Halbach type), FIG. 5 is a view for explaining an electron trajectory before the magnetic field adjustment in the apparatus of FIG. 4, and FIG. 6 is a view after the magnetic field adjustment in the apparatus of FIG. FIG. 4 is a diagram for explaining the electron orbit of FIG.

第4図において、10は図示のアンジュレータの磁気回
路全体を示す。上側のベース12には複数の直方体セグメ
ント磁石(永久磁石)14a、14c及び14b(14aと14cの間
に設けられた複数個の磁石)が固定され、下側のベース
16には他の複数の直方体セグメント磁石18a、18c及び18
b(18aと18cの間に設けられた複数個の磁石)が固定さ
れている。
In FIG. 4, reference numeral 10 denotes the entire magnetic circuit of the illustrated undulator. A plurality of rectangular parallelepiped segment magnets (permanent magnets) 14a, 14c and 14b (a plurality of magnets provided between 14a and 14c) are fixed to the upper base 12, and the lower base 12
16 includes a plurality of other rectangular parallelepiped segment magnets 18a, 18c and 18
b (a plurality of magnets provided between 18a and 18c) is fixed.

磁石14a及び14cは直列に配置された上側磁石列の各々
の端部に配置され、Z軸方向の寸法は磁石14bの半分で
ある。同様に、磁石18a及び18cは直列に配置された上側
磁石列の各々の端部に配置され、Z軸方向の寸法は磁石
18bの半分である。尚、磁石14a、14c、18a及び18cは、
磁気回路10の入口と出口での電子ビームの変位を少なく
するためのものであり、このような配置は公知の技術で
ある。
The magnets 14a and 14c are arranged at the respective ends of the upper magnet row arranged in series, and the dimension in the Z-axis direction is half that of the magnet 14b. Similarly, magnets 18a and 18c are arranged at each end of the upper magnet row arranged in series, and the dimension in the Z-axis direction is
Half of 18b. The magnets 14a, 14c, 18a and 18c are
This is to reduce the displacement of the electron beam at the entrance and exit of the magnetic circuit 10, and such an arrangement is a known technique.

磁気回路10の左側(図面上)(即ち電子ビームが入力
する装置の入口)に円筒状の磁場調整用の永久磁石20a
及び22a(図面では断面或いは側面を示す)が設けられ
ている。更に、磁気回路10の出口には同じく円筒状の磁
場調整用の永久磁石20b及び22bが設けられている。これ
らの径方向に磁化された磁場調整用の円柱状磁石を回転
させることにより、装置の入口及び出口付近の磁場調整
を行なっている。
At the left side (on the drawing) of the magnetic circuit 10 (that is, at the entrance of the device into which the electron beam is input), a cylindrical permanent magnet 20a for adjusting the magnetic field is provided.
And 22a (shown in cross section or side view in the drawings). Further, at the outlet of the magnetic circuit 10, cylindrical permanent magnets 20b and 22b for adjusting the magnetic field are also provided. By rotating these radially magnetized columnar magnets for adjusting the magnetic field, the magnetic field near the entrance and exit of the apparatus is adjusted.

尚、上記の複数の永久磁石の各々に示した矢印は磁石
の磁化方向を示す。
The arrows shown on each of the plurality of permanent magnets indicate the magnetization directions of the magnets.

第4図において、aは直方体セグメント磁石14b及び1
8bの各々の幅を示し、bは直方体セグメント磁石14a〜1
4c及び18a〜18c各々の高さを示す。更に、Gは上下の磁
石列で特定される空隙の高さを示し、λは直方体セグメ
ント磁石の磁化方向の周期長を示す。電子ビームは磁気
回路10の左側からZ軸の正の方向に入力され、X軸方向
に蛇行して磁気回路10の右側から出る。
In FIG. 4, a is the rectangular parallelepiped segment magnets 14b and 1
8b shows the width of each of the rectangular parallelepiped segment magnets 14a-1
The height of each of 4c and 18a-18c is shown. Further, G indicates the height of the gap specified by the upper and lower magnet rows, and λ indicates the period length in the magnetization direction of the rectangular parallelepiped segment magnet. The electron beam is input from the left side of the magnetic circuit 10 in the positive direction of the Z-axis, meanders in the X-axis direction, and exits from the right side of the magnetic circuit 10.

第4図で示す従来例において、直方体セグメント磁石
をNd−Fe−B磁石とし、その磁気特性を、 Br(残留磁束密度) =11.6KG (平均値) (BH)max(最大エネルギー積) =32MGOe (平均値) ΔBr/Br(磁化のばらつき) = ±1% Δθ(磁化方向のばらつき) = 1゜ 磁石寸法(a×b×c) =30×30×120mm (精度±0.05mm) (cは奥行き寸法) とした場合、磁気回路10の入口及び出口において磁場調
整を行なわなかった場合、即ち、磁石20a、20b、22a及
び22bを設けなかった場合、装置10内でのX軸方向の電
子軌道は第5図に示すようになった。第5図に示すよう
に、電子軌道の山及び谷は揃っていず、磁気回路10の入
口及び出口での電子の位置の差(電子の変位)ΔXはか
なり大きい。
In the conventional example shown in FIG. 4, a rectangular parallelepiped segment magnet is an Nd-Fe-B magnet, and its magnetic characteristics are represented by Br (residual magnetic flux density) = 11.6KG (average value) (BH) max (maximum energy product) = 32MGOe (Average value) ΔBr / Br (fluctuation in magnetization) = ± 1% Δθ (fluctuation in magnetization direction) = 1 ゜ Magnet size (a × b × c) = 30 × 30 × 120 mm (accuracy ± 0.05 mm) (c is When the magnetic field is not adjusted at the entrance and the exit of the magnetic circuit 10, that is, when the magnets 20a, 20b, 22a, and 22b are not provided, the electron trajectory in the X-axis direction in the device 10 Was as shown in FIG. As shown in FIG. 5, the peaks and valleys of the electron trajectory are not aligned, and the difference (electron displacement) ΔX between the positions of the electrons at the entrance and the exit of the magnetic circuit 10 is quite large.

次に、磁気回路10の入口及び出口で磁場調整をした結
果、電子軌道は第6図に示すようになった。磁場調整に
よって電子の変位ΔXはかなり小さくなったが、電子軌
道の山及び谷は依然として揃っていない。このような電
子軌道の変位は、磁石の磁気特性及び磁石寸法のばらつ
きに起因するものであり、従来例の如く、磁気回路10の
入口及び出口のみでの磁場調整では、電子軌道の山及び
谷の不揃いは避けることが出来ない。
Next, as a result of adjusting the magnetic field at the entrance and exit of the magnetic circuit 10, the electron trajectory was as shown in FIG. Although the displacement ΔX of the electrons has been considerably reduced by adjusting the magnetic field, the peaks and valleys of the electron orbit are still not aligned. Such a displacement of the electron trajectory is caused by variations in the magnetic properties and magnet dimensions of the magnet. As in the conventional example, the magnetic field adjustment only at the entrance and the exit of the magnetic circuit 10 causes a peak and a valley of the electron trajectory. The irregularity of can not be avoided.

[発明の目的] 本発明は、アンジュレータに使用される複数の直方体
セグメント磁石の各々の磁気特性のばらつき、磁石寸法
のばらつき、磁石組み立ての際の磁石位置のばらつき等
に基づく種々の誤差を補正するため、各直方体セグメン
ト磁石の位置を磁石対向方向及びこの方向と直角方向に
調整し、装置の入口と出口での電子軌道の変位をゼロと
し、更に、電子の蛇行軌道の山及び谷を揃え、極めて良
好な放射光を得ることができる挿入光源用磁気回路の磁
場調整方法を提供することを目的とする。
[Object of the Invention] The present invention corrects various errors based on variations in magnetic properties, variations in magnet dimensions, variations in magnet positions during magnet assembly, and the like of a plurality of rectangular parallelepiped segment magnets used in an undulator. Therefore, the position of each rectangular parallelepiped segment magnet is adjusted in the magnet facing direction and the direction perpendicular to this direction, the displacement of the electron trajectory at the entrance and exit of the device is made zero, and the peaks and valleys of the meandering trajectory of the electrons are aligned It is an object of the present invention to provide a method for adjusting a magnetic field of a magnetic circuit for an insertion light source that can obtain extremely good emitted light.

[課題を解決するための手段及び作用] 本発明によれば、複数の直方体セグメント永久磁石を
対向させて配列した挿入光源用磁気回路において、上記
複数の直方体セグメント永久磁石の各々を、対向方向及
び該対向方向と直角の方向に独立して移動させ、対向す
る永久磁石間に形成される空隙の磁場を調整する機構を
有し、所定の電子位置の値を2倍した第1の値を求め、
該第1の値から、現在の磁場の測定値から求められる電
子位置と各々の磁石の位置を移動した場合の磁場の値か
ら求められる電子位置とを差し引いて第2の値を求め、
該第2の値の2乗を電子の軌道軸上にわたって合計して
第3の値を求め、該第3の値を評価関数とし、該評価関
数が最小となるように各々の磁石の移動量を求めてい
る。
According to the present invention, in a magnetic circuit for an insertion light source in which a plurality of rectangular parallelepiped segment permanent magnets are arranged so as to face each other, each of the plurality of rectangular parallelepiped segment permanent magnets is arranged in a facing direction and A mechanism for independently moving in a direction perpendicular to the facing direction and adjusting a magnetic field of a gap formed between the facing permanent magnets, and obtaining a first value obtained by doubling a value of a predetermined electron position; ,
From the first value, a second value is obtained by subtracting the electron position obtained from the measured value of the current magnetic field and the electron position obtained from the value of the magnetic field when the position of each magnet is moved,
The square of the second value is summed over the trajectory axis of the electron to obtain a third value, the third value is used as an evaluation function, and the moving amount of each magnet is set so that the evaluation function is minimized. Seeking.

[実施例] 以下、第1乃至第3図を参照して本発明の好適実施例
を説明する。
Hereinafter, a preferred embodiment of the present invention will be described with reference to FIGS.

第1図は本発明に係るアンジュレータの一部切り欠い
た概略側面図、第2図は第1図の装置において使用する
磁石調整機構を説明する図、第3図は第1図の装置にお
いて磁場調整後の電子軌道を説明する図である。
FIG. 1 is a schematic side view of an undulator according to the present invention, with a part cut away, FIG. 2 is a view for explaining a magnet adjusting mechanism used in the apparatus of FIG. 1, and FIG. 3 is a magnetic field in the apparatus of FIG. FIG. 4 is a diagram illustrating an adjusted electron trajectory.

第1図に示す直方体セグメント磁石34b及び38bの各々
は、第4図に示した従来例と同様にNb−Fe−B磁石と
し、その磁気特性も第4図に示した従来例と同様に、 Br(残留磁束密度) =11.6KG (平均値) (BH)max(最大エネルギー積) =32MGOe (平均値) ΔBr/Br(磁化のばらつき) = ±1% Δθ(磁化方向のばらつき) = 1゜ 磁石寸法(a×b×c) =30×30×120mm (精度 ±0.05mm) (cは奥行き寸法) とし、更に、 対向する磁石の間隔(ギャップ)G=80mm 周波数(N)= 26 電子エネルギー=2.4 GeV とする。
Each of the rectangular parallelepiped segment magnets 34b and 38b shown in FIG. 1 is an Nb-Fe-B magnet in the same manner as in the conventional example shown in FIG. 4, and the magnetic characteristics thereof are similar to those in the conventional example shown in FIG. Br (residual magnetic flux density) = 11.6KG (average value) (BH) max (maximum energy product) = 32MGOe (average value) ΔBr / Br (magnetization variation) = ± 1% Δθ (magnetization direction variation) = 1 ゜Magnet dimensions (a x b x c) = 30 x 30 x 120 mm (accuracy ± 0.05 mm) (c is the depth dimension), and the gap (gap) between opposing magnets G = 80 mm Frequency (N) = 26 electron energy = 2.4 GeV.

従って、磁石の総数は210個となる。 Therefore, the total number of magnets is 210.

直方体セグメント磁石34a、34b、34c、38a、38b及び3
8cの各々は、位置調整機構50(第1図には一部のみ示
す)を介してベース32及び36に対して位置調整可能に接
続されている。
Rectangular segment magnets 34a, 34b, 34c, 38a, 38b and 3
Each of 8c is adjustably connected to bases 32 and 36 via a position adjusting mechanism 50 (only a part is shown in FIG. 1).

第2図に、直方体セグメント磁石38b(34b)と共に位
置調整機構50の詳細を示す。参照番号39は磁石を直接取
り付ける台である。
FIG. 2 shows the details of the position adjusting mechanism 50 together with the rectangular parallelepiped segment magnets 38b (34b). Reference numeral 39 is a table for directly mounting a magnet.

第2図の(A)は、直方体セグメント磁石38b(34b)
及び磁石位置調整機構50をX軸方向にみた側面図であ
り、第2図の(B)は、直方体セグメント磁石38b(34
b)及び磁石位置調整機構50をZ軸方向に見た側面図で
ある。
FIG. 2A shows a rectangular parallelepiped segment magnet 38b (34b).
FIG. 2B is a side view of the magnet position adjusting mechanism 50 viewed in the X-axis direction, and FIG.
4B is a side view of the magnet position adjusting mechanism 50 as viewed in the Z-axis direction.

第2図の(A)及び(B)に示すように、位置調整機
構50は、Y軸方向(上下方向)及びX軸方向(平行方向
(図面に垂直方向))に各々位置調整が可能なように、
調整用ネジ52および54が設けられている。
As shown in FIGS. 2A and 2B, the position adjusting mechanism 50 can adjust the position in the Y-axis direction (vertical direction) and the X-axis direction (parallel direction (vertical direction in the drawing)). like,
Adjustment screws 52 and 54 are provided.

次に、磁石位置の調整量を求める方法を詳細に説明す
る。尚、X軸方向の電子の軌道を例に取る。予め電子の
軌道軸、即ち磁気回路の中心軸(Z軸)上の所定点のY
軸方向磁場を測定しておき、これをHMi(i=1,2,・・
・,i,・・・,n)とする。電子のX軸方向の位置はY軸
方向の磁場の二重積分で与えられる。
Next, a method for obtaining the adjustment amount of the magnet position will be described in detail. The electron trajectory in the X-axis direction is taken as an example. The orbital axis of the electron, that is, Y at a predetermined point on the central axis (Z axis) of the magnetic circuit
The axial magnetic field is measured, and this is calculated as HMi (i = 1, 2,.
・, I, ..., n). The position of the electron in the X-axis direction is given by a double integral of the magnetic field in the Y-axis direction.

ここで C =0.2997/電子エネルギー s =周期長(N)の3倍の値(図面参照) L =磁気回路の長さ(図面参照) By=中心軸上の磁場のY軸方向成分 従って、実測の電子位置をOMiとすれば、 となる。 Where C = 0.2997 / electron energy s = three times the period length (N) (see drawing) L = length of magnetic circuit (see drawing) By = Y-axis component of the magnetic field on the central axis Therefore, actual measurement If the electronic position of is OMi, Becomes

次に、磁石の磁気特性及び寸法のばらつきがない理想
的な場合の電子位置をOIiとする。また、各々の磁石の
調整量をAj(jは実際に調整を行なう磁石の番号を示
し、j=1からmである(m≦210))として、このと
きの磁石の位置より積分方程式等を用いて磁場の値を求
め、更に、(1)式より電子位置OCi(Aj)を計算す
る。
Next, let OIi be an electron position in an ideal case where there is no variation in the magnetic properties and dimensions of the magnet. Further, assuming that the adjustment amount of each magnet is Aj (j is the number of the magnet to be actually adjusted, and j = 1 to m (m ≦ 210)), the integral equation and the like are obtained from the position of the magnet at this time. Then, the value of the magnetic field is obtained, and the electron position OCi (Aj) is further calculated from the equation (1).

計算された理想の電子位置OIiの値を2倍し、この値
から、現在の磁場の測定値から求められる電子位置OMi
と各々の磁石の位置を移動した場合の磁場の値より計算
される電子位置OCi(Aj)とを差し引いた値の2乗を電
子の軌道上(Z軸上)にわたって合計し、その合計結果
を評価関数Wと定義して次の(3)式で示す。即ち、 但し、iは電子の軌道上の点を表わし、i=1からn
である。
Double the calculated value of the ideal electron position OIi, and from this value the electron position OMi obtained from the current magnetic field measurement value
And the square of the value obtained by subtracting the electron position OCi (Aj) calculated from the value of the magnetic field when the position of each magnet is moved is summed over the electron trajectory (on the Z axis). It is defined as an evaluation function W and is shown by the following equation (3). That is, Here, i represents a point on the electron orbit, and i = 1 to n
It is.

各々の磁石の移動量Ajは、評価関数Wが最小となると
きであり、次式(4)を解くことにより求まる。
The movement amount Aj of each magnet is when the evaluation function W is minimized, and is obtained by solving the following equation (4).

尚、(3)式で示される評価関数Wは、各々の磁石の
移動量Ajの関数であり、前記の積分方程式法及び(1)
式で解析的に求められ、更に(4)式も解析的に求めら
れる。
The evaluation function W expressed by the equation (3) is a function of the moving amount Aj of each magnet, and is calculated by the above-described integral equation method and (1)
Equation (4) is obtained analytically by the equation, and equation (4) is also obtained analytically.

第4図の磁気回路の210個全ての磁石の位置(m=21
0)を本発明の方法で調整した場合の電子軌道を第6図
に示す。入口と出口の変化はなく、しかも第6図に見ら
れた蛇行軌道の山や谷の不揃いがなくなり、山及び谷の
揃った軌道となった。尚、磁石の調整量は±1mm以内で
あった。
The positions (m = 21) of all 210 magnets in the magnetic circuit of FIG.
FIG. 6 shows the electron trajectory when (0) is adjusted by the method of the present invention. There was no change in the entrance and the exit, and the unevenness of the peaks and valleys in the meandering trajectory shown in FIG. The adjustment amount of the magnet was within ± 1 mm.

以上、X軸方向の電子軌道に関して説明したが、Y軸
方向の電子軌道についても調整方向が異なるだけで、調
整方法は同様である。即ち、X軸方向の磁場Bxを測定
し、これを(3)式及び(4)式に代入して平行方向に
磁石を移動する量を求めることになる。
Although the electron trajectory in the X-axis direction has been described above, the adjustment method is the same for the electron trajectory in the Y-axis direction, except that the adjustment direction is different. That is, the magnetic field Bx in the X-axis direction is measured, and this is substituted into the equations (3) and (4) to determine the amount of movement of the magnet in the parallel direction.

[発明の効果] 以上説明したように、本発明によれば、磁石の磁気特
性及び寸法のばらつき、及び、装置組み立ての誤差を調
整して理想的な電子軌道を得ることが出来る。従って、
良好な放射光を得るために極めて有効である。しかも、
経験や勘を必要とせずに系統的な調整が行え且つ調整時
間を大幅に短縮できる。
[Effects of the Invention] As described above, according to the present invention, an ideal electron trajectory can be obtained by adjusting the variation in the magnetic properties and dimensions of the magnet and the error in assembling the device. Therefore,
It is extremely effective for obtaining good radiation. Moreover,
Systematic adjustment can be performed without requiring experience and intuition, and the adjustment time can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る磁気回路の概略側面図、第2図は
第1図に示した磁石位置調整機構の詳細を示す図、第3
図は本発明に係る電子軌道を説明する図、第4図は従来
例の磁気回路の概略側面図、第5図及び第6図は従来例
による電子軌道を示す図である。 図中 30:磁気回路 34a〜34c:直方体セグメント磁石 38a〜38c:直方体セグメント磁石 50:磁石位置調整機構
FIG. 1 is a schematic side view of a magnetic circuit according to the present invention, FIG. 2 is a view showing details of a magnet position adjusting mechanism shown in FIG. 1, and FIG.
FIG. 4 is a view for explaining an electron trajectory according to the present invention, FIG. 4 is a schematic side view of a conventional magnetic circuit, and FIGS. 5 and 6 are views showing an electron trajectory according to a conventional example. In the figure, 30: Magnetic circuit 34a to 34c: rectangular parallelepiped segment magnet 38a to 38c: rectangular parallelepiped segment magnet 50: magnet position adjustment mechanism

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の直方体セグメント永久磁石を対向さ
せて配列した挿入光源用磁気回路において、 上記複数の直方体セグメント永久磁石の各々を、対向方
向及び該対向方向と直角の方向に独立して移動させ、対
向する永久磁石間に形成される空隙の磁場を調整する機
構を有し、 所定の電子位置の値を2倍にした第1の値を求め、 該第1の値から、現在の磁場測定値から求められる電子
位置と各々の磁石の位置を移動した場合の磁場の値から
求められる電子位置とを差し引いて第2の値を求め、 該第2の値の2乗を電子の軌道軸上にわたって合計して
第3の値を求め、 該第3の値を評価関数とし、該評価関数が最小となるよ
うに各々の磁石の移動量を求めることを特徴とする磁場
調整方法。
1. A magnetic circuit for an insertion light source in which a plurality of rectangular parallelepiped segment permanent magnets are arranged so as to face each other, wherein each of the plurality of rectangular parallelepiped segment permanent magnets is independently moved in a facing direction and a direction perpendicular to the facing direction. A mechanism for adjusting the magnetic field of the air gap formed between the opposing permanent magnets. A first value obtained by doubling the value of the predetermined electron position is obtained. From the first value, the current magnetic field is obtained. A second value is obtained by subtracting the electron position obtained from the measured value and the electron position obtained from the value of the magnetic field when the position of each magnet is moved, and the square of the second value is used as the orbit axis of the electron. A magnetic field adjustment method characterized by obtaining a third value by summing up the above values, using the third value as an evaluation function, and calculating the moving amount of each magnet so that the evaluation function is minimized.
JP33719890A 1990-11-30 1990-11-30 Magnetic field adjustment method for magnetic circuit for insertion light source Expired - Fee Related JP2847323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33719890A JP2847323B2 (en) 1990-11-30 1990-11-30 Magnetic field adjustment method for magnetic circuit for insertion light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33719890A JP2847323B2 (en) 1990-11-30 1990-11-30 Magnetic field adjustment method for magnetic circuit for insertion light source

Publications (2)

Publication Number Publication Date
JPH04204300A JPH04204300A (en) 1992-07-24
JP2847323B2 true JP2847323B2 (en) 1999-01-20

Family

ID=18306365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33719890A Expired - Fee Related JP2847323B2 (en) 1990-11-30 1990-11-30 Magnetic field adjustment method for magnetic circuit for insertion light source

Country Status (1)

Country Link
JP (1) JP2847323B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427235B2 (en) * 2009-06-18 2014-02-26 株式会社日立製作所 Insertion light source

Also Published As

Publication number Publication date
JPH04204300A (en) 1992-07-24

Similar Documents

Publication Publication Date Title
EP0306966B1 (en) Bending magnet
US4355236A (en) Variable strength beam line multipole permanent magnets and methods for their use
EP0582193B1 (en) Synchrotron radiation light-source apparatus and method of manufacturing same
EP0420671B1 (en) Synchrotron radiation apparatus
KR100487082B1 (en) Magnetic Block Assembly for Insertion Device
US4800353A (en) Micropole undulator
JP2847323B2 (en) Magnetic field adjustment method for magnetic circuit for insertion light source
US6556595B2 (en) Hybrid wiggler
Paciotti et al. Tuning of the first section of the biomedical channel at LAMPF
JPH04242196A (en) Controlling of magnetic field intensity in magnetic circuit for insertion light source
JPH04271000A (en) Magnetic field generating device for inserting light source
JPH04269700A (en) Magnetic field intensity controlling method for magnetism circuit for insertion light source
Schmerge LCLS gun solenoid design considerations
Spencer Some uses of REPMM's in storage rings and colliders
JP3204920B2 (en) Permanent magnet type bending magnet device and electron storage ring
JPH0753280Y2 (en) Bending electromagnet for SOR device
Poole Design and technology of undulators
Gottschalk et al. Multipole and phase tuning methods for insertion devices
JPS63224230A (en) X-ray exposure device
Couprie et al. Optimization of the permanent magnet optical klystron for the SUPER-ACO storage ring free electron laser
Tatchyn Planar permanent magnet multipoles for particle accelerator and storage ring applications
Barlow et al. Magnetic design and measurement of nonlinear multipole magnets for the APT beam expander system
JP2758686B2 (en) Ordinary conductive magnets for charged particle devices
Viccaro et al. Magnetic field tolerances for insertion devices on third generation synchrotron light sources
JP3128476B2 (en) Magnetic circuit for insertion light source device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071106

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081106

LAPS Cancellation because of no payment of annual fees