JP2846938B2 - Workpiece rigidity calculation device for grinding machine - Google Patents

Workpiece rigidity calculation device for grinding machine

Info

Publication number
JP2846938B2
JP2846938B2 JP26226690A JP26226690A JP2846938B2 JP 2846938 B2 JP2846938 B2 JP 2846938B2 JP 26226690 A JP26226690 A JP 26226690A JP 26226690 A JP26226690 A JP 26226690A JP 2846938 B2 JP2846938 B2 JP 2846938B2
Authority
JP
Japan
Prior art keywords
workpiece
shape
rigidity
grinding
deflection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26226690A
Other languages
Japanese (ja)
Other versions
JPH04223867A (en
Inventor
孝夫 米田
正 山内
守昭 坂倉
将 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP26226690A priority Critical patent/JP2846938B2/en
Publication of JPH04223867A publication Critical patent/JPH04223867A/en
Application granted granted Critical
Publication of JP2846938B2 publication Critical patent/JP2846938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は主軸と心押軸に取付られたセンタに支持さ
れ、このセンタの軸線まわりに回転する工作物に対して
砥石車を送り込むことによって工作物を研削加工するよ
うにした研削盤における工作物の剛性を演算する工作物
剛性演算装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial application field> The present invention is supported by a center mounted on a main shaft and a tailstock, and by feeding a grinding wheel to a workpiece rotating around the axis of the center. The present invention relates to a workpiece rigidity calculation device for calculating the rigidity of a workpiece in a grinding machine configured to grind a workpiece.

<従来の技術> 従来、研削盤にて工作物を研削する場合には、工作物
の要求される形状精度および表面粗さにて砥石回転数、
工作物回転数、砥石送り速度等の研削条件を決定する必
要がある。
<Conventional technology> Conventionally, when grinding a workpiece with a grinder, the grinding wheel rotation speed,
It is necessary to determine the grinding conditions such as the rotation speed of the workpiece and the feed speed of the grinding wheel.

この研削条件のなかでも砥石送り速度は工作物のたわ
み量、即ち剛性を考慮して決定されている。そして、こ
の剛性を演算して砥石の送り速度を制御するものとし
て、特公平2−7790号公報の発明がある。
Among these grinding conditions, the wheel feed speed is determined in consideration of the amount of deflection of the workpiece, that is, rigidity. The invention disclosed in Japanese Patent Publication No. Hei 2-7790 discloses an apparatus for controlling the feed speed of a grindstone by calculating the rigidity.

<発明が解決しようとする課題> ところが、上述の公報の発明では工作物全体で一括し
て剛性計算をしている。このため、複数の研削箇所を有
する工作物では、研削箇所によっては実際は剛性が演算
した値よりも大きく、送り速度を速くできるような場合
があり、研削効率が悪い箇所が出てくる問題がある。ま
た、工作物の剛性は支持を行う主軸および心押軸の剛性
にも影響されることになる。
<Problems to be Solved by the Invention> However, in the invention of the above-mentioned publication, the rigidity is calculated collectively for the entire workpiece. For this reason, in a workpiece having a plurality of grinding points, depending on the grinding points, the rigidity is actually larger than the calculated value, and the feed speed may be increased. . The rigidity of the workpiece is also affected by the rigidity of the supporting spindle and tailstock.

<課題を解決するための手段> 本発明は上述した課題を解決するためになされたもの
であり、工作物の形状データを入力する形状入力手段
と、主軸と心押軸の剛性を記憶する支持剛性記憶手段
と、前記形状入力手段によって入力された形状データか
ら工作物の研削段数毎の円筒形状を推定する形状推定手
段と、この形状推定手段にて推定された工作物の研削段
の円筒形状毎にたわみ量を演算する第1たわみ量演算手
段と、前記支持剛性記憶手段に記憶された主軸と心押軸
の剛性と工作物の全長とから該円筒形状毎のたわみ量を
演算する第2たわみ量演算手段と、前記第1たわみ量演
算手段と第2たわみ量演算手段でもとめたたわみ量を加
算した逆数を演算して工作物の剛性を演算する剛性演算
手段とを備えたものである。
<Means for Solving the Problems> The present invention has been made to solve the problems described above, and has a shape input means for inputting shape data of a workpiece, and a support for storing rigidities of a main shaft and a tailstock shaft. Rigidity storage means, shape estimating means for estimating a cylindrical shape for each number of grinding steps of a workpiece from the shape data input by the shape input means, and cylindrical shape of the grinding step of the workpiece estimated by the shape estimating means A first deflection amount calculating means for calculating a deflection amount for each cylindrical shape; and a second deflection amount calculating means for calculating the deflection amount for each cylindrical shape from the rigidity of the main shaft and tailstock stored in the support rigidity storage means and the total length of the workpiece. And a stiffness calculating means for calculating a reciprocal obtained by adding the deflection amounts obtained by the first deflection amount calculating means and the second deflection amount calculating means to calculate the rigidity of the workpiece. .

<作用> 形状入力手段によって工作物の形状データが入力され
ると、この形状データに基づいて形状推定手段にて工作
物の研削段数毎の円筒形状が推定される。そして、この
推定された円筒形状から第1たわみ量演算手段によって
円筒形状ごとのたわみ量が演算され、支持剛性記憶手段
に記憶された主軸と心押軸の剛性と前記工作物の全長と
から第2たわみ量演算手段にて支持剛性を考慮したたわ
み量を演算し、剛性演算手段にて前記第1たわみ量演算
手段と第2たわみ量演算手段でもとめたたわみ量を加算
した逆数を演算することで円筒形状ごと剛性が演算され
る。
<Operation> When shape data of a workpiece is input by the shape input unit, the shape estimating unit estimates a cylindrical shape for each number of grinding stages of the workpiece based on the shape data. A deflection amount for each cylindrical shape is calculated from the estimated cylindrical shape by the first deflection amount calculation means, and a first deflection amount is calculated from the rigidity of the main shaft and the tailstock stored in the support rigidity storage means and the total length of the workpiece. (2) The deflection amount calculating means calculates the deflection amount in consideration of the support stiffness, and the stiffness calculation means calculates the reciprocal obtained by adding the deflection amounts obtained by the first deflection amount calculating device and the second deflection amount calculating device. The rigidity is calculated for each cylindrical shape.

<実施例> 以下本発明の実施例を図面に基づいて説明する。第1
図において10は研削盤の本体を示し、ベッド111上にテ
ーブル12を介して載置された主軸台13と心押台14との間
に工作物Wがセンタによって両端を支持され、主軸モー
タ15によって駆動される主軸13aの回転によって回転さ
れるようになっている。また砥石車16を軸架する砥石台
17が工作物Wの加工面に対して進退可能にベッド11上に
案内され、サーボモータ18によって移動されるようにな
っている。
<Example> Hereinafter, an example of the present invention will be described with reference to the drawings. First
In the figure, reference numeral 10 denotes a main body of a grinding machine. A workpiece W is supported at both ends by a center between a headstock 13 and a tailstock 14 mounted on a bed 111 via a table 12, and a spindle motor 15 is provided. The main shaft 13a is driven by the rotation of the main shaft 13a. A grinding wheel head that supports a grinding wheel 16
17 is guided on the bed 11 so as to be able to advance and retreat with respect to the processing surface of the workpiece W, and is moved by a servomotor 18.

一方、20はサーボモータ18を駆動する駆動回路21にパ
ルスを分配して砥石車16を移動させる数値制御装置を示
し、演算処理装置22、メモリ23、パルス発生回路25、ゲ
ート回路26によって主に構成されている。そして、前記
演算処理装置22には、演算処理装置22からの指令速度に
応じた速度で、主軸を13を回転させる回転速度制御回路
27がインタフェース28を介して接続され、メモリ23内に
は数値制御プログラムが記憶されており、インタフェー
ス31を介して研削条件演算装置(工作物剛性演算装置)
30が接続されている。
On the other hand, reference numeral 20 denotes a numerical controller for distributing pulses to a drive circuit 21 for driving the servomotor 18 to move the grinding wheel 16, and is mainly controlled by an arithmetic processing unit 22, a memory 23, a pulse generation circuit 25, and a gate circuit 26. It is configured. A rotation speed control circuit for rotating the spindle 13 at a speed corresponding to the command speed from the arithmetic processing device 22 is provided in the arithmetic processing device 22.
27 is connected via an interface 28, a numerical control program is stored in a memory 23, and a grinding condition calculation device (workpiece rigidity calculation device) is provided via an interface 31.
30 is connected.

この研削条件演算装置30は第2図に示すように演算処
理装置35とメモリ32とCRT表示装置33とキーボード34と
から構成されており、メモリ31には、キーボード34から
入力される工作物の形状データをおよび工作物の材質や
要求表面粗さ等を記憶する工作物データ記憶領域PDA
と、求められた剛性値から砥石送り速度および工作物周
速度をもとめて記憶しておく研削条件記憶領域GTAと、
研削盤10の特性および剛性および研削条件の演算に必要
な特性データを記憶する特性データ記憶領域CDAが設け
られている。この特性データ記憶領域CDAには第3図に
示すように工作物の材質毎の剛性値と研削能率の関係を
示す特性データと第4図に示す工作物の要求表面粗さ毎
の工作物の直径と主軸の周速との関係を示す特性データ
および研削盤10の主軸台13と心押台14の軸の剛性値を記
憶されている。
As shown in FIG. 2, the grinding condition calculation device 30 includes a calculation processing device 35, a memory 32, a CRT display device 33, and a keyboard 34. The memory 31 stores a workpiece input from the keyboard 34. Workpiece data storage area PDA for storing shape data, workpiece material, required surface roughness, etc.
And a grinding condition storage area GTA in which the wheel feed speed and the workpiece peripheral speed are obtained and stored from the obtained rigidity value,
A characteristic data storage area CDA for storing characteristic data required for calculating the characteristics and rigidity of the grinding machine 10 and the grinding conditions is provided. In the characteristic data storage area CDA, as shown in FIG. 3, characteristic data indicating the relationship between the rigidity value and the grinding efficiency for each material of the workpiece and the characteristic data of the workpiece for each required surface roughness of the workpiece shown in FIG. The characteristic data indicating the relationship between the diameter and the peripheral speed of the spindle and the rigidity values of the spindles of the headstock 13 and the tailstock 14 of the grinding machine 10 are stored.

以上のような構成で剛性値を求める動作を第5図に示
すフローチャートと第6図で説明する。先ず剛性値を求
めるにあたってキーボード34より例えば第6図(a)に
示すような5段形状の工作物の軸方向寸法と円筒部の直
径寸法と研削箇所の要求表面粗さおよび工作物の材質が
入力され、工作物データ記憶領域PDAに記憶される。そ
してステップ100にて工作物全体の形状データが入力さ
れているかが判定され、全て入力されていればステップ
104に進み、入力されていなければ、ステップ103に進
む。ここで第6図(a)では5段形状のA2およびA4で示
す部分が非研削部分となるために直径データが入力され
ていないため、ステップ103に進む。ステップ103では形
状データが入力されていない部分の形状を推定するため
の処理がおこなわれる。この処理は第7図にしめすフロ
ーチャートとなる。この第7図のフローチャートの処理
を第6図に沿って説明する。
The operation of obtaining the stiffness value with the above configuration will be described with reference to the flowchart shown in FIG. 5 and FIG. First, in determining the stiffness value, the keyboard 34 is used to determine the axial dimension of a five-step shaped workpiece, the diameter of a cylindrical portion, the required surface roughness of a ground portion, and the material of the workpiece as shown in FIG. 6 (a). The data is input and stored in the work data storage area PDA. Then, it is determined in step 100 whether the shape data of the entire workpiece has been input.
Proceed to 104, and if not entered, proceed to Step 103. Here, in FIG. 6A, since the portions indicated by A2 and A4 in the five-step shape are non-ground portions, no diameter data has been input, so the process proceeds to step 103. In step 103, a process for estimating the shape of the portion where the shape data has not been input is performed. This process is a flowchart shown in FIG. The processing of the flowchart of FIG. 7 will be described with reference to FIG.

始めにステップ200にて直径の入力されていない形状
部A2では隣接する形状A1およびA3の直径d(m)およびd
(m+1)を工作物データ記憶領域PDAより読出し、ステップ
201にて右側の直径と左側形状の直径を比較して左側の
直径が大きければステップ202に進み、左側形状の直径
が小さければステップ203に進む。この場合形状A2では
左側形状A1の直径d(m)の方が小さいためステップ203に
進み、ステップ203にて形状A2の直径を左側形状A1の直
径d(m)とし、ステップ204にて寸法の入力されていない
形状A1の軸方向寸法を隣接する形状A1,A3の寸法から求
める。そしてステップ205で左側形状A1の軸方向寸法l
r(m)に形状A2の軸方向寸法lr(m+1)を加えた寸法を形状A
2′とする。また、形状A4ではステップ202にて左側形状
A3が大きいと判定されるので、ステップ202に進み、ス
テップ202にて形状A4の直径を右側形状A5の直径d(m+2)
とし、ステップ206にて寸法の入力されていない形状A4
の軸方向寸法を隣接する形状A3,A5の寸法から求める。
そしてステップ207にて右側形状A5の軸方向寸法lr(m+4)
に形状A4の軸方向寸法lr(m+3)を加えた寸法を形状A5′
とする。この結果、第6図(b)のような形状と推定さ
れ、形状が決定される。ここで形状の推定するときに直
径を小さいほうとするのは、形状のわからない部分のた
わみ量が大きく剛性が小さいと推定させるようにするた
めである。なお、この形状の軸寸法は工作物Wの左端部
P(m)を原点とする座標にて記憶される。形状の推定が終
了するとステップ104に進み、決定がなされた形状に対
して研削箇所の数、即ち形状の数Mを記憶する。そして
ステップ105にて段数をカウントするパラメータnを1
にセットし、ステップ106でパラメータnで示される形
状の研削時の砥石による荷重を集中荷重とし、この荷重
点の座標を決定する。この荷重点の決定は形状の中央部
分に単位荷重が加わったとして考え、第6図(b)の形
状A1′では(P(m)+P(m+1))/2の点を荷重点lP(n)とし
ている。荷重点が決定されると次にステップ107に進ん
で、形状A1′における工作物のたわみ量λ′nが で計算される。
First, in step 200, the diameter d (m) and d of the adjacent shapes A1 and A3 in the shape portion A2 whose diameter has not been input.
Read (m + 1) from the work data storage area PDA
At 201, the diameter of the right side is compared with the diameter of the left side shape. If the diameter of the left side is large, the process proceeds to step 202; In this case, in the shape A2, the diameter d (m) of the left shape A1 is smaller than that of the left shape A1, and the process proceeds to step 203.In step 203, the diameter of the shape A2 is set to the diameter d (m) of the left shape A1. The axial dimension of the shape A1 that has not been input is obtained from the dimensions of the adjacent shapes A1 and A3. Then, in step 205, the axial dimension l of the left side shape A1
The dimension obtained by adding the axial dimension lr (m + 1 ) of the shape A2 to r (m) is the shape A
2 '. In the case of shape A4, the shape on the left side is set in step 202.
Since A3 is determined to be large, the process proceeds to step 202, where the diameter of the shape A4 is changed to the diameter d (m + 2) of the right shape A5 in step 202.
And the shape A4 for which no dimensions have been entered in step 206
Is determined from the dimensions of the adjacent shapes A3 and A5.
Then, in step 207, the axial dimension l r (m + 4) of the right side shape A5
Add the dimension A r of the shape A4 to the axial dimension l r (m + 3).
And As a result, the shape is estimated as shown in FIG. 6 (b), and the shape is determined. Here, the reason why the diameter is made smaller when estimating the shape is to make it possible to estimate that the amount of deflection of the part whose shape is unknown is large and the rigidity is small. The shaft dimension of this shape is the left end of the workpiece W.
Stored in coordinates with P (m) as the origin. When the shape estimation is completed, the process proceeds to step 104, and the number of ground portions, that is, the number M of shapes is stored for the determined shape. In step 105, the parameter n for counting the number of stages is set to 1
Is set in step 106, and the load of the grindstone at the time of grinding the shape indicated by the parameter n is set as the concentrated load, and the coordinates of this load point are determined. This load point is determined assuming that a unit load is applied to the center of the shape. In the shape A1 'of FIG. 6 (b), the point of (P (m) + P (m + 1) ) / 2 is defined as the load point l. P (n) . When the load point is determined, the process proceeds to step 107, where the deflection λ'n of the workpiece in the shape A1 'is Is calculated.

次にステップ108に進み形状A1′の主軸台13と心押台1
4の軸の剛性値a,bを考慮したたわみ量λ″nが にて計算される。Eはヤング率である。
Next, proceeding to step 108, the headstock 13 and the tailstock 1 having the shape A1 '
The deflection λ ″ n considering the rigidity values a and b of the shaft 4 is Is calculated by E is the Young's modulus.

そしてこのたわみ量λ′n,λ″nが計算されると、ス
テップ109でたわみ量λ′n,λ″nが加算された値の逆
数が形状A1′の剛性値K(n)が求められ、ステップ110に
進んで形状の数Mとパラメータnが比較されることで、
全形状の剛性が求められたかが判定され、全形状の剛性
が求められていれば本プログラムを終了し、求められて
なければ、ステップ111でパラメータnに1が加算され
ステップ106に戻る。
When the flexures λ'n, λ "n are calculated, the reciprocal of the value obtained by adding the flexures λ'n, λ" n is obtained in step 109 as the stiffness value K (n) of the shape A1 '. , The process proceeds to step 110 to compare the number M of shapes with the parameter n,
It is determined whether the stiffness of all the shapes has been obtained. If the stiffness of all the shapes has been obtained, this program is terminated. If not, 1 is added to the parameter n in step 111 and the process returns to step 106.

以上の処理を行うことにより、工作物の剛性値および
形状データが工作物データ記憶領域PDAに記憶される。
By performing the above processing, the rigidity value and the shape data of the workpiece are stored in the workpiece data storage area PDA.

剛性値が求められると砥石の送り速度および工作物の
周速度を決定する処理が行われる。砥石の送り速度の決
定は特性データ記憶手段CDAに記憶されている第3図に
示すような工作物の材質毎の剛性値と研削能率の関係を
示す特性データより工作物データ記憶領域PDAに記憶さ
れた工作物材質と形状毎の剛性値K(n)から各形状での研
削能率Z(n)が求められ、この研削能率Z(n)より次式によ
って各形状砥石の送り速度v(n)が求められる。
When the stiffness value is obtained, processing for determining the feed speed of the grindstone and the peripheral speed of the workpiece is performed. The feed speed of the grinding wheel is determined in the work data storage area PDA from the characteristic data indicating the relationship between the rigidity value for each material of the work and the grinding efficiency as shown in FIG. 3 and stored in the characteristic data storage means CDA. been workpiece material and grinding efficiency from the shapes each of rigidity value K (n) for each shape Z (n) is determined, the feed rate v of the shape grindstone by the following equation from the grinding efficiency Z (n) (n ) Is required.

そして工作物の周速度の決定は第4図に示す工作物の
要求表面粗さ毎の工作物の直径と主軸の周速との関係を
示す特性データより工作物データ記憶領域PDA記憶され
た各形状の直径d(m)と要求表面粗さより工作物の周速度
Nが求められ、研削条件記憶領域GTAに記憶される。
The determination of the peripheral speed of the workpiece is based on the characteristic data indicating the relationship between the diameter of the workpiece and the peripheral speed of the spindle for each required surface roughness of the workpiece shown in FIG. The peripheral speed N of the workpiece is obtained from the diameter d (m) of the shape and the required surface roughness, and is stored in the grinding condition storage area GTA.

このように研削条件が決定されたのち、このそれぞれ
の値が数値制御装置20に転送されメモリ23に記憶され、
この記憶された工作物の周速度Nが主軸速度制御回路27
に出力され、主軸回転指令が与えられることにより主軸
13aが回転される。そして砥石の送り速度v(n)がパルス
発生回路25に出力されると、パルス発生回路25はパルス
分配を開始し、サーボモータ18が駆動され砥石台17が速
度v(n)で移動され、工作物の粗研削が行われる。このの
ち、この工作物の周速度Nと砥石の送り速度v(n)が要求
表面粗さに応じて低減された値で微研が行われることで
1つの形状の研削が完了し、以後各形状とも同様に研削
が行われることにより工作物の形状ごとの剛性に応じた
研削がおこなわれる。
After the grinding conditions are determined in this manner, the respective values are transferred to the numerical controller 20 and stored in the memory 23,
The stored peripheral speed N of the workpiece is determined by the spindle speed control circuit 27.
Is output to the main spindle rotation command.
13a is rotated. Then, when the feed speed v (n) of the grinding wheel is output to the pulse generation circuit 25, the pulse generation circuit 25 starts pulse distribution, the servo motor 18 is driven, and the grinding wheel head 17 is moved at the speed v (n) , Rough grinding of the workpiece is performed. Thereafter, the peripheral speed N of the workpiece and the feed speed v (n) of the grindstone are finely ground at reduced values in accordance with the required surface roughness, whereby the grinding of one shape is completed. Grinding is performed in the same manner with respect to the shape, so that grinding according to the rigidity of each shape of the workpiece is performed.

<発明の効果> 以上述べたように本発明においては、工作物の形状デ
ータを入力する形状入力手段と、主軸と心押軸の剛性を
記憶する支持剛性記憶手段と、前記形状入力手段によっ
て入力された形状データから工作物の研削段数毎の円筒
形状を推定する形状推定手段と、この形状推定手段にて
推定された工作物の研削段の円筒形状毎にたわみ量を演
算する第1たわみ量演算手段と、前記支持剛性記憶手段
に記憶された主軸と心押軸の剛性と前記形状推定手段に
て推定された工作物の研削段の円筒形状とから該円筒形
状毎のたわみ量を演算する第2たわみ量演算手段と、前
記第1たわみ量演算手段と第2たわみ量演算手段でもと
めたたわみ量を加算した逆数を演算して工作物の剛性を
演算する剛性演算手段とを備えたので、工作物の各形状
毎のたわみ量を求めることができ、さらに支持剛性をも
考慮した剛性値を求めることができ研削能率を向上でき
る利点がある。
<Effect of the Invention> As described above, in the present invention, the shape input means for inputting the shape data of the workpiece, the support rigidity storage means for storing the rigidity of the main shaft and the tailstock shaft, and the input by the shape input means Shape estimating means for estimating a cylindrical shape for each number of grinding steps of a workpiece from the obtained shape data, and a first deflection amount for calculating the amount of deflection for each cylindrical shape of the grinding step of the workpiece estimated by the shape estimating means Calculating means for calculating the amount of deflection for each cylindrical shape from the rigidity of the main shaft and tailstock stored in the support rigidity storing means and the cylindrical shape of the grinding stage of the workpiece estimated by the shape estimating means; Since there are provided second deflection amount calculating means, and rigidity calculating means for calculating a reciprocal obtained by adding the deflection amounts obtained by the first deflection amount calculating means and the second deflection amount calculating means to calculate the rigidity of the workpiece. , For each shape of the workpiece The amount of deflection can be obtained, and a rigidity value in consideration of the supporting rigidity can also be obtained, thereby providing an advantage that the grinding efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

図面は本発明の実施例を示すもので 第1図は研削盤の
全体構成図、第2図は研削条件演算装置の構成図、第3
図、第4図は特性データを示す図、第5図、第7図は演
算処理装置の処理を示すフローチャート、第6図は形状
推定の説明をするための図。 10……研削盤、13……主軸台、13a……主軸、15……主
軸モータ、16……砥石車、17……砥石台、18……サーボ
モータ、20……数値制御装置、22、35……演算処理装
置、23、32メモリ、25……パルス発生回路、27……速度
制御回路、30……研削条件演算装置。
The drawings show an embodiment of the present invention. FIG. 1 is an overall configuration diagram of a grinding machine, FIG. 2 is a configuration diagram of a grinding condition calculation device, and FIG.
FIG. 4, FIG. 4 is a diagram showing characteristic data, FIG. 5, FIG. 7 is a flowchart showing processing of the arithmetic processing unit, and FIG. 6 is a diagram for explaining shape estimation. 10: Grinding machine, 13: Headstock, 13a: Spindle, 15: Spindle motor, 16: Grinding wheel, 17: Grinding wheel, 18: Servo motor, 20: Numerical controller, 22, 35 arithmetic processing unit, 23, 32 memories, 25 pulse generating circuit, 27 speed control circuit, 30 grinding condition arithmetic unit.

フロントページの続き (56)参考文献 特公 平2−7790(JP,B2) 特公 昭51−17749(JP,B1) (58)調査した分野(Int.Cl.6,DB名) B24B 49/16 B24B 47/20Continuation of the front page (56) References JP 27790 (JP, B2) JP 51-7779 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) B24B 49 / 16 B24B 47/20

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主軸と心押軸に取付られたセンタに支持さ
れ、このセンタの軸線まわりに回転する工作物に対して
砥石車を送り込むことによって工作物を研削加工するよ
うにした研削盤における工作物剛性演算装置であって、
前記工作物の形状データを入力する形状入力手段と、前
記主軸と心押軸の剛性を記憶する支持剛性記憶手段と、
前記形状入力手段によって入力された形状データから工
作物の研削段数毎の円筒形状を推定する形状推定手段
と、この形状推定手段にて推定された工作物の研削段の
円筒形状毎にたわみ量を演算する第1たわみ量演算手段
と、前記支持剛性記憶手段に記憶された主軸と心押軸の
剛性と工作物の全長とから該円筒形状ごとのたわみ量を
演算する第2たわみ量演算手段と、前記第1たわみ量演
算手段と第2たわみ量演算手段でもとめたたわみ量を加
算した逆数を演算して工作物の剛性を演算する剛性演算
手段とを備えたことを特徴とする研削盤における工作物
剛性演算装置
1. A grinding machine which is supported by a center attached to a main shaft and a tailstock, and which grinds a workpiece by feeding a grinding wheel to a workpiece rotating about an axis of the center. A work rigidity calculating device,
Shape input means for inputting shape data of the workpiece, support rigidity storage means for storing rigidity of the main shaft and tailstock,
A shape estimating means for estimating a cylindrical shape for each grinding step number of the workpiece from the shape data input by the shape input means; and a deflection amount for each cylindrical shape of the grinding step of the workpiece estimated by the shape estimating means. First deflection amount calculating means for calculating, and second deflection amount calculating means for calculating the deflection amount for each cylindrical shape from the rigidity of the main shaft and tailstock stored in the support rigidity storage means and the total length of the workpiece. And a stiffness calculating means for calculating a reciprocal obtained by adding the deflection amounts obtained by the first deflection amount calculating means and the second deflection amount calculating means to calculate the rigidity of the workpiece. Workpiece rigidity calculation device
JP26226690A 1990-09-28 1990-09-28 Workpiece rigidity calculation device for grinding machine Expired - Fee Related JP2846938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26226690A JP2846938B2 (en) 1990-09-28 1990-09-28 Workpiece rigidity calculation device for grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26226690A JP2846938B2 (en) 1990-09-28 1990-09-28 Workpiece rigidity calculation device for grinding machine

Publications (2)

Publication Number Publication Date
JPH04223867A JPH04223867A (en) 1992-08-13
JP2846938B2 true JP2846938B2 (en) 1999-01-13

Family

ID=17373403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26226690A Expired - Fee Related JP2846938B2 (en) 1990-09-28 1990-09-28 Workpiece rigidity calculation device for grinding machine

Country Status (1)

Country Link
JP (1) JP2846938B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059585A1 (en) * 2006-11-17 2008-05-22 Amada Company, Limited Apparatus for polishing die and method of polishing die
JP7135289B2 (en) * 2017-10-20 2022-09-13 株式会社ジェイテクト Grinding machine and grinding method

Also Published As

Publication number Publication date
JPH04223867A (en) 1992-08-13

Similar Documents

Publication Publication Date Title
JP2637488B2 (en) Numerically controlled grinding machine
JP3467807B2 (en) Grinding equipment
JPH052458B2 (en)
JPH01234151A (en) Numerically controlled grinder
JP2846881B2 (en) Numerically controlled grinding machine
JP2846938B2 (en) Workpiece rigidity calculation device for grinding machine
JP3413939B2 (en) Grinding equipment
JP3344064B2 (en) Grinding equipment
JP3644068B2 (en) Non-circular workpiece grinder
JPH0780771A (en) Numerically controlled grinder
JP2534500B2 (en) Grinding machine control method
JP3385666B2 (en) Grinding equipment
JP3404902B2 (en) Grinding equipment
JP2792401B2 (en) Control device for multi-axis grinding machine
JP3143656B2 (en) Grinding equipment
JP3205827B2 (en) Processing data creation device for non-circular workpieces
JP2950929B2 (en) Automatic processing condition determination device
JP3086534B2 (en) Grinding machine for processing non-circular workpieces
JP3413938B2 (en) Grinding equipment
JP2542084B2 (en) Method for correcting the grinding surface of the grinding wheel
JP3143657B2 (en) Grinding equipment
JP2839685B2 (en) Automatic determination of grinding data
JPH07171763A (en) Grinding method and device therefor
JP2744717B2 (en) Interactive programming device
JP3120578B2 (en) Grinding equipment

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees