JP2846520B2 - How to measure the particle size or average particle size of ultrafine particles - Google Patents

How to measure the particle size or average particle size of ultrafine particles

Info

Publication number
JP2846520B2
JP2846520B2 JP6930192A JP6930192A JP2846520B2 JP 2846520 B2 JP2846520 B2 JP 2846520B2 JP 6930192 A JP6930192 A JP 6930192A JP 6930192 A JP6930192 A JP 6930192A JP 2846520 B2 JP2846520 B2 JP 2846520B2
Authority
JP
Japan
Prior art keywords
particle size
ultrafine particles
average particle
ultrafine
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6930192A
Other languages
Japanese (ja)
Other versions
JPH05231849A (en
Inventor
正則 三留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6930192A priority Critical patent/JP2846520B2/en
Publication of JPH05231849A publication Critical patent/JPH05231849A/en
Application granted granted Critical
Publication of JP2846520B2 publication Critical patent/JP2846520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば10μm以下と
いった微小領域に存在する超微粒子の粒径又は平均粒径
の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the particle size or the average particle size of ultrafine particles present in a very small area, for example, 10 μm or less.

【0002】[0002]

【従来の技術】半導体及び金属の超微粒子は、強い光学
非線形性を示すことから、新しい光学材料もしくは電子
材料として注目を集め、多くの研究が行われている。こ
の超微粒子の性質は量子サイズ効果と関連していること
が知られており、超微粒子の粒径に大変敏感であること
が特徴である。この為、この研究において超微粒子の粒
径又は平均粒径を測定することが大変重要である。この
超微粒子の粒径又は平均粒径を測定する方法として、以
下に示す二通りの方法が従来から用いられている。一つ
は、透過電子顕微鏡を用いる方法である。この方法は、
粒径等の測定対象である超微粒子試料を10nm程度に
薄くした上で、透過電子顕微鏡を用いて多数の超微粒子
を直接観察、若しくは銀塩フィルムに撮影することによ
って、個々の超微粒子の粒径を測定し、粒径又は平均粒
径を求める方法である(以下、直接観察法と呼ぶ)。二
つめは、X線を用いる方法であり、この方法の概略は以
下の様である。大きな結晶にX線を当てたときに得られ
る回折図形は、細いリングもしくは小さなスポットから
なる。これに対して、超微粒子から得られる回折図形
は、幅の広いリングからなる。この広がりを表す半値幅
Bは、超微粒子の粒径Dに対して下式で表されることが
知られている。 B=0.9λ/D/cosθ ここで、λはX線の波長、θはBragg角である。 この式を用いることにより、X線回折線の半値幅から超
微粒子の平均粒径を求めることが出来る(以下、半値幅
法と呼ぶ)。ところで、超微粒子を新規の光学的若しく
は電子的なデバイスとして応用する際は、そのデバイス
の構造はμmオーダーになる。この為、例えば10μm
以下といった微小領域に存在する超微粒子の粒径又は平
均粒径を測定することが必要になってくる。
2. Description of the Related Art Ultrafine particles of semiconductors and metals exhibit strong optical nonlinearity, and thus have attracted attention as new optical or electronic materials, and have been studied in many ways. It is known that the properties of the ultrafine particles are related to the quantum size effect, and is characterized by being very sensitive to the particle size of the ultrafine particles. Therefore, it is very important in this study to measure the particle size or average particle size of the ultrafine particles. As a method for measuring the particle diameter or the average particle diameter of the ultrafine particles, the following two methods are conventionally used. One is a method using a transmission electron microscope. This method
After thinning the ultra-fine particle sample whose particle size is to be measured to about 10 nm, a large number of ultra-fine particles can be directly observed using a transmission electron microscope or photographed on a silver halide film, and the size of each ultra-fine particle can be reduced. This is a method of measuring the diameter and obtaining the particle diameter or the average particle diameter (hereinafter, referred to as a direct observation method). The second is a method using X-rays. The outline of this method is as follows. The diffraction pattern obtained when a large crystal is exposed to X-rays consists of thin rings or small spots. On the other hand, the diffraction pattern obtained from the ultrafine particles consists of a wide ring. It is known that the half width B representing this spread is represented by the following equation with respect to the particle diameter D of the ultrafine particles. B = 0.9λ / D / cos θ where λ is the wavelength of the X-ray and θ is the Bragg angle. By using this equation, the average particle size of the ultrafine particles can be determined from the half-width of the X-ray diffraction line (hereinafter, referred to as the half-width method). By the way, when ultrafine particles are applied as a new optical or electronic device, the structure of the device is on the order of μm. Therefore, for example, 10 μm
It is necessary to measure the particle size or the average particle size of the ultrafine particles existing in the minute region as described below.

【0003】[0003]

【発明が解決しようとしている課題】しかしながら、上
記の直接観察法では、約10μm以下といった微小領域
に存在する特定な超微粒子の単一粒径を測定することは
出来るものの、平均粒径を測定するには、数百から千個
程度の多数の超微粒子に対して夫々粒径を測定しなけれ
ばならない為、大変時間を要するという問題がある。
又、単一粒径と平均粒径のどちらを測定する場合でも、
測定する試料の形態に制限があり、測定対象試料を電子
線が透過する10nm程度まで薄くする必要がある為、
観察試料を作製するまでに多くの時間を要するという問
題がある。一方、半値幅法では、ある特定な約10μm
以下といった微小領域にX線を選択的に当てることは出
来ない為、この測定方法を適用することは不可能である
という問題がある。そこで本発明の目的は、容易に例え
ば10μm以下といった微小領域に存在する超微粒子の
粒径又は平均粒径を測定することが出来る新規な方法を
提供することにある。
However, in the above-described direct observation method, the single particle size of specific ultrafine particles existing in a minute region of about 10 μm or less can be measured, but the average particle size is measured. However, there is a problem that it takes a very long time because the particle size must be measured for each of a large number of ultrafine particles of about several hundred to 1,000.
Also, when measuring either single particle size or average particle size,
Since the form of the sample to be measured is limited, it is necessary to make the sample to be measured thin to about 10 nm through which the electron beam passes.
There is a problem that it takes much time to prepare an observation sample. On the other hand, in the half width method, a specific about 10 μm
Since it is impossible to selectively apply X-rays to the following minute regions, there is a problem that this measurement method cannot be applied. Therefore, an object of the present invention is to provide a novel method capable of easily measuring the particle size or the average particle size of ultrafine particles existing in a minute region of, for example, 10 μm or less.

【0004】[0004]

【課題を解決する為の手段】本発明の目的は、以下の発
明によって達成される。即ち本発明は、超微粒子の試料
の微小領域に電子線を照射し、電子エネルギー分析装置
によって電子エネルギー損失スペクトルを測定して、該
スペクトルの損失ピークのエネルギーから試料の超微粒
子内に発生するプラズモンエネルギーを求めた後、超微
粒子の粒径とその超微粒子内に発生するプラズモンエネ
ルギーとの間に存在する相関関係に基づいて、先に求め
たプラズモンエネルギーから試料の超微粒子の粒径又は
平均粒径を算出することを特徴とする超微粒子の粒径又
は平均粒径の測定方法である。
The object of the present invention is achieved by the following inventions. That is, the present invention provides a method for irradiating a small region of a sample of ultrafine particles with an electron beam, measuring an electron energy loss spectrum with an electron energy analyzer, and generating plasmon generated in the ultrafine particles of the sample from the energy of the loss peak of the spectrum. After obtaining the energy, based on the correlation existing between the particle size of the ultrafine particles and the plasmon energy generated in the ultrafine particles, the particle size or average particle size of the ultrafine particles of the sample is obtained from the plasmon energy obtained earlier. This is a method for measuring the particle diameter or average particle diameter of ultrafine particles, which is characterized by calculating the diameter.

【0005】[0005]

【作用】本発明の超微粒子の粒径又は平均粒径の測定方
法は、発明者が鋭意研究した結果見出だした、超微粒子
内に発生するプラズモンのエネルギーが粒径に応じて変
化する特徴を利用するものである。即ち、プラズモンの
エネルギーを電子エネルギー損失分光法を用いて測定す
れば、そのエネルギーから超微粒子の粒径又は平均粒径
を容易に求めることが出来る。
The method for measuring the particle size or average particle size of the ultrafine particles of the present invention is characterized by the fact that the plasmon energy generated in the ultrafine particles changes according to the particle size, which was found as a result of intensive studies by the inventors. To use. That is, if the energy of the plasmon is measured using electron energy loss spectroscopy, the particle size or average particle size of the ultrafine particles can be easily obtained from the energy.

【0006】[0006]

【好ましい実施態様】次に、好ましい実施態様を挙げ、
本発明を更に詳細に説明する。先ず、本発明の超微粒子
の粒径又は平均粒径の測定方法の測定原理を以下に説明
する。本発明者の鋭意研究の結果、図1に示す様に超微
粒子中に発生するプラズモンのエネルギーは、粒径が小
さくなると量子サイズ効果の影響を受けて、大きな結晶
中に発生するプラズモンのエネルギーよりも大きくなる
ことを見出だした。更に、詳細な研究を進めた結果、本
発明者はこのプラズモンのエネルギーEと超微粒子の粒
径dとの間に、下記の(1)式の関係があることを知見
した。 E(d)=E(1+hπ/mEgd) (1) ここで、Eは大きな結晶において観測されるプラズモ
ンのエネルギー、Egはバンドギャップ、mは電子の有
効質量、hはプランク定数を2πで割った値である。従
って、超微粒子中のプラズモンエネルギーを測定すれ
ば、その超微粒子の単一粒径は、上記の式から算出され
る。更に、粒径分布を持った複数の超微粒子のプラズモ
ンエネルギーを測定すれば、その複数の超微粒子の平均
粒径も得ることが出来る。
Next, preferred embodiments will be described.
The present invention will be described in more detail. First, the measurement principle of the method for measuring the particle size or average particle size of the ultrafine particles of the present invention will be described below. As a result of the inventor's diligent research, as shown in FIG. 1, the plasmon energy generated in the ultrafine particles is affected by the quantum size effect when the particle diameter is reduced, and is lower than the plasmon energy generated in a large crystal. Also became larger. Further, as a result of conducting detailed research, the present inventor has found that the following equation (1) is established between the plasmon energy E and the particle diameter d of the ultrafine particles. E (d) = E 0 (1 + h 2 π 2 / mEgd 2 ) (1) where E 0 is the plasmon energy observed in a large crystal, Eg is the band gap, m is the effective mass of electrons, and h is Planck. It is a value obtained by dividing the constant by 2π. Therefore, if the plasmon energy in the ultrafine particles is measured, the single particle size of the ultrafine particles can be calculated from the above equation. Further, if the plasmon energy of a plurality of ultrafine particles having a particle size distribution is measured, the average particle size of the plurality of ultrafine particles can be obtained.

【0007】上記のプラズモンエネルギーは、以下に述
べる様に電子エネルギー損失スペクトルを測定すること
により求めることが出来る。即ち、超微粒子の試料の微
小領域に電子線を当てた状態で電子エネルギー損失スペ
クトルを測定すると、その微小領域に存在する超微粒子
の平均粒径に相当するプラズモンのエネルギーと一致し
たところに損失ピークが現れる。従って、電子エネルギ
ー損失スペクトルを測定すれば、このエネルギー損失ス
ペクトルのピーク位置に相当するプラズモンエネルギー
が求められる。この様にして、プラズモンエネルギーが
求められれば、上記の(1)式の関係から、その微小領
域に存在する超微粒子の平均粒径を求めることが出来
る。本発明の超微粒子粒径又は平均粒径の測定方法にお
ける電子線を照射する微小領域は、10μm以下である
場合に好適に利用することが出来る。又、電子線を絞っ
て超微粒子の単一粒子の電子エネルギー損失スペクトル
を同様に測定し、プラズモンエネルギーを求めれば、単
一粒子の粒径を求めることが出来る。
The above plasmon energy can be obtained by measuring an electron energy loss spectrum as described below. That is, when an electron energy loss spectrum is measured in a state where an electron beam is applied to a minute region of a sample of ultrafine particles, a loss peak is found when the energy of plasmon corresponding to the average particle diameter of the ultrafine particles present in the minute region coincides. Appears. Therefore, if the electron energy loss spectrum is measured, the plasmon energy corresponding to the peak position of the energy loss spectrum is obtained. If the plasmon energy is obtained in this manner, the average particle size of the ultrafine particles existing in the minute region can be obtained from the relationship of the above equation (1). In the method for measuring the particle diameter of ultrafine particles or the average particle diameter according to the present invention, the minute region irradiated with an electron beam can be suitably used when it is 10 μm or less. Also, by narrowing down the electron beam and measuring the electron energy loss spectrum of a single ultrafine particle in the same manner and determining the plasmon energy, the particle diameter of the single particle can be determined.

【0008】本発明方法で必要な上記のプラズモンエネ
ルギーの測定装置は、電子線源と、電場又は磁場を用い
た電子のエネルギー分析装置だけである為、他の如何な
る真空容器とも容易に組み合わせることが可能である。
又、本発明方法で粒径又は平均粒径を測定することが出
来る超微粒子材料としては、C、Si、Ge等の半導体
材料やその合金、Si−O、Sn−O、Ti−O等の酸
化物、Si−N、Ti−N、B−N等の窒化物、Si−
C、W−C等の炭化物等、半導体及び絶縁体材料の全て
のものに適用することが出来る。中でも、本発明方法は
Si系の超微粒子に好ましく適用される。
The plasmon energy measuring device required in the method of the present invention is only an electron beam source and an electron energy analyzing device using an electric or magnetic field, so that it can be easily combined with any other vacuum vessel. It is possible.
Examples of the ultrafine particle material whose particle diameter or average particle diameter can be measured by the method of the present invention include semiconductor materials such as C, Si, and Ge and alloys thereof, such as Si-O, Sn-O, and Ti-O. Oxides, nitrides such as Si-N, Ti-N, BN, Si-
The present invention can be applied to all semiconductor and insulator materials such as carbides such as C and WC. Among them, the method of the present invention is preferably applied to Si-based ultrafine particles.

【0009】[0009]

【実施例】次に、本発明の実施例を挙げて本発明を更に
詳細に説明する。 実施例1 図2は、マイクロ波プラズマ法によって異なる条件で作
成された二種類のSi超微粒子についての電子エネルギ
ー損失スペクトルである。該スペクトルは、透過電子顕
微鏡に取り付けられた電子エネルギー損失分光装置を用
い、0.5μmの微小領域で得られた電子エネルギー損
失スペクトルである。このスペクトルに見られるプラズ
モン励起に伴う損失ピークの位置を図1と比較すれば、
夫々の材料に対して表1の様な平均粒径が求まる。上記
と同一のSi超微粒子について、従来行われている直接
観察法で平均粒径を夫々求め上記の結果と比較すると、
表1に示した様によい一致を示しており、本発明方法に
よって得られる平均粒径は、従来行われている直接観察
法と同等の精度を有することがわかる。
Next, the present invention will be described in more detail with reference to examples of the present invention. Example 1 FIG. 2 shows electron energy loss spectra of two types of Si ultrafine particles prepared under different conditions by a microwave plasma method. The spectrum is an electron energy loss spectrum obtained in a minute region of 0.5 μm using an electron energy loss spectrometer attached to a transmission electron microscope. Comparing FIG. 1 with the position of the loss peak due to plasmon excitation seen in this spectrum,
The average particle size as shown in Table 1 is obtained for each material. For the same Si ultrafine particles as above, the average particle size is determined by a conventional direct observation method and compared with the above results.
As shown in Table 1, good agreement is shown, and it is understood that the average particle size obtained by the method of the present invention has the same accuracy as that of the conventional direct observation method.

【0010】[0010]

【表1】 [Table 1]

【0011】実施例2 図3は、1インチのSiウエハー上にマイクロ波プラズ
マ法によって堆積させたシリコン超微粒子について、円
筒鏡型電子エネルギー分析装置を用いて、ウエハー上の
微小部分(3μm)から得られた、電子エネルギー損失
スペクトルである。但し、このスペクトルはピーク位置
を明瞭に表示する為に、二次微分の形で描かれている。
このスペクトルでも、実施例1と同様に、プラズモン励
起に伴う損失ピークが見られており、このピーク位置か
らSi超微粒子についての平均粒径が求められた。又、
ウエハー上の広い領域にX線を当てることによる半値幅
法を用いて、同一のSi超微粒子について平均粒径を測
定したところ、上記の結果とよい一致を示した。このこ
とから本発明方法によって得られる平均粒径は、従来行
われている半値幅法と同等の精度を有することがわか
る。
Example 2 FIG. 3 shows silicon ultra-fine particles deposited on a 1-inch Si wafer by a microwave plasma method from a minute portion (3 μm) on the wafer using a cylindrical mirror type electron energy analyzer. It is the obtained electron energy loss spectrum. However, this spectrum is drawn in the form of a second derivative in order to clearly indicate the peak position.
In this spectrum, as in Example 1, a loss peak due to plasmon excitation was observed, and the average particle size of the Si ultrafine particles was determined from this peak position. or,
The average particle size of the same Si ultrafine particles was measured using the half-value width method by irradiating a wide area on the wafer with X-rays. This shows that the average particle size obtained by the method of the present invention has the same accuracy as that of the half width method conventionally used.

【0012】[0012]

【発明の効果】以上説明した様に、本発明の超微粒子の
粒径又は平均粒径の測定方法により、例えば10μm以
下といった微小領域に存在する超微粒子の粒径又は平均
粒径を、電子線源と電子エネルギー分析装置を使用する
だけで、容易に測定することが出来る。
As described above, according to the method for measuring the particle size or average particle size of the ultrafine particles of the present invention, the particle size or average particle size of the ultrafine particles existing in a minute region of, for example, 10 μm or less can be measured by an electron beam. It can be easily measured simply by using a source and an electron energy analyzer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、超微粒子中に発生するプラズモンエネ
ルギーと粒径との関係を示す図である。
FIG. 1 is a diagram showing a relationship between plasmon energy generated in ultrafine particles and a particle size.

【図2】図2は、マイクロ波プラズマ法によって異なる
条件で作成された二種類のSi超微粒子についての電子
エネルギー損失スペクトルである。
FIG. 2 shows electron energy loss spectra of two types of Si ultrafine particles prepared under different conditions by a microwave plasma method.

【図3】図3は、円筒鏡型電子エネルギー分析装置を用
い測定した、Siウエハー上にマイクロ波プラズマ法に
より堆積させたSi超微粒子のウエハー上の微小部分
(3μm)から得られた電子エネルギー損失スペクトル
である。
FIG. 3 is an electron energy obtained from a microscopic portion (3 μm) of Si ultrafine particles deposited on a Si wafer by a microwave plasma method, measured using a cylindrical mirror type electron energy analyzer. It is a loss spectrum.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超微粒子の試料の微小領域に電子線を照
射し、電子エネルギー分析装置によって電子エネルギー
損失スペクトルを測定して、該スペクトルの損失ピーク
のエネルギーから試料の超微粒子内に発生するプラズモ
ンエネルギーを求めた後、超微粒子の粒径とその超微粒
子内に発生するプラズモンエネルギーとの間に存在する
相関関係に基づいて、先に求めたプラズモンエネルギー
から試料の超微粒子の粒径又は平均粒径を算出すること
を特徴とする超微粒子の粒径又は平均粒径の測定方法。
1. A plasmon generated in an ultrafine particle of a sample by irradiating an electron beam to a minute region of the ultrafine particle sample, measuring an electron energy loss spectrum by an electron energy analyzer, and using energy of a loss peak of the spectrum. After obtaining the energy, based on the correlation existing between the particle size of the ultrafine particles and the plasmon energy generated in the ultrafine particles, the particle size or average particle size of the ultrafine particles of the sample is obtained from the plasmon energy obtained earlier. A method for measuring the particle diameter or average particle diameter of ultrafine particles, comprising calculating the diameter.
【請求項2】 前記電子線を、大きさが10μm以下の
微小領域に照射する請求項1に記載の超微粒子の粒径又
は平均粒径の測定方法。
2. The method for measuring the particle size or average particle size of ultrafine particles according to claim 1, wherein the electron beam is applied to a minute region having a size of 10 μm or less.
【請求項3】 前記電子線を絞って、試料の単一の超微
粒子に照射し、この単一の超微粒子の粒径を測定する請
求項1に記載の超微粒子の粒径又は平均粒径の測定方
法。
3. The particle size or average particle size of the ultrafine particles according to claim 1, wherein the electron beam is narrowed down to irradiate a single ultrafine particle of a sample, and the particle size of the single ultrafine particle is measured. Measurement method.
【請求項4】 前記試料がSi超微粒子からなる請求項
1に記載の超微粒子の粒径又は平均粒径の測定方法。
4. The method according to claim 1, wherein the sample is made of ultrafine Si particles.
JP6930192A 1992-02-20 1992-02-20 How to measure the particle size or average particle size of ultrafine particles Expired - Fee Related JP2846520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6930192A JP2846520B2 (en) 1992-02-20 1992-02-20 How to measure the particle size or average particle size of ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6930192A JP2846520B2 (en) 1992-02-20 1992-02-20 How to measure the particle size or average particle size of ultrafine particles

Publications (2)

Publication Number Publication Date
JPH05231849A JPH05231849A (en) 1993-09-07
JP2846520B2 true JP2846520B2 (en) 1999-01-13

Family

ID=13398612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6930192A Expired - Fee Related JP2846520B2 (en) 1992-02-20 1992-02-20 How to measure the particle size or average particle size of ultrafine particles

Country Status (1)

Country Link
JP (1) JP2846520B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100554924C (en) * 2006-11-27 2009-10-28 哈尔滨工业大学 Method of equispaced heating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108072595B (en) * 2017-12-04 2020-11-20 株洲硬质合金集团有限公司 Method for representing hard alloy structure by using WC crystal grain sectional area grain size distribution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100554924C (en) * 2006-11-27 2009-10-28 哈尔滨工业大学 Method of equispaced heating

Also Published As

Publication number Publication date
JPH05231849A (en) 1993-09-07

Similar Documents

Publication Publication Date Title
US7388661B2 (en) Nanoscale structures, systems, and methods for use in nano-enhanced raman spectroscopy (NERS)
Estève et al. Role of wire imperfections in micromagnetic traps for atoms
Lucas et al. Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science
Stoev et al. Review on grazing incidence X-ray spectrometry and reflectometry
Campion Raman spectroscopy of molecules adsorbed on solid surfaces
JPH08184572A (en) Total-reflection x-ray analytical apparatus
Chiang et al. Photoemission spectroscopy in solids
Graczyk et al. Scanning electron diffraction attachment with electron energy filtering
Nowak et al. Grazing angle X-ray fluorescence from periodic structures on silicon and silica surfaces
Kayser et al. Nanoparticle characterization by means of scanning free grazing emission X-ray fluorescence
JP2846520B2 (en) How to measure the particle size or average particle size of ultrafine particles
Kim et al. Using electron energy-loss spectroscopy to measure nanoscale electronic and vibrational dynamics in a TEM
Renaud et al. Apparatus for real time in situ quantitative studies of growing nanoparticles by grazing incidence small angle X-ray scattering and surface differential reflectance spectroscopy
US3431411A (en) Infrared spectra of powders by means of internal reflection spectroscopy
JP5672693B2 (en) X-ray analysis method
US5198667A (en) Method and apparatus for performing scanning tunneling optical absorption spectroscopy
Miller et al. Connecting small-angle diffraction with real-space images by quantitative transmission electron microscopy of amorphous thin-films
Kisielowski et al. Benefits of microscopy with super resolution
US6628748B2 (en) Device and method for analyzing atomic and/or molecular elements by means of wavelength dispersive X-ray spectrometric devices
Tsuji et al. Take-off angle-dependent X-ray fluorescence of thin films at glancing incidence
Wang et al. X-ray fluorescence correlation spectroscopy: a method for studying particle dynamics in condensed matter
Wang et al. Experimental Techniques
JP2868949B2 (en) Thin film production equipment
Srivastava et al. Tools and Techniques Used in Nanobiotechnology
Kiskinova Spectromicroscopy studies with high spatial resolution

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071030

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101030

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111030

LAPS Cancellation because of no payment of annual fees