JP2846269B2 - Granular filler for deoxygenation reactor and method for deoxygenating coke oven gas using the same - Google Patents
Granular filler for deoxygenation reactor and method for deoxygenating coke oven gas using the sameInfo
- Publication number
- JP2846269B2 JP2846269B2 JP7079856A JP7985695A JP2846269B2 JP 2846269 B2 JP2846269 B2 JP 2846269B2 JP 7079856 A JP7079856 A JP 7079856A JP 7985695 A JP7985695 A JP 7985695A JP 2846269 B2 JP2846269 B2 JP 2846269B2
- Authority
- JP
- Japan
- Prior art keywords
- deoxygenation
- filler
- catalyst
- coke oven
- oven gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000945 filler Substances 0.000 title claims description 40
- 238000006392 deoxygenation reaction Methods 0.000 title claims description 39
- 238000000034 method Methods 0.000 title claims description 23
- 239000000571 coke Substances 0.000 title claims description 16
- 230000003635 deoxygenating effect Effects 0.000 title 1
- 239000003054 catalyst Substances 0.000 claims description 43
- 239000002245 particle Substances 0.000 claims description 20
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 229910052799 carbon Inorganic materials 0.000 description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 13
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 150000001993 dienes Chemical class 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Catalysts (AREA)
- Industrial Gases (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、コークス炉ガスからの
水素製造の前処理プロセスとして、脱酸素反応器入口側
(脱酸素触媒の上流側)に使用する粒状充填材、および
該充填材を用いたコークス炉ガスの脱酸素方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particulate filler used on the inlet side of a deoxygenation reactor (upstream of a deoxygenation catalyst) as a pretreatment process for the production of hydrogen from coke oven gas, and the use of the filler. The present invention relates to a method for deoxidizing coke oven gas used.
【0002】[0002]
【従来の技術】コークス炉ガス(以下COGと記す)か
らの水素製造プロセスにおいて、COG中に含まれる少
量の酸素は、得られた水素を化学合成反応その他の用途
に用いる場合、反応等の阻害成分となるため、極力除去
する必要がある。COG中の酸素を除去する方法とし
て、特公昭58−12318 号公報には、COGガスを昇温昇
圧してNOX に起因する重合物を生成させてこれを除
き、次いで吸収油処理によりBTX類(ベンゼン、トル
エン、キシレン等の芳香族化合物)を除いた後のガスを
Ni系等の水添触媒と接触させることにより、ジエン類お
よび酸素を除去する方法が開示されている。また、多管
式反応器にパラジウム/アルミナあるいはニッケル/け
いそう土のような脱酸素触媒を充填した固定床にCOG
を供給し、反応温度: 150〜200 ℃、ガス空間速度(S
V):3800hr-1の条件下で共存水素との水素化反応によ
る脱酸素方法が工業的に実施されている。2. Description of the Related Art In a process for producing hydrogen from coke oven gas (hereinafter referred to as COG), a small amount of oxygen contained in COG inhibits the reaction when the obtained hydrogen is used for a chemical synthesis reaction or other uses. It must be removed as much as possible. As a method for removing oxygen in COG, in JP-B-58-12318, except for this by generating a polymer resulting from the NO X was heated boosting the COG gas, then BTX compounds by absorption oil treatment (Aromatic compounds such as benzene, toluene and xylene)
A method for removing dienes and oxygen by contact with a hydrogenation catalyst such as a Ni-based catalyst is disclosed. Also, COG is added to a fixed bed in which a multitubular reactor is filled with a deoxidizing catalyst such as palladium / alumina or nickel / diatomaceous earth.
At a reaction temperature of 150 to 200 ° C. and a gas hourly space velocity (S
V): A deoxygenation method by a hydrogenation reaction with coexisting hydrogen under the conditions of 3800 hr -1 is industrially practiced.
【0003】この際、原料ガスであるCOGを前記の反
応温度に昇温するために触媒充填床の上流側に予熱層と
してセラミック系充填材を充填する。このセラミック系
充填材の具備すべき条件は、充填時に割れたり、粉化し
たりしないこと、およびジエン類の重合による析出カー
ボンの吸蔵能力が大きいことなどが挙げられる。現在の
ところ、図2の走査型電子顕微鏡写真に示す粒子構造を
有する、通常のセラミック系充填材が使用されている
が、析出カーボンの吸蔵能力が小さく、下流の脱酸素触
媒の粉化、およびそれに伴う触媒層圧力損失の増加が避
けられず、反応器1基での長期間(例えば1年間)の連
続操業が困難な状況にある。すなわち、従来のセラミッ
ク系充填材は、生産性および経済性の面で大きな問題点
を残したまま、使用されているのが実情である。[0003] At this time, in order to raise the temperature of COG, which is a raw material gas, to the reaction temperature, a ceramic-based filler is filled as a preheating layer on the upstream side of the catalyst packed bed. Conditions that the ceramic filler should have include that it does not crack or powder at the time of filling, and has a large occlusion ability of carbon deposited by the polymerization of dienes. At present, ordinary ceramic-based fillers having the particle structure shown in the scanning electron micrograph of FIG. 2 are used, but the storage capacity of precipitated carbon is small, powdering of the downstream deoxygenation catalyst, and It is inevitable that the pressure loss of the catalyst layer increases with it, and it is difficult to continuously operate a single reactor for a long time (for example, one year). In other words, the conventional ceramic filler is used while leaving great problems in productivity and economy.
【0004】[0004]
【発明が解決しようとする課題】本発明は、前記従来技
術の問題点を解決し、コークス炉ガスからの水素製造設
備の前処理プロセスである、脱酸素反応器における脱酸
素触媒の粉化、およびそれに伴う触媒層圧力損失の増加
を防止可能な方法の提供を目的とする。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and is a pretreatment process of a hydrogen production facility from coke oven gas. Further, it is an object of the present invention to provide a method capable of preventing an increase in pressure loss of the catalyst layer associated therewith.
【0005】[0005]
【課題を解決するための手段】本発明者らは前記問題点
を解決すべく鋭意研究を行った結果、前記のカーボン析
出、および析出カーボンによる脱酸素触媒の触媒層圧力
損失の増加が、前記余熱層の充填材の性状に依存するこ
とが明らかになった。すなわち、本発明は、コークス炉
ガスの脱酸素反応に用いる脱酸素触媒のガス上流側に充
填して使用する粒状充填材であって、該充填材の組成が
シリカ−アルミナ系であり、かつ該充填材の粒子の気孔
率が20〜60%であることを特徴とする脱酸素反応器用粒
状充填材である。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, the carbon deposition and the increase in the pressure loss of the catalyst layer of the deoxygenation catalyst due to the deposited carbon have been described. It became clear that it depends on the properties of the filler in the residual heat layer. That is, the present invention is a granular filler used by filling a gas upstream side of a deoxidation catalyst used in a deoxygenation reaction of coke oven gas, wherein the composition of the filler is silica-alumina-based, and A granular filler for a deoxygenation reactor, wherein the porosity of the filler particles is 20 to 60%.
【0006】また、本発明は、コークス炉ガスの脱酸素
方法において、脱酸素触媒を充填した反応器のガス上流
側に、組成がシリカ−アルミナ系であり、かつ気孔率が
20〜60%である粒子を充填し、脱酸素を行うことを特徴
とするコークス炉ガスの脱酸素方法である。また、本発
明は、前記粒状充填材の粒子の外表面がポーラスな細孔
構造を有することが好ましい。The present invention also relates to a method of deoxidizing coke oven gas, wherein a silica-alumina-based composition and a porosity are provided upstream of a reactor filled with a deoxygenation catalyst.
A method for deoxidizing coke oven gas, characterized in that particles of 20 to 60% are filled and deoxidized. In the present invention, it is preferable that the outer surfaces of the particles of the particulate filler have a porous structure.
【0007】また、本発明は、前記脱酸素触媒がPd担
持アルミナ触媒であることが好ましい。In the present invention, it is preferable that the deoxygenation catalyst is a Pd-supported alumina catalyst.
【0008】[0008]
【作用】本発明に係わる粒状充填材は、組成がシリカ−
アルミナ系、好ましくはシリカを10〜60%、より好まし
くは20〜40%含有するシリカ−アルミナ系充填材である
ことが好ましい。これは、シリカ含有量が高いほど不活
性度を高めることができ、カーボン析出が抑制可能とな
るためである。しかし、シリカ濃度が60%を超すと強度
的に問題が発生する。The granular filler according to the present invention has a composition of silica-
It is preferable that the silica-alumina-based filler contains alumina, preferably 10 to 60%, more preferably 20 to 40% silica. This is because the higher the silica content, the higher the inertness can be, and the more the carbon deposition can be suppressed. However, if the silica concentration exceeds 60%, a problem occurs in strength.
【0009】充填材中のシリカ分の残りは主としてアル
ミナであるが、ナトリウム、鉄などの不純物は0.15%以
下なら含有しても問題はない。本発明の粒状充填材は、
カーボン析出抑制の面から酸性のない方が好ましく、ハ
メット指示薬(pka=4.8)が酸性色への変色を示
さない充填材であることが好ましい。The remainder of the silica content in the filler is mainly alumina, but there is no problem if impurities such as sodium and iron are contained at 0.15% or less. Granular filler of the present invention,
From the viewpoint of suppressing carbon deposition, it is preferable that the filler has no acidity, and it is preferable that the Hammett indicator (pka = 4.8) is a filler that does not show discoloration to an acidic color.
【0010】また、本発明に係わる粒状充填材の粒子の
気孔率は、20〜60%であることが好ましい。これは、気
孔率を20%以上とすることにより、析出カーボンの蓄積
能力(吸蔵能力)が大きくなり、下流の脱酸素触媒の析
出カーボンによる粉化、およびそれに伴う脱酸素触媒の
触媒層圧力損失の増加が防止可能となるためである。本
発明に係わる粒状充填材の粒子の気孔率は析出カーボン
の吸蔵能力の面から大きい方が好ましいが、これは前記
充填材の組成範囲から適宜選ぶことにより容易に達成す
ることができる。The porosity of the particles of the particulate filler according to the present invention is preferably 20 to 60%. This is because by increasing the porosity to 20% or more, the ability of the deposited carbon to accumulate (storage capacity) is increased, and the downstream deoxygenation catalyst is powdered by the deposited carbon, and the resulting catalyst layer pressure loss of the deoxygenation catalyst is reduced. This is because it is possible to prevent the increase. The porosity of the particles of the particulate filler according to the present invention is preferably large from the viewpoint of the ability to occlude precipitated carbon, but this can be easily achieved by appropriately selecting from the composition range of the filler.
【0011】また、気孔率が60%超えの場合、強度が
著しく低下するため、気孔率は60%以下であることが
好ましい。本発明に係わる粒状充填材の粒子構造を示す
走査型電子顕微鏡写真の1例を図1に示す。本発明に係
わる粒状充填材は、図1に示すように、粒子の外表面が
非常にポーラスな細孔構造を有することにより、析出カ
ーボンの吸蔵能力がさらに大となる。When the porosity exceeds 60%, the strength is remarkably reduced. Therefore, the porosity is preferably 60% or less. One example of a scanning electron micrograph showing the particle structure of the granular filler according to the present invention is shown in FIG. As shown in FIG. 1, the granular filler according to the present invention has a very porous pore structure on the outer surface of the particles, thereby further increasing the ability to occlude precipitated carbon.
【0012】なお、本発明においては、前記の粒子の外
表面のポーラスな細孔構造を特定化する指標として、粒
子の平均気孔直径を用いることができる。すなわち、本
発明においては、前記粒状充填材の粒子の平均気孔直径
が0.2μm 以上、より好ましくは、0.3μm 以上で
あることが、析出カーボンの吸蔵能力の点から好まし
い。In the present invention, the average pore diameter of the particles can be used as an index for specifying the porous pore structure on the outer surface of the particles. That is, in the present invention, the average pore diameter of the particles of the particulate filler is preferably 0.2 μm or more, more preferably 0.3 μm or more, from the viewpoint of the ability to occlude precipitated carbon.
【0013】本発明において、充填材の形状は、球状、
タブレット状、および円筒状等が例示され、反応器の寸
法、形状により形状が選択されるが、本発明において
は、COGとの接触効率の点から、特に球状が好まし
い。また、球状粒子の平均粒径は2〜5mmφであること
が好ましい。本発明は、脱酸素触媒として、Pd、P
t、Rh、Fe、Co、Mo、Niから選ばれる1種ま
たは2種以上を活性成分として含有する脱酸素触媒、よ
り好ましくはPd担持アルミナ触媒を用いるコークス炉
ガスの脱酸素方法に好ましく用いられる。In the present invention, the shape of the filler is spherical,
A tablet shape, a cylindrical shape, and the like are exemplified, and the shape is selected depending on the size and shape of the reactor. In the present invention, a spherical shape is particularly preferable from the viewpoint of the contact efficiency with COG. The average particle diameter of the spherical particles is preferably 2 to 5 mmφ. The present invention provides Pd, P
It is preferably used in a method for deoxidizing a coke oven gas using a deoxidizing catalyst containing one or more selected from t, Rh, Fe, Co, Mo and Ni as an active component, more preferably a Pd-supported alumina catalyst. .
【0014】これは、前記の脱酸素触媒の場合、析出カ
ーボンによる触媒活性の低下および触媒粉化に伴う圧力
損失の増加が生じ、本発明の充填材を用いることによ
り、初めて触媒活性の低下および圧力損失の増加が緩和
されるためである。また、前記の脱酸素触媒のうち、P
d担持アルミナ触媒が最も析出カーボンによる前記問題
点が緩和され、本発明の充填材と組み合わせて用いるこ
とにより、初めて1年間の安定操業が達成できるためで
ある。This is because, in the case of the above-described deoxygenation catalyst, the catalytic activity is reduced due to the precipitated carbon and the pressure loss is increased due to the catalyst pulverization. This is because the increase in pressure loss is reduced. Further, among the above-mentioned deoxygenation catalysts, P
This is because d-supported alumina catalysts alleviate the above-mentioned problems caused by precipitated carbon, and can achieve a stable operation for one year for the first time when used in combination with the filler of the present invention.
【0015】本発明の充填材は、COG中の酸素を共存
水素により水素化する脱酸素反応器の入口側のガス予熱
層に配設され、従来の充填材によるカーボン析出、それ
に伴う脱酸素触媒層における前記問題点を解決するもの
である。The filler of the present invention is disposed in a gas preheating layer on the inlet side of a deoxygenation reactor for hydrogenating oxygen in COG by coexisting hydrogen. This is to solve the above-mentioned problem in the layer.
【0016】[0016]
【実施例】以下に、本発明の実施例について図面を参照
して説明する。なお、本実施例中の気孔率、平均気孔直
径の測定法は下記の通りである。 気孔率:見掛け気孔率=〔(W3 −W1 )/(W3 −W
2 )〕×100% 前記式中、W1 ;試料の乾燥重量、W2 ;試料を吸水さ
せて水中につるして秤量した時の重量、W3 ;吸水させ
た試料の重量 平均気孔直径:水銀ポロシメータを用い、水銀圧入最大
圧力30000〔psig〕とし、細孔を円筒形と仮定
してKelvin式から計算した値である。Embodiments of the present invention will be described below with reference to the drawings. The methods for measuring the porosity and the average pore diameter in this example are as follows. Porosity: Apparent porosity = [(W 3 −W 1 ) / (W 3 −W
2 )] × 100% In the above formula, W 1 ; the dry weight of the sample, W 2 ; the weight when the sample is absorbed and suspended in water, and weighed; W 3 ; the weight of the sample that has absorbed water Average pore diameter: mercury It is a value calculated from the Kelvin equation, assuming that the maximum pressure of mercury intrusion is 30000 [psig] using a porosimeter and the pores are cylindrical.
【0017】図3は、本発明が適用される脱酸素反応器
を工程の一部とする、水素製造設備を示す工程図であ
る。図3において、1はコークス炉ガス(COG)圧縮
機、2はNOX ガム除去のためのホットボトル、3は冷却
器、4はCOG洗浄塔、5は熱交換器、6は第1段脱酸
素反応器、7は第2段脱酸素反応器、8は圧力スイング
吸着(PSA)のための吸・脱着塔、9は水素ガス圧縮
機を示す。 (実施例1)表1、および図1に示す組成・性状、およ
び粒子構造の球状充填材(シリカ−アルミナ系)を図3
に示すCOGからの水素製造設備の工程図中の第1段脱
酸素反応器(第2段酸素反応器は予備器として使用)の
触媒充填床のガス上流側の予熱層に充填した。触媒層を
含めた全層高は3mであり、ガス上流側の前記球状充填
材の充填層高は 0.3mである。FIG. 3 is a process diagram showing a hydrogen production facility using a deoxygenation reactor to which the present invention is applied as a part of the process. 3, 1 coke oven gas (COG) compressor, 2 hot bottles for of the NO X gum removal, 3 condenser 4 COG washing column, 5 is a heat exchanger, the first Danda' 6 An oxygen reactor, 7 is a second-stage deoxygenation reactor, 8 is an adsorption / desorption tower for pressure swing adsorption (PSA), and 9 is a hydrogen gas compressor. (Example 1) A spherical filler (silica-alumina) having the composition and properties shown in Table 1 and FIG. 1 and the particle structure is shown in FIG.
In the first stage deoxygenation reactor (the second stage oxygen reactor was used as a standby unit) in the process diagram of the hydrogen production facility from COG shown in Fig. 7 was packed in the preheating layer on the gas upstream side of the catalyst packed bed. The total bed height including the catalyst layer is 3 m, and the packed bed height of the spherical filler upstream of the gas is 0.3 m.
【0018】また、第1段脱酸素反応器の触媒として
は、粒径が3mmφ、3mmH(タブレット状)の 0.5%パ
ラジウム/アルミナ触媒を用いた。試験期間中のCOG
の組成は表2に示した通りである。 反応器入口ガス温度: 150℃、ガス空間速度(SV):
4000hr-1の条件下で、COG中の脱酸素反応を1年間行
った後の、第1段脱酸素反応器の脱酸素触媒の触媒層圧
力損失の初期値に対する増加率、触媒中析出カーボン
量、および触媒粉化率を表3に示す。 (比較例1)前記のシリカ−アルミナ系充填材の代わり
に、表1、および図2に示す組成・性状、および粒子構
造の通常の磁器質セラミックボールを充填した以外は、
実施例1と同一条件下において、COG中の脱酸素反応
を1年間行った。1年後の、第1段脱酸素反応器の脱酸
素触媒の触媒層圧力損失の初期値に対する増加率、触媒
中析出カーボン量、および触媒粉化率を表3に示す。As the catalyst for the first-stage deoxygenation reactor, a 0.5% palladium / alumina catalyst having a particle size of 3 mmφ and 3 mmH (tablet) was used. COG during the test period
Is as shown in Table 2. Reactor inlet gas temperature: 150 ° C, gas hourly space velocity (SV):
Increase rate of the deoxygenation catalyst in the first-stage deoxygenation reactor with respect to the initial value of the catalyst layer pressure loss after the deoxidation reaction in COG was performed for one year under the condition of 4000 hr -1 and the amount of carbon deposited in the catalyst. , And the catalyst powdering ratio are shown in Table 3. (Comparative Example 1) In place of the above-mentioned silica-alumina-based filler, a normal porcelain ceramic ball having the composition and properties shown in Table 1 and FIG.
Under the same conditions as in Example 1, a deoxygenation reaction in COG was performed for one year. One year later, Table 3 shows the rate of increase in the catalyst layer pressure loss of the deoxygenation catalyst in the first-stage deoxygenation reactor with respect to the initial value, the amount of carbon deposited in the catalyst, and the powdering rate of the catalyst.
【0019】表3から、本発明に係わる気孔率が大きい
粒状充填材を用いた場合、析出カーボンの吸蔵能力が大
で、下流の脱酸素触媒の析出カーボンによる粉化、およ
びそれに伴う脱酸素触媒の触媒層圧力損失の増加が防止
可能となることが分かる。From Table 3, it can be seen that when the particulate filler having a high porosity according to the present invention is used, the storage capacity of the deposited carbon is large, and the downstream deoxygenation catalyst is pulverized by the deposited carbon, and the resulting deoxidation catalyst It can be seen that the increase in the catalyst layer pressure loss can be prevented.
【0020】[0020]
【表1】 [Table 1]
【0021】[0021]
【表2】 [Table 2]
【0022】[0022]
【表3】 [Table 3]
【0023】[0023]
【発明の効果】本発明により、コークス炉ガスからの水
素製造設備の前処理プロセスとしてのCOGの脱酸素反
応器において、脱酸素触媒の粉化、およびそれに伴う脱
酸素触媒の触媒層圧力損失の増加を大幅に緩和すること
ができる。その結果として、水素製造設備は1基の脱酸
素反応器のみで1年間の連続操業を達成することができ
る。According to the present invention, in a COG deoxygenation reactor as a pretreatment process of a hydrogen production facility from coke oven gas, pulverization of the deoxygenation catalyst and accompanying reduction of the catalyst layer pressure loss of the deoxygenation catalyst. The increase can be greatly mitigated. As a result, the hydrogen production facility can achieve one year of continuous operation with only one deoxygenation reactor.
【図1】本発明法に係わる粒状充填材(シリカ−アルミ
ナ系)の粒子構造を示す走査型電子顕微鏡写真。FIG. 1 is a scanning electron micrograph showing the particle structure of a particulate filler (silica-alumina) according to the method of the present invention.
【図2】従来法に係わる粒状充填材(磁器質)の粒子構
造を示す走査型電子顕微鏡写真。FIG. 2 is a scanning electron micrograph showing the particle structure of a granular filler (porcelain) according to a conventional method.
【図3】本発明が適用される脱酸素反応器を工程の一部
とする、水素製造設備を示す工程図である。FIG. 3 is a process diagram showing a hydrogen production facility in which a deoxygenation reactor to which the present invention is applied is part of a process.
1 コークス炉ガス圧縮機 2 ホットボトル 3 冷却器 4 COG洗浄塔 5 熱交換器 6 第1段脱酸素反応器 7 第2段脱酸素反応器 8 吸・脱着塔 9 水素ガス圧縮機 DESCRIPTION OF SYMBOLS 1 Coke oven gas compressor 2 Hot bottle 3 Cooler 4 COG washing tower 5 Heat exchanger 6 First stage deoxygenation reactor 7 Second stage deoxygenation reactor 8 Suction / desorption tower 9 Hydrogen gas compressor
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C10K 1/34 B01J 21/12 B01J 23/44──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C10K 1/34 B01J 21/12 B01J 23/44
Claims (4)
酸素触媒のガス上流側に充填して使用する粒状充填材で
あって、該充填材の組成がシリカ−アルミナ系であり、
かつ該充填材の粒子の気孔率が20〜60%であることを特
徴とする脱酸素反応器用粒状充填材。1. A particulate filler used by filling a gas upstream side of a deoxygenation catalyst used in a deoxygenation reaction of a coke oven gas, wherein the composition of the filler is silica-alumina,
A particulate filler for a deoxygenation reactor, wherein the porosity of the particles of the filler is 20 to 60%.
細孔構造を有する請求項1記載の脱酸素反応器用粒状充
填材。2. The particulate filler for a deoxygenation reactor according to claim 1, wherein the outer surface of the particulate filler particles has a porous pore structure.
脱酸素触媒を充填した反応器のガス上流側に、組成がシ
リカ−アルミナ系であり、かつ気孔率が20〜60%である
粒子を充填し、脱酸素を行うことを特徴とするコークス
炉ガスの脱酸素方法。3. A method for deoxidizing coke oven gas, comprising:
A coke oven gas characterized in that particles having a composition of silica-alumina and having a porosity of 20 to 60% are filled on the gas upstream side of a reactor filled with a deoxygenation catalyst to perform deoxygenation. Deoxygenation method.
する請求項3記載のコークス炉ガスの脱酸素方法。4. The method for deoxidizing coke oven gas according to claim 3, wherein the outer surface of the particles has a porous pore structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7079856A JP2846269B2 (en) | 1995-03-10 | 1995-03-10 | Granular filler for deoxygenation reactor and method for deoxygenating coke oven gas using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7079856A JP2846269B2 (en) | 1995-03-10 | 1995-03-10 | Granular filler for deoxygenation reactor and method for deoxygenating coke oven gas using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08245969A JPH08245969A (en) | 1996-09-24 |
JP2846269B2 true JP2846269B2 (en) | 1999-01-13 |
Family
ID=13701846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7079856A Expired - Fee Related JP2846269B2 (en) | 1995-03-10 | 1995-03-10 | Granular filler for deoxygenation reactor and method for deoxygenating coke oven gas using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2846269B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4934918B2 (en) * | 2001-06-28 | 2012-05-23 | Jfeスチール株式会社 | Method and apparatus for purifying hydrogen-containing gas |
JP5274802B2 (en) * | 2006-09-15 | 2013-08-28 | 株式会社日本触媒 | Oxygen removal method |
-
1995
- 1995-03-10 JP JP7079856A patent/JP2846269B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08245969A (en) | 1996-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111895265B (en) | Method for providing high-purity high-pressure hydrogen | |
AU2010313807B2 (en) | Catalyst for synthesis of hydrocarbons from CO and H2 and preparation method thereof | |
US6627578B2 (en) | Catalyst for selective hydrogenation | |
CA2470945A1 (en) | Regeneration of catalysts for carbon monoxide hydrogenation | |
JP5584891B2 (en) | Exothermic catalyst carrier and catalyst produced from the carrier | |
JP3593358B2 (en) | Reformed gas oxidation catalyst and method for oxidizing carbon monoxide in reformed gas using the catalyst | |
JP5002230B2 (en) | Inert gas purification method | |
JPH05330802A (en) | Production of ammonia-cracked gas and production of hydrogen | |
JP4059928B2 (en) | Process for producing 1,3-propanediol by hydrogenation of 3-hydroxypropionaldehyde | |
JP2846269B2 (en) | Granular filler for deoxygenation reactor and method for deoxygenating coke oven gas using the same | |
JP3912077B2 (en) | Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method | |
SA92130077B1 (en) | A method for activating a catalyst | |
JP2004149393A (en) | Method for refining inert gas | |
CN110721707B (en) | Low-temperature deoxidation catalyst for synthesis gas and preparation and application thereof | |
WO2005011854A9 (en) | Process for the selective hydrogenation of phenylacetylene | |
EP1782885A1 (en) | Carbon nanotubes supported cobalt catalyst for converting synthesis gas into hydrocarbons | |
CN111686811A (en) | Titanium supported catalyst and method for preparing hexamethylene diamine by catalytic hydrogenation of adiponitrile | |
JP2003506207A (en) | Recoverable room temperature purifier | |
JP5667036B2 (en) | Method for purifying olefins, which removes acetylene compounds contained in olefins | |
JP3421900B2 (en) | Dimethyl ether production equipment | |
JPH08257369A (en) | Method for desulfurization of h2s-containing gas | |
JP4059663B2 (en) | Method for purifying hydrogen gas | |
JP2000044228A (en) | Method for purifying ammonia | |
CN113292395B (en) | Carbon-loaded Ni-based catalyst, preparation thereof and preparation of 1, 4-cyclohexanediol by hydrogenation of hydroquinone under catalysis of fixed bed | |
EP0767137A1 (en) | Removal of hydrogen cyanide from synthesis gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081030 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081030 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091030 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091030 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101030 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111030 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111030 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121030 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131030 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |