JP2845222B2 - 3D underwater acoustic image processing device - Google Patents

3D underwater acoustic image processing device

Info

Publication number
JP2845222B2
JP2845222B2 JP28993596A JP28993596A JP2845222B2 JP 2845222 B2 JP2845222 B2 JP 2845222B2 JP 28993596 A JP28993596 A JP 28993596A JP 28993596 A JP28993596 A JP 28993596A JP 2845222 B2 JP2845222 B2 JP 2845222B2
Authority
JP
Japan
Prior art keywords
dimensional
sound pressure
processing means
signal
pressure range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28993596A
Other languages
Japanese (ja)
Other versions
JPH10132931A (en
Inventor
慶太 海地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP28993596A priority Critical patent/JP2845222B2/en
Publication of JPH10132931A publication Critical patent/JPH10132931A/en
Application granted granted Critical
Publication of JP2845222B2 publication Critical patent/JP2845222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は3次元水中音響画像
処理装置に係り、特に水中で音波を放射し、エコーレベ
ルが距離方向や方位に対して変化する水中物体などの目
標物体からの反射波を受信し、その受信信号から水平方
位、垂直方位、及び距離で構成される3次元の画像を構
成する3次元水中音響画像処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional underwater acoustic image processing apparatus, and more particularly to a reflected wave from a target object such as an underwater object which emits sound waves in water and whose echo level changes with distance and direction. The present invention relates to a three-dimensional underwater acoustic image processing apparatus that receives a received signal, and forms a three-dimensional image including a horizontal direction, a vertical direction, and a distance from the received signal.

【0002】[0002]

【従来の技術】従来の3次元水中音響画像処理装置は、
物体の位置を画像表示するために受信信号をある閾値で
2値化し、閾値を越えている画素を結び、面を張ること
で3次元画像を構成している。例えば、特開平4−34
8745号公報には、水中の目標物体ではないが、被検
体内部の超音波エコー情報を所定の閾値と比較し、閾値
を境として各超音波エコー情報を少なくとも2値に反転
規格化して、3次元表示画像を形成する画像処理装置が
知られている。
2. Description of the Related Art A conventional three-dimensional underwater acoustic image processing apparatus comprises:
In order to display the position of an object as an image, a received signal is binarized by a certain threshold, pixels exceeding the threshold are connected, and a plane is formed to form a three-dimensional image. For example, JP-A-4-34
No. 8745 discloses that although not a target object in water, the ultrasonic echo information inside the subject is compared with a predetermined threshold value, and each ultrasonic echo information is inverted and normalized to at least two values with the threshold value as a boundary. 2. Description of the Related Art An image processing apparatus that forms a two-dimensional display image is known.

【0003】また、水中の目標物体の画像処理を行うも
のとしては、異なる周波数の超音波信号を水中に発射し
た後、水中の目標物体から反射して入力されるそれぞれ
の周波数に対応するエコー信号を受信し、それぞれのエ
コー信号の信号レベルに応じて予め定めた異なる色相群
を割り当ててエコー信号を表示する画像処理装置も知ら
れている(例えば特開平1−229989号公報)。
In order to perform image processing of a target object in water, an ultrasonic signal of a different frequency is emitted into water, and then echo signals corresponding to the respective frequencies are reflected and input from the target object in water. There is also known an image processing apparatus which receives an image signal and assigns a predetermined different hue group in accordance with the signal level of each echo signal to display the echo signal (for example, Japanese Patent Laid-Open No. 1-229989).

【0004】図3は従来の3次元水中音響画像処理装置
の一例の構成図を示す。送受波器11は、音波の送信及
び受信を行う。垂直方向レベル検出処理部12は、ある
距離において垂直方向に分布する受信信号レベルを求め
る。水平方向レベル検出処理部13は、求めた垂直方向
毎に、水平方向に分布する受信信号レベルを求める。こ
れまでの処理で、ある距離における水平方向×垂直方向
の2次元に分布した受信レベルが求まる。距離方向ため
こみ処理部14は、水平方向×垂直方向の2次元の受信
レベルを距離方向にためこんでゆき、距離方向×水平方
向×垂直方向の3次元に分布する受信レベルを構成す
る。
FIG. 3 is a block diagram showing an example of a conventional three-dimensional underwater acoustic image processing apparatus. The transducer 11 transmits and receives a sound wave. The vertical level detection processing unit 12 obtains a received signal level distributed vertically in a certain distance. The horizontal level detection processing unit 13 obtains the received signal levels distributed in the horizontal direction for each of the obtained vertical directions. By the processing so far, the reception levels distributed in two dimensions in the horizontal direction and the vertical direction at a certain distance are obtained. The distance direction embedding processing section 14 accumulates two-dimensional reception levels in the horizontal direction × vertical direction in the distance direction, and forms reception levels distributed in three dimensions in the distance direction × horizontal direction × vertical direction.

【0005】2値化処理部31は、指定されている閾値
と3次元の受信レベルを比較し、閾値を越えていれば”
1”、越えていなければ”0”とし、3次元座標上の受
信レベルを2値に置き換える。3次元面構成処理部32
は、3次元座標上の2値に対し、”1”の座標同士を線
で結び、更に面を張ることで3次元モデルを構成する。
表示器33は、この3次元モデルを表示する。
The binarization processing section 31 compares the specified threshold value with the three-dimensional reception level, and if the received level exceeds the threshold value,
The value is set to "1", and if not exceeded, to "0", and the reception level on the three-dimensional coordinates is replaced with a binary value.
Constructs a three-dimensional model by connecting the coordinates of “1” with a line with respect to the two values on the three-dimensional coordinates and further extending the surface.
The display 33 displays the three-dimensional model.

【0006】次に、この構成の従来装置の動作について
説明する。まず、送受波器11は音波を水中に放射し、
目標物体からの反射波を受信し、これを電気信号に変換
して受信信号101として出力する。垂直方向レベル検
出処理部12は、この受信信号101を入力信号として
受け、120で示すように垂直方向に分布する受信信号
レベルを求める。水平方向レベル検出処理部13は、垂
直方向レベル検出処理部12により求められた各垂直方
向に分布する受信信号レベル毎に、水平方向に分布する
受信信号レベルを求める。これにより、ある時間におけ
るそれぞれの方位の水平方向×垂直方向の2次元の受信
レベル分布130が求まる。この場合、時間は送受波器
11で音波を放射した時点を0mとして、音速により距
離情報に置き換えられる。
Next, the operation of the conventional apparatus having the above configuration will be described. First, the transducer 11 emits sound waves into water,
A reflected wave from a target object is received, converted into an electric signal, and output as a received signal 101. The vertical direction level detection processing unit 12 receives the received signal 101 as an input signal, and obtains a received signal level distributed in the vertical direction as indicated by 120. The horizontal level detection processing unit 13 obtains a reception signal level distributed in the horizontal direction for each reception signal level distributed in the vertical direction obtained by the vertical level detection processing unit 12. As a result, a two-dimensional reception level distribution 130 in the horizontal direction and the vertical direction in each direction at a certain time is obtained. In this case, the time is replaced with distance information based on the speed of sound, with the time when the sound wave is radiated by the transducer 11 as 0 m.

【0007】距離方向ため込み処理部14は、上記の水
平方向レベル検出処理部13の出力信号を受け、所望距
離に到達するまで、140に示すような距離方向、水平
方向、垂直方向の3次元ポイントにおける音圧レベルと
して格納する。なお、140の各1マスが受信レベルを
示している。その後、距離方向ため込み処理部14に格
納された3次元ポイントにおける音圧レベルは、2値化
処理部31において閾値と比較され、閾値を越えていれ
ば”1”、越えていなければ”0”の2値の3次元ポイ
ント310に置き換えられる。この2値化処理部31の
出力音圧レベルは、3次元面構成処理部32に供給さ
れ、ここで、2値化された3次元情報のうち、閾値を越
えていた3次元ポイントを線で結び、面を張ることによ
り、320で示すような3次元画像が構成され、表示器
33により表示される。
The distance direction embedding processing unit 14 receives the output signal of the horizontal level detection processing unit 13 and performs three-dimensional processing in a distance direction, a horizontal direction, and a vertical direction as indicated by 140 until the desired distance is reached. Stored as the sound pressure level at the point. It should be noted that each square of 140 indicates the reception level. Thereafter, the sound pressure level at the three-dimensional point stored in the distance direction embedding processing unit 14 is compared with a threshold value in the binarization processing unit 31, and is "1" if the threshold value is exceeded and "0" if not. "Is replaced by a binary three-dimensional point 310. The output sound pressure level of the binarization processing unit 31 is supplied to the three-dimensional surface configuration processing unit 32. Here, among the binarized three-dimensional information, a three-dimensional point that has exceeded the threshold is represented by a line. By tying and stretching, a three-dimensional image as indicated by 320 is formed and displayed on the display 33.

【0008】[0008]

【発明が解決しようとする課題】しかるに、従来の3次
元水中音響画像処理装置では、2値化処理部31にて音
圧レベルを閾値と比較し、閾値を越えているものに対し
て3次元画像を構成するため、一つの目標であっても距
離、及び方位に対してエコーレベルが変化する水中物体
を3次元画像で捉えたい場合、閾値のとり方によって、
物体が分割されたり、非常に大きくなったりする問題が
ある。
However, in the conventional three-dimensional underwater acoustic image processing apparatus, the binarization processing unit 31 compares the sound pressure level with a threshold value, and performs three-dimensional To compose an image, even if it is a single target, if you want to capture an underwater object whose echo level changes with distance and azimuth with a three-dimensional image,
There is a problem that an object is divided or becomes very large.

【0009】本発明は上記の点に鑑みなされたもので、
水中物体の部位により反射レベルの異なる目標物体に対
しても、全体像を正確に3次元画像を得ることができる
3次元水中音響画像処理装置を提供することを目的とす
る。
The present invention has been made in view of the above points,
It is an object of the present invention to provide a three-dimensional underwater acoustic image processing apparatus capable of accurately obtaining a three-dimensional image of the entire image even for a target object having a different reflection level depending on a part of the underwater object.

【0010】また、本発明の他の目的は、操作性を向上
し得る3次元水中音響画像処理装置を提供することにあ
る。
Another object of the present invention is to provide a three-dimensional underwater acoustic image processing apparatus capable of improving operability.

【0011】[0011]

【課題を解決するための手段】本発明は上記の目的を達
成するため、水中で音波を放射し、目標物体からの反射
波を受信し、電気信号である受信信号に変換する送受波
器と、受信信号から水平方向と垂直方向の2次元に分布
した受信信号レベルを求めるレベル検出処理手段と、レ
ベル検出処理手段からの2次元の受信信号レベルを距離
方向にため込んでゆき、水平方向、垂直方向及び距離の
3次元に分布する受信レベルを構成する距離方向ため込
み処理手段と、距離方向ため込み処理手段により構成さ
れた3次元に分布する受信レベルのデータを入力信号と
して受け、それぞれ互いに異なる予め設定された音圧範
囲内の信号は2値の一方の値で、音圧範囲以外の信号は
2値の他方の値に変換する複数の音圧範囲2値化処理手
段と、複数の音圧範囲2値化処理手段からの出力2値信
号をそれぞれ入力信号として受け、音圧範囲内の信号で
あることを示す一方の値の座標同士を線で結び、更に面
を張ることによって3次元モデルを構成する複数の3次
元面構成処理手段と、複数の3次元面構成処理手段から
の全部で複数の3次元モデルを一つの3次元座標上に合
成して一つの3次元画像を得る画像合成処理手段とを有
する構成としたものである。
According to the present invention, there is provided a transmitter / receiver for radiating a sound wave in water, receiving a reflected wave from a target object, and converting the reflected wave into an electric signal. Level detection processing means for obtaining received signal levels distributed two-dimensionally in the horizontal direction and the vertical direction from the received signal, and two-dimensional received signal levels from the level detection processing means are stored in the distance direction, and then horizontally and vertically. Distance direction embedding processing means forming reception levels distributed in three dimensions of direction and distance, and three-dimensionally distributed reception level data formed by the distance direction embedding processing means are received as input signals, and are different from each other. A plurality of sound pressure range binarization processing means for converting a signal within a preset sound pressure range to one of two values and a signal outside the sound pressure range to the other of the two values; Pressure The three-dimensional model is obtained by receiving the output binary signal from the surrounding binarization processing means as an input signal, connecting the coordinates of one value indicating that the signal is within the sound pressure range with a line, and further extending the surface. And a plurality of three-dimensional surface configuration processing means, and image synthesis for obtaining one three-dimensional image by combining a plurality of three-dimensional models from the plurality of three-dimensional surface configuration processing means on one three-dimensional coordinate And a processing means.

【0012】本発明では、3次元に分布する音波受信レ
ベルを、互いに異なる予め設定された複数の音圧範囲内
に属するか否かにより2値化し、その2値化された信号
を音圧範囲内の信号であることを示す値の座標同士を線
で結び、更に面を張ることによって複数の3次元モデル
を構成し、これら複数の3次元モデルを一つの3次元座
標上に合成して一つの3次元画像を得るようにしたた
め、目標物体の部位により音波の反射レベルが異なって
いても、反射レベルに応じた音圧範囲で3次元モデルを
構成できる。
According to the present invention, the three-dimensionally distributed sound wave reception level is binarized according to whether or not it belongs to a plurality of different sound pressure ranges different from each other, and the binarized signal is converted into a sound pressure range. A plurality of three-dimensional models are formed by connecting the coordinates of the values indicating the signals within the three-dimensional model with a line and further extending the surface, and combining the plurality of three-dimensional models on one three-dimensional coordinate. Since three three-dimensional images are obtained, a three-dimensional model can be constructed in a sound pressure range according to the reflection level even if the reflection level of the sound wave differs depending on the part of the target object.

【0013】[0013]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面と共に説明する。図1は本発明の一実施の形態の
構成図を示す。同図中、図3と同一構成部分については
同一符号を付し、その説明を省略する。図1において、
距離方向ため込み処理部14から出力された、垂直方
位、水平方位及び距離の3次元の受信レベル分布140
を示す受信レベル信号は、N個の音圧範囲2値化処理部
151〜15Nにそれぞれ入力され、互いに異なるそれぞ
れの音圧範囲内にある受信レベルが”1”に、音圧範囲
外の受信レベルが”0”に置き換えられる。なお、受信
レベル分布140の各1マスが受信レベルを示してい
る。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration diagram of an embodiment of the present invention. 3, the same components as those of FIG. 3 are denoted by the same reference numerals, and the description thereof will be omitted. In FIG.
Three-dimensional reception level distribution 140 of vertical azimuth, horizontal azimuth, and distance output from the distance direction embedding processing unit 14
Reception level signal indicative of the are respectively input to the N sound pressure range binarization processing unit 15 1 to 15 N, the reception level is "1" that are within different respective sound pressure range from each other, the sound pressure range Is replaced with “0”. Note that each square of the reception level distribution 140 indicates a reception level.

【0014】ここで、i番目の音圧範囲2値化処理部1
i(i=1,2,...,N)の音圧範囲は、それぞ
れαi〜βi(dB)に設定されている。この全部でN
個の異なる音圧範囲は、画像として捉えたい受信音圧範
囲をN個に分割したものである。
Here, the i-th sound pressure range binarization processing section 1
The sound pressure ranges of 5 i (i = 1, 2,..., N) are set to αi to βi (dB). N in all of this
The different sound pressure ranges are obtained by dividing the received sound pressure range to be captured as an image into N pieces.

【0015】音圧範囲2値化処理部151〜15Nのそれ
ぞれから出力される3次元座標上の2値テーブルは、N
個の3次元面構成処理部161〜16Nに入力され、各
々”1”の座標同士を線で結び、更に面を張ることによ
ってそれぞれ21〜2Nで示すような垂直方位、水平方
位及び距離の3次元モデルを構成する。この時点でN個
の異なる音圧範囲から抽出された3次元モデルが構成さ
れる。
[0015] 2 value table of the three-dimensional coordinates outputted from the respective sound pressures ranging binarization processing unit 15 1 ~15 N, N
The three-dimensional surface configuration processing units 16 1 to 16 N are connected to each other, and the coordinates of “1” are connected to each other by a line, and the surfaces are further stretched to form a vertical azimuth, a horizontal azimuth, and a distance indicated by 21 to 2N, respectively. Is constructed. At this point, a three-dimensional model extracted from the N different sound pressure ranges is constructed.

【0016】N個の3次元面構成処理部161〜16N
らそれぞれ出力された、全部でN個の3次元モデルは、
画像合成処理部17に入力され、ここで一つの3次元座
標上に合成処理された後、表示器18で3次元画像17
0として表示される。このように、部位により音波の反
射レベルが異なる目標物体を捉えた場合においても、そ
の全体像を正確に3次元画像として構成することができ
る。また、予め画像として捉えたい受信音圧範囲をN個
の音圧範囲に分割しておくことにより、従来装置のよう
に音圧分布変動が起こる度に、オペレータが3次元モデ
ルを構成するための2値化を行う閾値の最適値を探して
変更するといった手間が省け、操作性が向上する。
A total of N three-dimensional models output from the N three-dimensional surface configuration processing units 16 1 to 16 N respectively are:
The image data is input to the image synthesis processing unit 17, where the image is synthesized on one three-dimensional coordinate, and then displayed on the display 18.
It is displayed as 0. As described above, even when a target object having a different sound wave reflection level depending on a part is captured, the entire image can be accurately formed as a three-dimensional image. Also, by dividing the received sound pressure range to be captured as an image in advance into N sound pressure ranges, the operator can construct a three-dimensional model every time a sound pressure distribution change occurs as in the conventional device. This eliminates the need to find and change the optimum threshold value for binarization, thereby improving operability.

【0017】[0017]

【実施例】次に、図1の実施の形態の実施例について図
2と共に説明する。図2中、図1と同一構成部分には同
一符号を付し、その説明を省略する。図2において、目
標物体220は楕円形状で、送受波器11に対して斜め
に向いて存在する場合、音波の散乱によって送受波器1
1の受信音圧は目標物体220の部位によって異なって
くる。例えば、目標物体220の前部は送受波器11に
ほぼ正対しているため散乱は少なく、受信音圧は高くな
る。目標物体220の中部では、目標物体220が斜め
に向いているため音波の入射角が浅くなり、散乱により
受信音圧は下がる。更に、目標物体220の後部では、
物体形状が楕円状のため、物体中部より更に音波の入射
角が浅くなり、受信音圧は更に下がる。
Next, an embodiment of the embodiment shown in FIG. 1 will be described with reference to FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 2, when the target object 220 has an elliptical shape and exists obliquely with respect to the transducer 11, when the transducer 1
The 1 received sound pressure differs depending on the position of the target object 220. For example, since the front part of the target object 220 is almost directly facing the transducer 11, scattering is small and the received sound pressure is high. In the middle part of the target object 220, the incident angle of the sound wave becomes shallow because the target object 220 faces obliquely, and the received sound pressure decreases due to scattering. Further, at the rear of the target object 220,
Since the shape of the object is elliptical, the incident angle of the sound wave is further shallower than that of the central part of the object, and the received sound pressure is further reduced.

【0018】このような反射波を受信音圧範囲0〜−3
0dBの送受波器11で受信した場合、その受信信号は
水平方向レベル検出処理部12である距離における水平
方向の受信音圧が求められ、また、垂直方向レベル検出
処理部13にてある距離における垂直方向の受信音圧が
求められる。距離的には、送受波ポイントに対して目標
物体220は前部が近く、後部が遠くなっているため前
部から検出され始める。
Such a reflected wave is received in a sound pressure range of 0 to -3.
When the signal is received by the 0 dB transmitter / receiver 11, the received signal is used to determine the horizontal received sound pressure at a distance which is the horizontal level detection processing unit 12, and the vertical direction detection sound processing unit 13 calculates the received sound pressure at a distance which is the vertical level detection processing unit 13. The received sound pressure in the vertical direction is determined. In terms of distance, the target object 220 starts to be detected from the front part because the front part is near the transmission / reception point and the rear part is far away.

【0019】距離方向ため込み処理部14は、目標物体
220の後部までの3次元(水平方位、垂直方位、距
離)データがため込まれたら、3個の音圧範囲を0〜−
30dBとしている。そこで、3つの音圧範囲2値化処
理部24、25及び26にデータが転送される。ここで
は、画像として捉えたい音圧範囲を0〜−30dBとし
ている。そこで、音圧範囲2値化処理部24、25及び
26では10dB刻みに音圧範囲を刻んで2値化処理を
実行する。
When the three-dimensional (horizontal azimuth, vertical azimuth, distance) data up to the rear of the target object 220 is accumulated, the distance direction embedding processing unit 14 sets the three sound pressure ranges from 0 to −−.
It is 30 dB. Therefore, the data is transferred to the three sound pressure range binarization processing units 24, 25 and 26. Here, the sound pressure range to be captured as an image is set to 0 to -30 dB. Therefore, the sound pressure range binarization processing units 24, 25, and 26 execute the binarization process by cutting the sound pressure range in steps of 10 dB.

【0020】音圧範囲2値化処理部24は、0〜−10
dBの音圧範囲の受信信号を”1”とし、それ以外の音
圧の受信信号レベルを”0”とする2値化処理を行い、
受信音圧の高い目標物体220の前部に対応する位置の
情報を”1”として出力する。音圧範囲2値化処理部2
5は、−10〜−20dBの音圧範囲の受信信号を”
1”とし、それ以外の音圧の受信信号レベルを”0”と
する2値化処理を行い、受信音圧がやや低い目標物体2
20の中部に対応する位置の情報を”1”として出力す
る。更に、音圧範囲2値化処理部26は、−20〜−3
0dBの音圧範囲の受信信号を”1”とし、それ以外の
音圧の受信信号レベルを”0”とする2値化処理を行
い、受信音圧が非常に低い目標物体220の後部に対応
する位置の情報を”1”として出力する。音圧範囲2値
化処理部24、25及び26から出力された各3次元位
置情報は、対応する3次元面構成処理部27、28及び
29に入力されて、それぞれ”1”の座標同士を線で結
び、更に面を張ることによって垂直方位、水平方位及び
距離の3次元モデルを構成する。ここで、3次元面構成
処理部27は、目標物体220の前部の3次元モデル2
20aを構成し、3次元面構成処理部28は、目標物体
220の中部の3次元モデル220bを構成し、3次元
面構成処理部29は、目標物体220の後部の3次元モ
デル220cを構成する。
The sound pressure range binarization processing section 24 has 0 to -10
Binary processing is performed in which the received signal in the sound pressure range of dB is set to “1” and the received signal levels of other sound pressures are set to “0”.
The information of the position corresponding to the front part of the target object 220 having a high received sound pressure is output as “1”. Sound pressure range binarization processing unit 2
5 indicates that the received signal in the sound pressure range of -10 to -20 dB is "
1), and performs a binarization process to set the received signal level of the other sound pressures to “0”, and the target object 2 whose received sound pressure is slightly lower
The information of the position corresponding to the middle part of 20 is output as "1". Further, the sound pressure range binarization processing section 26 performs processing at −20 to −3.
The received signal in the sound pressure range of 0 dB is set to “1”, and the received signal level of the other sound pressure is set to “0” to perform a binarization process, corresponding to the rear part of the target object 220 having a very low received sound pressure. The information of the position to be executed is output as "1". The three-dimensional position information output from the sound pressure range binarization processing units 24, 25, and 26 is input to the corresponding three-dimensional surface configuration processing units 27, 28, and 29, and the coordinates of “1” are compared with each other. A three-dimensional model of the vertical azimuth, the horizontal azimuth, and the distance is constructed by connecting the lines and further extending the plane. Here, the three-dimensional surface configuration processing unit 27 executes the three-dimensional model 2 in front of the target object 220.
The three-dimensional surface configuration processing unit 28 configures a central three-dimensional model 220b of the target object 220, and the three-dimensional surface configuration processing unit 29 configures a rear three-dimensional model 220c of the target object 220. .

【0021】3次元面構成処理部27、28及び29に
よりそれぞれ構成された3次元モデル220a、220
b及び220cのデータは、画像合成処理部17に入力
され、ここで一つの3次元座標上に合成されることによ
り、部位により受信音圧の異なる目標物体220が正確
に一つの3次元画像221として生成される。よって、
一つの3次元画像221を表示できる。
The three-dimensional models 220a and 220 formed by the three-dimensional surface configuration processing units 27, 28 and 29, respectively.
The data b and 220c are input to the image synthesis processing unit 17, where they are synthesized on one three-dimensional coordinate, so that the target objects 220 having different received sound pressures depending on the parts can be accurately converted into one three-dimensional image 221. Is generated as Therefore,
One three-dimensional image 221 can be displayed.

【0022】なお、本発明は以上の実施の形態及び実施
例に限定されるものではなく、例えば受信音圧レベル範
囲に応じてそれぞれの3次元モデルを、色若しくは模様
で区別して表示するようにしてもよい。この場合は、3
次元面構成処理部161 〜16N のそれぞれをその処理
部固有の色若しくは模様の3次元モデルを生成するよう
にする。
The present invention is not limited to the above embodiments and examples. For example, each three-dimensional model is displayed in a different color or pattern according to the received sound pressure level range. You may. In this case, 3
Each of the dimensional surface configuration processing units 16 1 to 16 N is configured to generate a three-dimensional model of a color or pattern unique to the processing unit.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
3次元に分布する音波受信レベルを、互いに異なる予め
設定された複数の音圧範囲内に属するか否かにより2値
化し、その2値化された信号を音圧範囲内の信号である
ことを示す値の座標同士を線で結び、更に面を張ること
によって複数の3次元モデルを構成し、これら複数の3
次元モデルを一つの3次元座標上に合成して一つの3次
元画像を得るようにしたため、目標物体の部位により音
波の反射レベルが異なっていても、反射レベルに応じた
音圧範囲で3次元モデルを構成でき、よって、物体の部
位により音波の反射レベルが異なる目標物体を捉えた場
合においても、その全体像を正確に3次元画像として構
成することができる。
As described above, according to the present invention,
The three-dimensionally distributed sound wave reception level is binarized according to whether or not it belongs to a plurality of different preset sound pressure ranges, and it is determined that the binarized signal is a signal within the sound pressure range. A plurality of three-dimensional models are constructed by connecting the coordinates of the indicated values with a line and further extending the surface, and
Since the three-dimensional model is synthesized on one three-dimensional coordinate to obtain one three-dimensional image, even if the reflection level of the sound wave differs depending on the part of the target object, the three-dimensional image can be obtained in a sound pressure range corresponding to the reflection level. A model can be configured, and therefore, even when a target object having a different sound wave reflection level depending on a part of the object is captured, the entire image can be accurately configured as a three-dimensional image.

【0024】また、本発明によれば、予め画像として捉
えたい受信音圧範囲をN個の音圧範囲に分割しておくこ
とにより、従来装置のように音圧分布変動が起こる度
に、オペレータが3次元モデルを構成するための2値化
を行う閾値の最適値を探して変更するといった手間が省
け、操作性が向上する。
Also, according to the present invention, the received sound pressure range to be captured as an image is divided into N sound pressure ranges in advance, so that the operator can be controlled every time the sound pressure distribution changes as in the conventional apparatus. Saves the trouble of searching for and changing the optimum value of the threshold value for performing the binarization for forming the three-dimensional model, thereby improving the operability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の一実施例の構成図である。FIG. 2 is a configuration diagram of one embodiment of the present invention.

【図3】従来の一例の構成図である。FIG. 3 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

11 送受波器 12 垂直方向レベル検出処理部 13 水平方向レベル検出処理部 14 距離方向ため込み処理部 151〜15N、24、25、26 音圧範囲2値化処理
部 161〜16N、27、28、29 3次元面構成処理部 17 画像合成処理部 18 表示器 24、25、26 音圧範囲2値化処理部 170、221 3次元画像 220 目標物体 220a 目標物体前部の3次元モデル 220b 目標物体中部の3次元モデル 220c 目標物体後部の3次元モデル
11 transducer 12 vertically level detection processing section 13 horizontally level detection processing unit 14 distance direction entrapment processor 15 1 ~15 N, 24,25,26 sound pressure range binarization processing unit 16 1 ~ 16 N, 27, 28, 29 3D surface configuration processing unit 17 Image synthesis processing unit 18 Display 24, 25, 26 Sound pressure range binarization processing unit 170, 221 3D image 220 Target object 220a 3D model of target object front 220b 3D model of central part of target object 220c 3D model of rear part of target object

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水中で音波を放射し、目標物体からの反
射波を受信し、電気信号である受信信号に変換する送受
波器と、 前記受信信号から水平方向と垂直方向の2次元に分布し
た受信信号レベルを求めるレベル検出処理手段と、 前記レベル検出処理手段からの2次元の受信信号レベル
を距離方向にため込んでゆき、水平方向、垂直方向及び
距離の3次元に分布する受信レベルを構成する距離方向
ため込み処理手段と、 前記距離方向ため込み処理手段により構成された3次元
に分布する受信レベルのデータを入力信号として受け、
それぞれ互いに異なる予め設定された音圧範囲内の信号
は2値の一方の値で、前記音圧範囲以外の信号は前記2
値の他方の値に変換する複数の音圧範囲2値化処理手段
と、 前記複数の音圧範囲2値化処理手段からの出力2値信号
をそれぞれ入力信号として受け、前記音圧範囲内の信号
であることを示す前記一方の値の座標同士を線で結び、
更に面を張ることによって3次元モデルを構成する複数
の3次元面構成処理手段と、 前記複数の3次元面構成処理手段からの全部で複数の3
次元モデルを一つの3次元座標上に合成して一つの3次
元画像を得る画像合成処理手段とを有することを特徴と
する3次元水中音響画像処理装置。
1. A transducer that radiates sound waves in water, receives a reflected wave from a target object, and converts it into a received signal that is an electric signal, and two-dimensionally distributes the received signal in a horizontal direction and a vertical direction. Level detection processing means for obtaining the received signal level obtained, and receiving the two-dimensional reception signal levels from the level detection processing means in the distance direction to form reception levels distributed in three dimensions: horizontal, vertical and distance. Receiving, as an input signal, three-dimensionally distributed reception level data formed by the distance direction recession processing unit;
A signal within a preset sound pressure range different from each other is one of two values, and a signal outside the sound pressure range is a binary signal.
A plurality of sound pressure range binarization processing means for converting the sound pressure range into the other value; receiving the binary signals output from the plurality of sound pressure range binarization processing means as input signals; A line connects the coordinates of the one value indicating a signal,
A plurality of three-dimensional surface configuration processing means for forming a three-dimensional model by further extending the surface; and a plurality of three-dimensional surface configuration processing means from the plurality of three-dimensional surface configuration processing means.
A three-dimensional underwater acoustic image processing apparatus, comprising: image synthesis processing means for synthesizing a three-dimensional model on one three-dimensional coordinate to obtain one three-dimensional image.
【請求項2】 前記複数の音圧範囲2値化処理手段の音
圧範囲は、画像として捉えたい受信音圧範囲をN個(N
は2以上の整数)に分割したとき、N個の分割受信音圧
範囲のそれぞれに設定されていることを特徴とする請求
項1記載の3次元水中音響画像処理装置。
2. The sound pressure range of the plurality of sound pressure range binarization processing means includes N reception sound pressure ranges to be captured as an image (N
The three-dimensional underwater acoustic image processing apparatus according to claim 1, wherein when divided into two or more integers, each of the N divided reception sound pressure ranges is set.
【請求項3】 前記複数の3次元面構成処理手段は、そ
れぞれ固有の色又は模様の3次元モデルを構成すること
を特徴とする請求項1記載の3次元水中音響画像処理装
置。
3. The three-dimensional underwater acoustic image processing apparatus according to claim 1, wherein each of the plurality of three-dimensional surface configuration processing means configures a three-dimensional model of a unique color or pattern.
JP28993596A 1996-10-31 1996-10-31 3D underwater acoustic image processing device Expired - Fee Related JP2845222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28993596A JP2845222B2 (en) 1996-10-31 1996-10-31 3D underwater acoustic image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28993596A JP2845222B2 (en) 1996-10-31 1996-10-31 3D underwater acoustic image processing device

Publications (2)

Publication Number Publication Date
JPH10132931A JPH10132931A (en) 1998-05-22
JP2845222B2 true JP2845222B2 (en) 1999-01-13

Family

ID=17749659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28993596A Expired - Fee Related JP2845222B2 (en) 1996-10-31 1996-10-31 3D underwater acoustic image processing device

Country Status (1)

Country Link
JP (1) JP2845222B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310606B2 (en) * 2006-05-12 2007-12-18 Harris Corporation Method and system for generating an image-textured digital surface model (DSM) for a geographical area of interest
JP5089319B2 (en) * 2007-10-03 2012-12-05 古野電気株式会社 Underwater detector

Also Published As

Publication number Publication date
JPH10132931A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
JPH05249239A (en) Three-dimensional measurement and topography imaging sonar
US5598206A (en) Beamformed television
JP7262298B2 (en) UNDERWATER DETECTION DEVICE AND UNDERWATER DETECTION METHOD
JP2011143250A (en) Ultrasound system and method for setting scan angle, scan depth and scan speed
JP2006064524A (en) Sonar method and underwater image sonar
CN107132524A (en) Submarine target locus computational methods based on two identification sonars
JP2845222B2 (en) 3D underwater acoustic image processing device
US20090062653A1 (en) Ultrasound System And Method Of Forming Ultrasound Image
JP7051625B2 (en) Underwater detector and underwater detection method
KR20100049239A (en) Ultrasound system and method for performing high-speed scan conversion
Murino et al. Underwater 3D imaging by FFT dynamic focusing beamforming
CN111528901A (en) Four-dimensional ultrasonic imaging method, ultrasonic imaging method and related system
Kerstens et al. An optimized planar MIMO array approach to in-air synthetic aperture sonar
JP2000111646A (en) Doppler detecting display method and system thereof
JP3528580B2 (en) Object measuring device
KR100971424B1 (en) Ultrasound system and method for processing ultrasound image
JP7257271B2 (en) Underwater detection device and underwater detection method
CN102958446A (en) Ultrasound diagnostic device and medical image processing device
JPH1156840A (en) Projected imaging and ultrasonograph
CA1221760A (en) Ultrasound imaging with fm detection
CN115825968B (en) Side-scan image generation method and system and side-scan sonar device
US20090005681A1 (en) Ultrasound System And Method Of Forming Ultrasound Image
JP3110001B2 (en) Projection image forming method and ultrasonic imaging apparatus
JP5982953B2 (en) Acoustic target, transmission signal generation method and program
CN212693015U (en) Detection apparatus for three-dimensional distribution of feed bin material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20071030

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081030

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091030

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091030

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees