JP2841443B2 - Diesel engine - Google Patents
Diesel engineInfo
- Publication number
- JP2841443B2 JP2841443B2 JP1082480A JP8248089A JP2841443B2 JP 2841443 B2 JP2841443 B2 JP 2841443B2 JP 1082480 A JP1082480 A JP 1082480A JP 8248089 A JP8248089 A JP 8248089A JP 2841443 B2 JP2841443 B2 JP 2841443B2
- Authority
- JP
- Japan
- Prior art keywords
- control means
- overlap
- throttle valve
- engine
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、始動性の改善及び圧縮比の低減を目的とし
たディーゼル機関の改良に関する。Description: TECHNICAL FIELD The present invention relates to an improvement in a diesel engine for the purpose of improving startability and reducing a compression ratio.
(従来の技術) 一般に、ディーゼル機関には燃焼室に直接的に噴射供
給した燃料により燃焼を開始させるようにした直接噴射
式のものと、主燃焼室とは別に設けた渦流室等の副室に
燃料を供給して、副室で燃焼を開始させた燃焼ガスを主
燃焼室へと噴出させるようにした副室式のものとがあ
る。乗用車用などの小型機関では主として空気利用が良
好で燃焼性に優れる渦流室式が多く採用されている。(Prior Art) Generally, a diesel engine is of a direct injection type in which combustion is started by fuel directly injected and supplied to a combustion chamber, and a sub chamber such as a vortex chamber provided separately from the main combustion chamber. There is a sub-chamber type in which fuel is supplied to the sub-chamber and the combustion gas whose combustion is started in the sub-chamber is ejected to the main combustion chamber. In small engines for passenger cars and the like, a swirl chamber type, which mainly uses air well and has excellent combustibility, is often used.
ところで、渦流室式のものではシリンダ内に吸入した
空気を圧縮していく過程で、圧縮空気が噴孔を通って渦
流室に流入する際に熱的な損失が生じるので、渦流室で
の空気温度の上昇が鈍化するという現象が起こる。渦流
室での空気温度が十分に高められていないと燃料が自己
着火しないので始動性が悪化し、仮に始動しても低温時
には着火遅れ期間が長くて予混合燃焼割合が増大するの
でディーゼルノックによる振動や騒音を発する傾向があ
る。By the way, in the vortex chamber type, in the process of compressing the air sucked into the cylinder, a thermal loss occurs when the compressed air flows into the vortex chamber through the injection hole. A phenomenon occurs in which the temperature rise slows down. If the air temperature in the vortex chamber is not sufficiently raised, the self-ignition of the fuel will not cause self-ignition, and the startability will deteriorate. It tends to emit vibration and noise.
このため、一般に渦流室式機関では渦流室にグロープ
ラグを望ませて、始動前に予め燃焼室温度を高めておく
等の工夫がなされている。For this reason, in a swirl chamber type engine, generally, a glow plug is desired in the swirl chamber, and measures are taken to raise the temperature of the combustion chamber in advance before starting.
(発明が解決しようとする課題) しかしながら、このように燃焼室を予熱するようにし
ても、渦流室式で十分な圧縮空気温度を確保しようとす
ると、21〜23というような高圧縮比が要求される。これ
に対して、熱損失の少ない直接噴射式のものは圧縮比が
16〜18程度であるから、渦流室式のものは自己着火温度
を確保するために機構的な負担が大きなものとなってし
まう。(Problems to be Solved by the Invention) However, even if the combustion chamber is preheated in this way, a high compression ratio such as 21 to 23 is required in order to secure a sufficient compressed air temperature by the vortex chamber type. Is done. In contrast, the direct injection type with low heat loss has a low compression ratio.
Since it is about 16 to 18, the vortex chamber type requires a large mechanical load to secure the self-ignition temperature.
すなわち、このように圧縮比が高いと暖機後において
は実圧縮比が高くなりすぎてしまい、最高燃焼圧力とし
ては100kg/cm2を超えるような運転条件が発生するた
め、このような高燃焼圧に耐えうるようなピストン構
造、コンロッド、クランク系とする必要があり、それだ
け機関が重量化してしまう。また、このように運動部分
の重量が重く、かつ高圧縮比でフリクションが大きくな
るほど機関の回転上昇に伴うトルク損失が増大するの
で、同級の火花点火式機関が7000rpm以上まで使用可能
であるのに対して、ディーゼル機関では回転限界を5000
rpm程度と低く設定せざるを得ず、従って使用可能回転
域が非常に狭いものとなってしまう。(この種の技術に
関する公知文献としては、例えば昭和55年3月株式会社
山海堂発行「自動車工学全書5 ディーゼルエンジン」
第127〜133頁を参照。) 本発明はこのようなディーゼル機関に特有の問題点に
着目してなされたもので、低圧縮比で所要の自己着火温
度を得ると共に、低圧縮比化に伴って増大しがちな低負
荷運転時の燃焼騒音を抑制することを目的としている。That is, in this way the compression ratio is high after warm-up becomes too high actual compression ratio, the maximum combustion pressure for operating conditions exceeding 100 kg / cm 2 is generated, such a high combustion It is necessary to use a piston structure, a connecting rod, and a crank system that can withstand the pressure, and the engine becomes heavier. Also, as the weight of the moving part is heavy and the friction increases at a high compression ratio, the torque loss accompanying the rotation of the engine increases, so that a spark ignition type engine of the same class can be used up to 7000 rpm or more In contrast, a diesel engine has a rotation limit of 5000
The rpm must be set as low as about rpm, so that the usable rotation range becomes very narrow. (A well-known document concerning this kind of technology is, for example, “Automotive Engineering Complete Book 5 Diesel Engine” published by Sankaido Co., Ltd. in March 1980.
See pages 127-133. The present invention has been made in view of such a problem peculiar to a diesel engine. In addition to obtaining a required self-ignition temperature at a low compression ratio, a low-load operation that tends to increase with a low compression ratio is performed. The purpose is to suppress combustion noise at the time.
(課題を解決するための手段) 上記目的を達成するために本発明では、機関吸気通路
の途中に介装した絞り弁の開度を可変制御する絞り弁開
度制御手段と、吸排気弁のバルブオーバラップを可変制
御するオーバラップ制御手段と、機関始動条件を検出す
る始動検出手段と、始動検出手段の出力に基づき始動時
に前記絞り弁開度制御手段を駆動して絞り弁開度を減じ
ると共にオーバラップ制御手段を駆動してバルブオーバ
ラップを拡大する駆動制御手段とを備え、かつ前記駆動
制御手段は、始動完爆後の低負荷運転状態では前記始動
時のバルブオーバラップ及び絞り弁の開度を維持するよ
うに構成した。(Means for Solving the Problems) In order to achieve the above object, according to the present invention, a throttle valve opening control means for variably controlling the opening of a throttle valve provided in the middle of an engine intake passage; Overlap control means for variably controlling the valve overlap, start detection means for detecting an engine start condition, and throttle valve opening control means for driving the throttle valve opening control means at the time of starting based on the output of the start detection means to reduce the throttle valve opening. And a drive control means for driving the overlap control means to increase the valve overlap, and wherein the drive control means operates the valve overlap and the throttle valve at the time of the start in a low load operation state after the complete explosion of the start. It was configured to maintain the opening.
(作用) 始動時に絞り弁開度を減じると絞り弁下流の吸気管内
に強い負圧が発生する。このとき吸排気弁のオーバラッ
プを大きくしておくと、強い負圧がシリンダ内に作用し
て排気作用が減殺されるので、それだけシリンダ内の残
留ガス量が増大する。残留ガスは直前の圧縮行程で高温
化しているから、このように残留ガス量の多い状態でク
ランキングを数サイクル続けると燃焼室内の空気温度が
上昇して速やかに燃料の自己着火温度に到達し、またこ
の間に噴射された燃料は高温下で活性化しているので機
関は容易に完爆する。一方、このようにして燃焼室温度
上昇に残留ガスの保有する熱量が寄与する分だけ、圧縮
作用に依存した温度上昇量は少なくて済むので、それだ
け圧縮比の低減を図ることが可能になる。(Operation) If the throttle valve opening is reduced at the time of starting, a strong negative pressure is generated in the intake pipe downstream of the throttle valve. At this time, if the overlap between the intake and exhaust valves is increased, a strong negative pressure acts in the cylinder to reduce the exhaust action, so that the residual gas amount in the cylinder increases accordingly. Since the residual gas has become hot in the immediately preceding compression stroke, if cranking is continued for several cycles with such a large amount of residual gas, the air temperature in the combustion chamber rises and quickly reaches the self-ignition temperature of the fuel. Since the fuel injected during this time is activated at high temperatures, the engine easily explodes. On the other hand, since the amount of heat held by the residual gas contributes to the increase in the temperature of the combustion chamber in this way, the amount of temperature increase depending on the compression action can be reduced, and the compression ratio can be reduced accordingly.
また、始動完爆後も低負荷運転状態では絞り弁開度と
バルブオーバラップが始動時と同様に制御されるので、
低圧縮比化したときに燃焼室温度の低下で騒音が増大し
やすい低負荷運転状態において残留ガスにより燃焼室温
度を高く維持することができ、これにより予混合燃焼の
期間が短縮するため燃焼騒音を確実に低減することがで
きる。In addition, even after the complete explosion of the start, the throttle valve opening and the valve overlap are controlled in the low load operation state in the same way as at the start, so that
When the compression ratio is reduced, the combustion chamber temperature can be maintained high by the residual gas in a low load operation state where the noise tends to increase due to the decrease in the combustion chamber temperature. Can be reliably reduced.
(実施例) 以下、本発明の一実施例を図面に基づいて説明する。Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
第1図は制御系を含むディーゼル機関の全体構成を示
したものである。図において、1は渦流室式ディーゼル
機関、2はその吸気通路、3は燃料噴射ノズル、4は燃
料噴射ポンプ、5はグロープラグ、6はグローリレー、
7はグローランプ、8は回転センサ、9は水温センサ、
10は電源バッテリ、11はイグニッションスイッチ、12は
スタータスイッチである。13は前記吸気通路2の途中に
介装された絞り弁開度制御手段、14は機関1の吸排気弁
オーバラップを可変制御するオーバラップ制御手段、15
は前記各制御手段13,14を駆動する駆動制御手段であ
る。FIG. 1 shows the overall configuration of a diesel engine including a control system. In the figure, 1 is a swirl chamber type diesel engine, 2 is an intake passage, 3 is a fuel injection nozzle, 4 is a fuel injection pump, 5 is a glow plug, 6 is a glow relay,
7 is a glow lamp, 8 is a rotation sensor, 9 is a water temperature sensor,
Reference numeral 10 denotes a power supply battery, 11 denotes an ignition switch, and 12 denotes a starter switch. Reference numeral 13 denotes a throttle valve opening control means provided in the middle of the intake passage 2, reference numeral 14 denotes overlap control means for variably controlling the intake / exhaust valve overlap of the engine 1,
Is drive control means for driving the control means 13 and 14.
駆動制御手段15はマイクロコンピュータ等からなる総
合制御装置として構成されており、回転センサ8からの
機関回転速度信号N、水温センサ9からの水温信号Tw、
及び図示しない負荷センサからの要求負荷信号Accや燃
料温度信号Tf等に応じて燃料噴射量Q及び噴射時期ITを
決定して燃料噴射ポンプ4を制御するとともに、この実
施例での始動検出手段にあたるスタータスイッチ12のオ
ンにより発せられるスタート信号Ssから始動条件である
ことを判定して、絞り弁開度が減じ、かつバルブオーバ
ラップが拡大するように絞り弁開度制御手段13及びオー
バラップ制御手段14を駆動する。なお、機関冷却水温の
低い冷間始動時にあってはグローリレー6を介してグロ
ープラグ7を急速加熱し、燃焼室温度の上昇を促す。The drive control means 15 is configured as a general control device including a microcomputer or the like, and includes an engine rotation speed signal N from the rotation sensor 8, a water temperature signal Tw from the water temperature sensor 9,
A fuel injection amount Q and an injection timing IT are determined according to a required load signal Acc and a fuel temperature signal Tf from a load sensor (not shown) to control the fuel injection pump 4 and correspond to a start detection means in this embodiment. The start condition is determined from the start signal Ss issued by turning on the starter switch 12, and the throttle valve opening control means 13 and the overlap control means are determined so that the throttle valve opening decreases and the valve overlap increases. Drive 14 During a cold start with a low engine coolant temperature, the glow plug 7 is rapidly heated via the glow relay 6 to promote an increase in the temperature of the combustion chamber.
第2図と第3図に上記絞り弁開度制御手段13とオーバ
ラップ制御手段14の詳細を各々示す。2 and 3 show the details of the throttle valve opening control means 13 and the overlap control means 14, respectively.
第2図に示したように、絞り弁開度制御手段13は吸気
通路2の途中に介装された絞り弁20とその開度を制御手
段15からの信号に応じて変化させるステップモータ21と
からなっている。As shown in FIG. 2, the throttle valve opening control means 13 includes a throttle valve 20 provided in the middle of the intake passage 2 and a step motor 21 for changing the opening thereof in accordance with a signal from the control means 15. Consists of
また、オーバラップ制御手段14は、この場合吸気弁と
排気弁を駆動するカムを個々に設けたいわゆるDOHC形式
のシリンダヘッドに対応して、吸気弁駆動カムの位相を
通常時よりも進めることによりオーバラップを拡大する
ものとして構成されている。詳細には、第3図に示した
ように吸気弁駆動用のカムシャフト23の一端に環状のピ
ストン24を挾んでカムプーリ25が取り付けられており、
ピストン24はその一端面に作用する油圧とリターンスプ
リング26の張力とのつり合いに応じて、カムプーリ25と
カムシャフト23との間で軸方向に摺動するようになって
いる。ピストン24の内外はそれぞれ互いに異なる圧力角
を有するヘリカルスプライン27A,Bを介してカムシャフ
ト23とカムプーリ25とに係合しており、カムプーリ25と
カムシャフト23とは軸方向については相対運動が拘束さ
れているので、前述のようにしてピストン24が軸方向に
移動するとカムプーリ25の回りにカムシャフト23が相対
回転してその位相を進退させる。ピストン24を駆動する
油圧源としては機関の油圧ポンプを利用しており、制御
手段15からの信号に応動するソレノイド28を介して制御
弁29を開閉することにより、この制御油圧を加減するよ
うになっている。第4図はこのようにして制御される吸
気弁カムの位相変化とこれに伴うオーバラップの変化を
示したもので、始動時には、始動後の通常運転時に比較
してカム位相が進められるので、吸気弁の開いている期
間は一定であるが、オーバラップは拡大する。Further, in this case, the overlap control means 14 advances the phase of the intake valve drive cam more than usual, corresponding to a so-called DOHC type cylinder head in which cams for driving the intake valve and the exhaust valve are individually provided. It is configured to enlarge the overlap. More specifically, as shown in FIG. 3, a cam pulley 25 is attached to one end of a cam shaft 23 for driving an intake valve with an annular piston 24 interposed therebetween.
The piston 24 slides in the axial direction between the cam pulley 25 and the camshaft 23 according to the balance between the hydraulic pressure acting on one end surface of the piston 24 and the tension of the return spring 26. The inside and the outside of the piston 24 are engaged with the camshaft 23 and the cam pulley 25 via helical splines 27A and B having different pressure angles, and the relative movement of the cam pulley 25 and the camshaft 23 is restricted in the axial direction. As described above, when the piston 24 moves in the axial direction as described above, the camshaft 23 relatively rotates around the cam pulley 25 to move the phase forward and backward. As a hydraulic source for driving the piston 24, a hydraulic pump of the engine is used, and by opening and closing a control valve 29 via a solenoid 28 responsive to a signal from the control means 15, the control hydraulic pressure is adjusted. Has become. FIG. 4 shows a change in the phase of the intake valve cam controlled in this way and a change in the overlap therewith. At the time of starting, the cam phase is advanced compared to the normal operation after the starting. The period during which the intake valve is open is constant, but the overlap increases.
次に、上記構成における駆動制御手段15の制御動作及
びこれに伴う作用について、第5図に示した流れ図に沿
って説明する。なお、この制御に伴う各種制御量の時間
的変化を第6図に示す。Next, the control operation of the drive control means 15 in the above configuration and the operation associated therewith will be described with reference to the flowchart shown in FIG. FIG. 6 shows temporal changes of various control amounts accompanying this control.
まず、ステップ51では、以後の各種制御にあたって必
要な情報として、上記各センサの出力から回転速度N、
負荷Acc、冷却水温度Tw、燃料温度Tf、スタータ信号Ss
を読み込む。次に、ステップ52ではスタータ信号Ssがオ
ンか否かを検出し、オンであれば始動クランキング時で
あると判定してステップ53以下の始動時の制御に移り、
オフであればステップ57以下の始動完了後の制御に移
る。First, in step 51, as information necessary for various subsequent controls, rotation speed N,
Load Acc, cooling water temperature Tw, fuel temperature Tf, starter signal Ss
Read. Next, in step 52, it is detected whether or not the starter signal Ss is on.If the starter signal Ss is on, it is determined that the starting cranking is being performed, and the process proceeds to the starting control of step 53 and subsequent steps.
If it is off, the control moves to step 57 and subsequent steps after the start is completed.
ステップ53以下の始動時の制御では、まず完爆したか
否かを判定する。これは、例えば機関1の燃焼室に面し
て設けた着火センサ16で燃焼状態を光学的に監視するこ
とにより判定する。なお、始動するとクランキング時よ
りも回転速度が急激に上昇するので、この回転上昇を回
転センサ8からの信号により検出して始動完爆を判定す
ることもできる。そのステップで完爆と判定された場合
はステップ57以下の始動完了後の制御に移る。In the starting control after step 53, it is first determined whether or not a complete explosion has occurred. This is determined, for example, by optically monitoring the combustion state with an ignition sensor 16 provided facing the combustion chamber of the engine 1. When the engine is started, the rotation speed is increased more rapidly than at the time of cranking. Therefore, it is possible to detect the increase in the rotation based on a signal from the rotation sensor 8 to determine the complete explosion of the engine. If it is determined in that step that the explosion is complete, the control moves to step 57 and the subsequent steps after the completion of the start.
ステップ53で完爆していないと判定されたときは、次
のステップ54において、絞り弁開度が減少するように絞
り弁開度制御手段13に駆動信号を出力すると同時に、バ
ルブオーバラップが拡大するようにオーバラップ制御手
段14に駆動信号を出力する。その後、ステップ55ではク
ランキングによるクランク軸の積算回転数を算出し、第
6図に示したように始動クランキング開始後数回転の間
に燃料噴射量を減らして完爆前に燃料量が過剰にならな
いようにしている。なお、このときの始動時燃料噴射量
Qsと噴射時期Itsは、それぞれ始動に適した量として予
め決められている基本値を冷却水温度Tw及び燃料温度Tf
により補正して得られたものである。そして、次のステ
ップ56において、前記QsとItsをそれぞれ最終的な燃料
噴射量Q、燃料噴射時期ITとしてセットした後、ステッ
プ60にてこれらの信号を燃料噴射ポンプ4に出力して1
回の制御ルーチンを終了する。この始動時制御は、スタ
ータ信号Ssがオンで始動操作が継続され、かつステップ
53で未完爆であると判定されているあいだ繰り返され
る。When it is determined in step 53 that the explosion has not been completed, in step 54, a drive signal is output to the throttle valve opening control means 13 so as to decrease the throttle valve opening, and at the same time, the valve overlap increases. A drive signal is output to the overlap control means 14 so as to perform the operation. After that, in step 55, the cumulative number of revolutions of the crankshaft by cranking is calculated, and as shown in FIG. 6, the fuel injection amount is reduced during several revolutions after the start cranking is started, and the fuel amount becomes excessive before the complete explosion. I try not to be. The starting fuel injection amount at this time
The Qs and the injection timing Its are based on basic values that are predetermined as amounts suitable for starting, respectively, the cooling water temperature Tw and the fuel temperature Tf.
This is obtained by correcting with. Then, in the next step 56, the aforementioned Qs and Its are set as the final fuel injection amount Q and the fuel injection timing IT, respectively. In step 60, these signals are output to the fuel injection pump 4 to
The control routine is ended. In this start control, the start operation is continued when the starter signal Ss is on, and
It is repeated while it is determined that the explosion is not completed in 53.
一方、ステップ52または53にて始動完爆後であると判
定されたときには、次にステップ57にて機関がアイドリ
ングを含む所定の低負荷運転状態であるか否かが、例え
ば負荷Accを参照することで判定される。このとき低負
荷運転状態であればステップ57aにて始動時と同様に絞
り弁開度を小さく、バルブオーバラップを大きく保つ。
これに対して、始動完爆後に発進等により大きな負荷が
要求された場合にはステップ57bにて絞り弁開度を増大
すると共にバルブオーバラップを低減して常用域での運
転に適した運転性能を確保する。次に、ステップ58にて
始動後の燃料噴射量Qaと噴射時期ITaを算出し、これを
ステップ59にて最終適な燃料噴射量Q、噴射時期ITとし
てセットした後、ステップ60の噴射処理へと進む。な
お、このときのQaとITaは、それぞれ回転速度Nと負荷A
ccとから所定値を付与するように形成されたテーブルの
検索処理、あるいは計算式の演算処理により求めた基本
値を冷却水温度Tw及び燃料温度Tfにより補正したもので
ある。On the other hand, if it is determined in step 52 or 53 that the engine is after the complete explosion, then it is determined in step 57 whether the engine is in a predetermined low-load operation state including idling, for example, by referring to the load Acc. It is determined by At this time, if the engine is in the low load operation state, the throttle valve opening is made small and the valve overlap is kept large in the same manner as at the start in step 57a.
On the other hand, if a large load is required due to starting or the like after the complete explosion of the engine, the throttle valve opening is increased and the valve overlap is reduced in step 57b, so that operation performance suitable for operation in a normal range is achieved. To secure. Next, in step 58, the fuel injection amount Qa after the start and the injection timing ITa are calculated, and these are set as the final appropriate fuel injection amount Q and the injection timing IT in step 59. And proceed. Note that Qa and ITa at this time are the rotational speed N and the load A, respectively.
The basic value obtained by a search process of a table formed to give a predetermined value from cc or a calculation process of a calculation formula is corrected by the coolant temperature Tw and the fuel temperature Tf.
このような制御によれば、クランキング開始とともに
絞り弁の効果により吸気管内の負圧が増大していき、バ
ルブオーバラップが拡大されているために残留ガス割合
は増大してゆく。この間、残留ガスは未燃混合気である
ので、過剰供給にならないように燃料の噴射量は上述し
た通りクランキング回転の積算に基づきある程度のとこ
ろまで低減されてゆく。残留ガス中に含まれている燃料
は圧縮膨張を受けると高温下で化学的に活性化し、この
残留ガス割合が増えると再び圧縮される活性化燃料が増
えるため数サイクルで自己着火に至る。これにより圧縮
された吸気の全体の温度が上昇するため、噴射された燃
料も着火し完爆する。According to such control, the negative pressure in the intake pipe increases due to the effect of the throttle valve at the start of cranking, and the ratio of residual gas increases due to the enlarged valve overlap. During this time, since the residual gas is an unburned gas mixture, the fuel injection amount is reduced to some extent based on the integration of the cranking rotation as described above so as not to be supplied excessively. When the fuel contained in the residual gas undergoes compression and expansion, it is chemically activated at a high temperature, and when the proportion of the residual gas increases, the amount of the activated fuel that is compressed again increases, leading to self-ignition in several cycles. As a result, the overall temperature of the compressed intake air increases, so that the injected fuel also ignites and completely explodes.
このようにして始動完爆すると、完爆と同時に筒内の
未燃混合気は減少し、それだけ次回の残留ガスは既燃ガ
スで大部分が占められることになるから、上記ステップ
58では燃料噴射量を増加させて機関回転を上昇させるよ
うにしている。When the complete explosion is started in this way, the unburned air-fuel mixture in the cylinder decreases at the same time as the complete explosion, and the next time the residual gas is occupied mostly by burned gas.
In 58, the engine speed is increased by increasing the fuel injection amount.
一方、始動完爆後も機関がアイドリング等の低負荷運
転状態にあるときには始動時と同様に絞り弁開度は小さ
く、バルブオーバラップは大きく保たれるので、残留ガ
スにより燃焼室温度を高温化しておくことが可能であ
る。これにより、特に低圧縮比化した場合に起こりがち
な燃焼室温度の低下に伴う予混合燃焼割合の増加による
燃焼騒音の増大を回避して、静粛な運転を行わせること
ができる。On the other hand, when the engine is in a low-load operation state such as idling even after the start-up complete explosion, the throttle valve opening is small and the valve overlap is kept large as at start-up, so the residual gas increases the combustion chamber temperature. It is possible to keep. As a result, it is possible to avoid a rise in combustion noise due to an increase in the premixed combustion ratio due to a decrease in the temperature of the combustion chamber, which tends to occur particularly when the compression ratio is reduced, and to perform a quiet operation.
また、当初に説明したようにディーゼル機関における
圧縮空気温度の損失は主として渦流室式機関で顕著にな
るのであるが、直接噴射式機関においても、特に小型の
ものほど熱的損失が大きくなることから、本発明は直接
噴射式機関に適用しても大きな効果が得られる。Also, as explained earlier, the loss of compressed air temperature in a diesel engine is remarkable mainly in a swirl chamber type engine. Even if the present invention is applied to a direct injection type engine, a great effect can be obtained.
(発明の効果) 以上説明した通り、本発明によればディーゼル機関の
低圧縮比化が可能であるので、機関の運動部分の重量及
びフリクションロスを減らして出力、燃費、回転限界な
どの諸性能を総合的に改善することができる。また、低
圧縮比化により最高燃焼圧力が低減するので、NOxの発
生が少ない優れた排気エミッション性能が得られると共
に、低圧縮比化に伴い増大しがちな低負荷運転時の燃焼
騒音を抑制することができる。(Effects of the Invention) As described above, according to the present invention, it is possible to reduce the compression ratio of a diesel engine, so that the weight and friction loss of the moving parts of the engine are reduced, and various performances such as output, fuel consumption, and rotation limit are performed. Can be comprehensively improved. In addition, since the maximum combustion pressure is reduced by reducing the compression ratio, excellent exhaust emission performance with less generation of NOx is obtained, and the combustion noise during low load operation, which tends to increase with the reduction of the compression ratio, is suppressed. be able to.
第1図は本発明の一実施例の全体構成図、第2図はその
絞り弁制御手段の詳細図、第3図は同じくオーバラップ
制御手段の詳細図である。第4図はオーバラップの変化
を説明するための説明図、第5図は実施例の制御系の作
動内容を表す流れ図、第6図は前記制御系の作動に伴う
各種制御量の変化を機関回転との関係において示したタ
イミングチャートである。 1……ディーゼル機関、2……吸気通路、3……噴射ノ
ズル、4……燃料噴射ポンプ、8……回転センサ、9…
…水温センサ、12……スタータスイッチ、13……絞り弁
開度制御手段、14……オーバラップ制御手段、15……駆
動制御手段。FIG. 1 is an overall configuration diagram of one embodiment of the present invention, FIG. 2 is a detailed view of the throttle valve control means, and FIG. 3 is a detailed view of the overlap control means. FIG. 4 is an explanatory diagram for explaining a change in the overlap, FIG. 5 is a flowchart showing the operation contents of the control system of the embodiment, and FIG. 6 is a diagram showing changes in various control amounts accompanying the operation of the control system. 5 is a timing chart showing a relationship with rotation. 1 ... Diesel engine, 2 ... Intake passage, 3 ... Injection nozzle, 4 ... Fuel injection pump, 8 ... Rotation sensor, 9 ...
... water temperature sensor, 12 ... starter switch, 13 ... throttle valve opening control means, 14 ... overlap control means, 15 ... drive control means.
Claims (1)
度を可変制御する絞り弁開度制御手段と、吸排気弁のバ
ルブオーバラップを可変制御するオーバラップ制御手段
と、機関始動条件を検出する始動検出手段と、始動検出
手段の出力に基づき始動時に前記絞り弁開度制御手段を
駆動して絞り弁開度を減じると共にオーバラップ制御手
段を駆動してバルブオーバラップを拡大する駆動制御手
段とを備え、かつ前記駆動制御手段は、始動完爆後の低
負荷運転状態では前記始動時のバルブオーバラップ及び
絞り弁の開度を維持するように構成したことを特徴とす
るディーゼル機関。A throttle valve opening control means for variably controlling an opening of a throttle valve disposed in the middle of an engine intake passage; an overlap control means for variably controlling a valve overlap of intake and exhaust valves; Start detection means for detecting a condition, and the throttle valve opening control means is driven at the time of starting based on the output of the start detection means to reduce the throttle valve opening degree and to drive the overlap control means to enlarge the valve overlap. A drive control unit, and wherein the drive control unit is configured to maintain the valve overlap and the opening of the throttle valve at the time of the start in a low-load operation state after a complete combustion of the start. organ.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1082480A JP2841443B2 (en) | 1989-03-31 | 1989-03-31 | Diesel engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1082480A JP2841443B2 (en) | 1989-03-31 | 1989-03-31 | Diesel engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02259232A JPH02259232A (en) | 1990-10-22 |
JP2841443B2 true JP2841443B2 (en) | 1998-12-24 |
Family
ID=13775680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1082480A Expired - Lifetime JP2841443B2 (en) | 1989-03-31 | 1989-03-31 | Diesel engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2841443B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5632238A (en) * | 1994-07-18 | 1997-05-27 | Honda Giken Kogyo Kabushiki Kaisha | Control system for an internal combustion engine with associated decompression device |
SE544581C2 (en) * | 2020-06-24 | 2022-07-26 | Scania Cv Ab | Vibration Reduction in Internal Combustion Engine |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58148241A (en) * | 1982-02-27 | 1983-09-03 | Hino Motors Ltd | Starting support device for internal-combustion engine |
JPS6014905U (en) * | 1983-07-11 | 1985-01-31 | 株式会社 パジコ | Rolling stick |
-
1989
- 1989-03-31 JP JP1082480A patent/JP2841443B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02259232A (en) | 1990-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5741352B2 (en) | Start control device for compression self-ignition engine | |
US7509932B2 (en) | Control apparatus for controlling internal combustion engines | |
US7159556B2 (en) | Control apparatus and method for internal combustion engine | |
JP3881243B2 (en) | Premixed charge compression ignition engine with variable speed SOC control and method of operation | |
JP5786679B2 (en) | Start control device for compression self-ignition engine | |
JP5919697B2 (en) | Diesel engine start control device | |
KR100829324B1 (en) | Multistage fuel-injection internal combustion engine | |
JP5958416B2 (en) | Start control device for premixed compression ignition type engine | |
JP2004197745A (en) | Method for operating multi-cylinder type internal combustion engine with variable compression ratio | |
US7406937B2 (en) | Method for operating an internal combustion engine | |
JP2004036429A (en) | Control device for internal combustion engine | |
GB2243664A (en) | Valve timing adjusting device | |
JP3257430B2 (en) | Exhaust heating device | |
JPH11280522A (en) | Start control device for cylinder injection engine | |
JP2005030236A (en) | Control device of vehicle | |
JP2000145510A (en) | Injection control method of direct injection internal combustion engine | |
JP2841443B2 (en) | Diesel engine | |
JP4670644B2 (en) | Control device for internal combustion engine | |
WO2019043808A1 (en) | Control method for internal combustion device, and control device for internal combustion engine | |
JP5935275B2 (en) | Start control device for compression self-ignition engine | |
JP5831168B2 (en) | Start control device for compression self-ignition engine | |
JP4341475B2 (en) | Engine starter | |
JP5429148B2 (en) | Premixed compression self-ignition engine | |
JP4466498B2 (en) | Ignition timing control device for internal combustion engine | |
JP7499164B2 (en) | Control method and control device for internal combustion engine |