JP2838586B2 - Adhesive molding and plate bonding method - Google Patents

Adhesive molding and plate bonding method

Info

Publication number
JP2838586B2
JP2838586B2 JP2310639A JP31063990A JP2838586B2 JP 2838586 B2 JP2838586 B2 JP 2838586B2 JP 2310639 A JP2310639 A JP 2310639A JP 31063990 A JP31063990 A JP 31063990A JP 2838586 B2 JP2838586 B2 JP 2838586B2
Authority
JP
Japan
Prior art keywords
adsorbent
plate
powder
binder
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2310639A
Other languages
Japanese (ja)
Other versions
JPH04180978A (en
Inventor
洋一 藤井
栄治 田中
健 谷井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURARE KEMIKARU KK
Original Assignee
KURARE KEMIKARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURARE KEMIKARU KK filed Critical KURARE KEMIKARU KK
Priority to JP2310639A priority Critical patent/JP2838586B2/en
Publication of JPH04180978A publication Critical patent/JPH04180978A/en
Application granted granted Critical
Publication of JP2838586B2 publication Critical patent/JP2838586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸着剤成型体と板状物を張り合わせる方法に
関するもので、更に詳しく述べれば、吸着性能を低下さ
せることなく吸着剤成型体の強度を著しく向上しうる方
法である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of bonding an adsorbent molded article and a plate-like material, and more specifically, a method of adsorbing molded article without lowering adsorption performance. This is a method that can significantly improve the strength.

〔従来の技術〕 吸着剤成型体の強度を向上するため、板状物と積層す
ることは従来からなされている。この際通常はバインダ
ーとして酢ビエマルジョン系接着剤や、ゴム系接着剤が
使用されているが、吸着剤成型体の表面が接着剤で被覆
されるため吸着剤の平衡吸着量及び吸着速度の低下が大
きくまた板の接着強度も小さいものしか得られなかっ
た。
[Prior Art] In order to improve the strength of an adsorbent molded body, lamination with a plate-like material has been conventionally performed. At this time, a vinyl acetate emulsion-based adhesive or a rubber-based adhesive is usually used as a binder, but since the surface of the adsorbent molded body is covered with the adhesive, the equilibrium adsorption amount and the adsorption speed of the adsorbent decrease. And the adhesive strength of the plate was low.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記のラテックスやエマルジョン接着剤を用いる方法
では、吸着剤の性能低下、張りつけた板の接着強度が小
さいことなど問題があり、吸着剤の性能低下を伴わず接
着強度が大きい方法が求められていた。本発明は少量の
バインダーで板状物を強固に接着し、吸着材の性能低下
を伴わずに吸着剤成型体の強度を向上する方法を提供す
るものである。
In the method using the above latex or emulsion adhesive, there are problems such as a decrease in the performance of the adsorbent and a small adhesive strength of the attached plate, and a method of increasing the adhesive strength without reducing the performance of the adsorbent has been required. . The present invention provides a method for firmly adhering a plate-like material with a small amount of a binder and improving the strength of a molded adsorbent without deteriorating the performance of the adsorbent.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者等はプラスチックバンインダーとして微粉末
を使用して吸着剤成型体と板状物を吸着すれば、ラテッ
クス接着剤を使用した場合に較べて吸着容量の低下がは
るかに少ないことに着目し、またバインダーへの繊維状
補強材の混合について研究した結果本発明に到達した。
The present inventors have paid attention to the fact that if the adsorbent molded body and the plate-like material are adsorbed by using fine powder as a plastic band binder, the adsorption capacity is reduced much less than when a latex adhesive is used. As a result of studying the mixing of a fibrous reinforcing material with a binder, the present invention has been achieved.

すなわち、吸着剤成型体と板状補強材を接着するに際
し、粒子径1〜50μmのプラスチック粉末及び要すれば
繊維状補強材をバインダーとして加圧接着することを特
徴とする吸着剤成型体と板の接着方法である。
That is, when adhering the adsorbent molded body and the plate-like reinforcing material, the adsorbent molded body and the plate are characterized in that the adsorbent molded body and the plate-like reinforcing material are pressure-bonded using a plastic powder having a particle diameter of 1 to 50 μm and, if necessary, a fibrous reinforcing material as a binder. Is a bonding method.

以下本発明について詳しく説明する。 Hereinafter, the present invention will be described in detail.

本発明に用いる板状補強材としては金属、プラスチッ
ク、紙等からなる厚み0.2〜5.0mmのものが使用可能であ
るが、この範囲に限定されるものではない。
As the plate-like reinforcing material used in the present invention, those having a thickness of 0.2 to 5.0 mm made of metal, plastic, paper or the like can be used, but are not limited to this range.

本発明に用いるプラスチック微粉末は、粒子径が1〜
50μmの微粉末である必要がある。微粉末の粒子径が1
μm以下の場合には、均一な塗布が可能であるが、密度
の高い塗布が困難となり、板状物を接着した場合充分な
強度が得られない。又粒子径が50μmを越えると粒子と
成型体または板状物との接着面積が小さくなるため、塗
布量を増加しないと充分な強度が得られない。粒子径は
10〜30μmでプラスチックとしては熱可塑性樹脂、熱硬
化性樹脂、親水性樹脂、導電性樹脂等が使用可能であ
る。
The plastic fine powder used in the present invention has a particle diameter of 1 to 1.
It must be a fine powder of 50 μm. Particle size of fine powder is 1
In the case of μm or less, uniform coating is possible, but high density coating becomes difficult, and when a plate-like material is bonded, sufficient strength cannot be obtained. On the other hand, if the particle diameter exceeds 50 μm, the adhesion area between the particles and the molded product or plate-like material becomes small, so that sufficient strength cannot be obtained unless the coating amount is increased. The particle size is
Thermoplastic resins, thermosetting resins, hydrophilic resins, conductive resins, and the like can be used as plastics with a thickness of 10 to 30 μm.

熱可塑性樹脂としては、ポリエチレン、ポリプロピレ
ン、ABS(アクリロニトリルブタジエンスチレン)、PET
(ポリエチレンテレフタレート)、ナイロン、PBT(ポ
リブチレンテレフタレート)、エチレンアクリル樹脂、
PMMA(ポリメチルメタクリル酸メチル)、メゾフェース
ピッチ等が使用可能である。
As thermoplastic resin, polyethylene, polypropylene, ABS (acrylonitrile butadiene styrene), PET
(Polyethylene terephthalate), nylon, PBT (polybutylene terephthalate), ethylene acrylic resin,
PMMA (polymethyl methacrylate), mesoface pitch, and the like can be used.

熱硬化性樹脂としてはフラン樹脂、フェノール樹脂が
使用可能である。親水性樹脂としてはポリビニルアルコ
ール樹脂、エバール樹脂が使用可能である。また導電性
樹脂としてはポリビニルピロール、ポリアセチレン等が
使用可能である。
As the thermosetting resin, a furan resin and a phenol resin can be used. As the hydrophilic resin, a polyvinyl alcohol resin or an eval resin can be used. As the conductive resin, polyvinyl pyrrole, polyacetylene, or the like can be used.

これらの樹脂は使用目的に応じて使い分けるのが好ま
しい。
It is preferable to use these resins properly according to the purpose of use.

本発明の接着方法は接着強度を向上させるため要すれ
ば繊維状補強材を使用することが出来る。繊維状補強材
としては単繊維では直径0.1〜30μmで長さ1〜10mmの
繊維状でポリエステル、ポリエチレン、ポリプロピレ
ン、アルミニウム、ステンレス、ガラスなどの材料が使
用可能である。
In the bonding method of the present invention, a fibrous reinforcing material can be used if necessary to improve the bonding strength. As the fibrous reinforcing material, monofilament fibers having a diameter of 0.1 to 30 μm and a length of 1 to 10 mm can be used, such as polyester, polyethylene, polypropylene, aluminum, stainless steel, and glass.

ガラスや金属の繊維ではバインダーのプラスチックと
なじみが悪いので、予めプラスチックをコーティングす
るとなじみが良くなり強度が向上する。
Glass and metal fibers are not well compatible with the binder plastic, so coating the plastic in advance improves the familiarity and improves the strength.

板状吸着剤としては吸着剤を適当なバインダーを用い
て板状或いはシート状に成型したものであれば何でも使
用出来る。ここで、吸着剤としては活性炭、ゼオライ
ト、シリカゲル、アルミナゲル等が使用可能である。ま
た吸着剤の形状は破砕状、ペレット状、顆粒状、或いは
繊維状、フェルト状、織物状、シート状等に成型したも
のが使用可能である。プラスチックバインダーを用いて
成型したものが特に好ましい。
As the plate-shaped adsorbent, any one can be used as long as the adsorbent is formed into a plate or sheet using an appropriate binder. Here, activated carbon, zeolite, silica gel, alumina gel and the like can be used as the adsorbent. The shape of the adsorbent may be crushed, pellet, granular, fibrous, felt, woven, sheet or the like. Those molded using a plastic binder are particularly preferred.

接着に用いるバインダーの量としては補強材表面を被
覆できる程度で充分である。シートは板状物に対して5
〜40g/m2が好ましい。
The amount of the binder used for bonding is sufficient to cover the surface of the reinforcing material. The sheet is 5
~40g / m 2 is preferred.

本発明の接着方法について説明する。 The bonding method of the present invention will be described.

プラスチック微粉末の板状物への塗布の方法として
は、乾式または湿式のドクターブレード法や表面散布法
により容易に行うことが出来る。プラスチック微粉末を
塗布した板の上に繊維状補強材を置き、プラスチックの
融点より5℃以上高い温度で圧力0.1〜5.0kg/cm2で加圧
することにより、吸着剤成型体と板状物の接着にはラテ
ックスを使用することもできるが、プラスチック粉末に
較べて相当使用量を多くする必要がある。ラテックスを
使用した場合成型体の吸着量の低下がプラスチック粉末
をバインダーとした場合に較べて大きいが、これはラテ
ックスが吸着剤の内部に浸透して吸着剤の表面を被覆す
るが、プラスチック粉末は板と粉末或いは吸着剤と粉末
の接触した極く一部の部分が溶融接着するのみで、吸着
剤の内部に浸透してその表面を被覆することがないため
と考えられる。
The method of applying the plastic fine powder to the plate-like material can be easily performed by a dry or wet doctor blade method or a surface spraying method. The fibrous reinforcing material is placed on a plate coated with plastic fine powder, and pressed at a pressure of 0.1 to 5.0 kg / cm 2 at a temperature higher than the melting point of the plastic by 5 ° C. or more, so that the adsorbent molded body and the plate Latex can be used for bonding, but it is necessary to use a considerably larger amount than plastic powder. When latex is used, the decrease in the amount of adsorption of the molded body is larger than when plastic powder is used as a binder, but this is because latex penetrates into the adsorbent and coats the surface of the adsorbent, but plastic powder is It is considered that only a very small portion of the plate and the powder or the adsorbent and the powder in contact with each other is melt-bonded only, and does not penetrate into the adsorbent to cover the surface.

バインダーとしてプラスチック粉末を使用すると、剛
性が高くその他の機械的性質が優れている。接着面に繊
維状補強材を混入させるとこれらの機械的性質を一層向
上させることが出来る。
When plastic powder is used as the binder, the rigidity is high and other mechanical properties are excellent. By mixing a fibrous reinforcing material into the bonding surface, these mechanical properties can be further improved.

〔発明の効果〕〔The invention's effect〕

本発明の板状物で補強した吸着剤成型体は、バインダ
ーとしてプラスチック粉末を使用しているため、吸着容
量の低下が少なく剛性等機械的性質が優れているため、
機械や装置の内部に部品として組み込んで使用する用途
に適している。
Since the adsorbent molded body reinforced with the plate-like material of the present invention uses plastic powder as a binder, a decrease in the adsorption capacity is small and the mechanical properties such as rigidity are excellent,
It is suitable for use as a part incorporated into a machine or device.

更に、接着面に繊維状補強剤を混入すれば機械的性質
を大幅に向上させることが出来る。
Furthermore, if a fibrous reinforcing agent is mixed into the bonding surface, the mechanical properties can be greatly improved.

〔実施例〕〔Example〕

以下実施例を挙げて本発明を更に具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.

実施例1 厚さ1.0mmの木製板の上に、中心粒子径20μmのポリ
エチレン粉末を坪量20g/m2、及び直径10μmのポリプロ
ピレン繊維を坪量0.5g/m2となるように乾式ドクターブ
レード法で塗布した。その上に20〜40メッシュの活性炭
100部にバインダーとしてポリエチレン粉末5部を加え
て成型した、5×100×100mmの吸着体を置き、120℃、
0.2kg/cm2の圧力で成型した。冷却後、ベンゼン吸着量
及び剥離強度を測定した。
Example 1 A dry doctor blade on a wooden plate having a thickness of 1.0 mm was prepared so that polyethylene powder having a center particle diameter of 20 μm had a basis weight of 20 g / m 2 and polypropylene fiber having a diameter of 10 μm had a basis weight of 0.5 g / m 2. Method. 20-40 mesh activated carbon on it
A 5 × 100 × 100 mm adsorbent molded by adding 5 parts of polyethylene powder as a binder to 100 parts was placed at 120 ° C.
It was molded at a pressure of 0.2 kg / cm 2 . After cooling, the benzene adsorption amount and peel strength were measured.

その結果、ベンゼン吸着量は35wt%、木製板の剥離強
度は5.3kg/cm2であった。
As a result, the benzene adsorption amount was 35 wt%, and the peel strength of the wooden board was 5.3 kg / cm 2 .

比較例1 実施例1において、ポリエチレン粉末を塗布する代わ
りに、酢ビエマルジョン(固形分)を坪量20g/m2と直径
10μmのポリプロピレン繊維を坪量0.5g/m2となるよう
に塗布した他、同一条件で試験した。
Comparative Example 1 In Example 1, instead of applying a polyethylene powder, a vinyl acetate emulsion (solid content) was weighed at 20 g / m 2 and the diameter was 20 g / m 2.
A 10 μm polypropylene fiber was applied to a basis weight of 0.5 g / m 2 and tested under the same conditions.

その結果、ベンゼン吸着量は21wt%、木製板の剥離強
度は0.2kg/cm2であった。
As a result, the amount of benzene adsorbed was 21 wt%, and the peel strength of the wooden board was 0.2 kg / cm 2 .

実施例2 厚さ0.5mmのアルミ板に粒子径30μmのポリプロピレ
ン粉末を坪量40g/m2、直径10μmで長さ2mmのガラス繊
維を坪量0.8g/m2になるように散布し、その上に直径4mm
の活性炭からなる30×500×300mmの吸着剤ブロックを置
き、150℃で、圧力0.5kg/cm2で成型した。
Example 2 A polypropylene powder having a particle diameter of 30 μm was sprinkled onto a 0.5 mm-thick aluminum plate so that the basis weight was 40 g / m 2 , and glass fiber having a diameter of 10 μm and a length of 2 mm was spun to a basis weight of 0.8 g / m 2. 4mm diameter on top
A 30 × 500 × 300 mm adsorbent block made of activated carbon was placed and molded at 150 ° C. under a pressure of 0.5 kg / cm 2 .

その結果、ブロックの破壊強度は60kg/cm2であった。As a result, the breaking strength of the block was 60 kg / cm 2 .

比較例2 実施例2において、粒子径0.1μmのポリプロピレン
粉末を使用した他、同一条件で試験した。
Comparative Example 2 In Example 2, a test was performed under the same conditions except that polypropylene powder having a particle diameter of 0.1 μm was used.

このアルミ板を接着したブロックの破壊強度は15kg/c
m2であった。
The breaking strength of the block to which this aluminum plate is bonded is 15kg / c
It was m 2.

実施例3 底面200×200mm、高さ40mmの型枠の底に厚さ0.3mmの
ステンレス板を置き、その上に粒子径30μmのポリプロ
ピレン粉末を坪量40g/m2となるように散布した。更にこ
の型枠内に、粒子径10μmのヤシ殻活性炭50重量部と粒
子径5μmのゼオライトMS−5A、50重量部と中心粒子径
20μmのポリエチレン30重量部の均一混合物を充填し、
120℃で30分間、0.5kg/cm2で成型した。
Example 3 A stainless steel plate having a thickness of 0.3 mm was placed on the bottom of a mold frame having a bottom surface of 200 × 200 mm and a height of 40 mm, and polypropylene powder having a particle diameter of 30 μm was sprayed on the stainless plate so as to have a basis weight of 40 g / m 2 . Further, 50 parts by weight of coconut shell activated carbon having a particle diameter of 10 μm, zeolite MS-5A having a particle diameter of 5 μm, 50 parts by weight, and
Fill a homogeneous mixture of 30 parts by weight of 20 μm polyethylene,
It was molded at 120 ° C. for 30 minutes at 0.5 kg / cm 2 .

得られたブロックの破壊強度は350kg/cm2であった。The breaking strength of the obtained block was 350 kg / cm 2 .

実施例4 底面100×300mm、高さ10mmの第1図に示したように成
型された活性炭粉末とポリエチレン微粉末からなる3次
元フィルターの周囲に、予め粒子径30μmのポリプロピ
レン粉末を坪量40g/m2で散布した厚さ0.3mmのステンレ
ス板を置き、150℃に加熱して圧着成型した。同様に他
の3辺にも接着し、周囲をステンレス板で補強した3次
元フィルターを得た。
Example 4 A polypropylene powder having a particle diameter of 30 μm was previously weighed to a basis weight of 40 g / around a three-dimensional filter formed of activated carbon powder and polyethylene fine powder having a base of 100 × 300 mm and a height of 10 mm as shown in FIG. A stainless steel plate having a thickness of 0.3 mm sprayed with m 2 was placed, heated to 150 ° C., and compression molded. Similarly, a three-dimensional filter was adhered to the other three sides and the periphery was reinforced with a stainless steel plate.

このフィルターの圧縮強度は5.3kg/cm2であった。こ
こで、3次元フィルターとは通常のフィルタークロスの
ようにろ過機能を有する部分が2次元のシート状でな
く、厚さのあるフィルター、例えばハニカム成型体のよ
うな構造を有するフィルターを言う。またステンレス板
で補強する前のフィルターの圧縮強度を測定したとこ
ろ、1.8kg/cm2であった。
The compressive strength of this filter was 5.3 kg / cm 2 . Here, the three-dimensional filter refers to a filter having a thick filter, for example, a structure such as a honeycomb formed body, in which a portion having a filtering function is not a two-dimensional sheet like a normal filter cloth. When the compressive strength of the filter before reinforcement with a stainless steel plate was measured, it was 1.8 kg / cm 2 .

比較例3 実施例4において、ポリプロピレン粉末の粒子径を10
0μmとした他、同一条件で試験した。
Comparative Example 3 In Example 4, the particle size of the polypropylene powder was changed to 10
The test was performed under the same conditions except that the thickness was set to 0 μm.

得られたフィルターの圧縮強度は2.8kg/cm2であっ
た。
The obtained filter had a compressive strength of 2.8 kg / cm 2 .

【図面の簡単な説明】[Brief description of the drawings]

第1図は3次元構造を有するフィルターの周囲にステン
レス板を接着して補強した成型体の斜視図を示したもの
である。 1……3次元フィルター 2……ステンレス板
FIG. 1 is a perspective view of a molded body reinforced by bonding a stainless steel plate around a filter having a three-dimensional structure. 1… 3D filter 2… Stainless steel plate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−71113(JP,A) 特開 昭63−218780(JP,A) 特開 平1−197721(JP,A) 特開 平3−62840(JP,A) 特開 平3−98611(JP,A) 実開 平2−129237(JP,U) (58)調査した分野(Int.Cl.6,DB名) C09J 5/00 - 5/10 B29C 65/00 - 65/46 B01D 53/02 - 53/12──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-53-71113 (JP, A) JP-A-63-218780 (JP, A) JP-A-1-197721 (JP, A) JP-A-3-3 62840 (JP, A) JP-A-3-98611 (JP, A) JP-A-2-129237 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) C09J 5/00-5 / 10 B29C 65/00-65/46 B01D 53/02-53/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】吸着剤成型体と板状補強材を接着するに際
し、粒子径1〜50μmのプラスチック粉末及び要すれば
繊維状補強材をバインダーとして加圧接着することを特
徴とする吸着剤成型体と板の接着方法。
1. An adsorbent molding method comprising the steps of: adhering an adsorbent molded article and a plate-shaped reinforcing material to each other under pressure using a plastic powder having a particle diameter of 1 to 50 μm and, if necessary, a fibrous reinforcing material as a binder. How to bond body and board.
【請求項2】吸着剤成型体が3次元フィルター状の成型
物である特許請求の範囲第1項記載の吸着剤成型体と板
の接着方法。
2. The method according to claim 1, wherein the adsorbent molded article is a three-dimensional filter-shaped molded article.
JP2310639A 1990-11-15 1990-11-15 Adhesive molding and plate bonding method Expired - Fee Related JP2838586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2310639A JP2838586B2 (en) 1990-11-15 1990-11-15 Adhesive molding and plate bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2310639A JP2838586B2 (en) 1990-11-15 1990-11-15 Adhesive molding and plate bonding method

Publications (2)

Publication Number Publication Date
JPH04180978A JPH04180978A (en) 1992-06-29
JP2838586B2 true JP2838586B2 (en) 1998-12-16

Family

ID=18007676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2310639A Expired - Fee Related JP2838586B2 (en) 1990-11-15 1990-11-15 Adhesive molding and plate bonding method

Country Status (1)

Country Link
JP (1) JP2838586B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5873229B2 (en) * 2009-04-28 2016-03-01 株式会社ブリヂストン Adhesive composition, adhesive-coated fiber, rubber article, and pneumatic tire
CN103429339B (en) * 2011-03-01 2015-06-10 埃克森美孚上游研究公司 Apparatus and system having encased adsorbent contractor and swing adsorption processes related thereto
JP6108943B2 (en) * 2013-04-30 2017-04-05 株式会社ブリヂストン Adhesive composition coated fiber, rubber member, pneumatic tire and run flat tire
CA2949262C (en) 2014-07-25 2020-02-18 Shwetha Ramkumar Cyclical swing absorption process and system
AU2015347232B2 (en) 2014-11-11 2018-02-01 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
RU2668917C1 (en) 2014-12-10 2018-10-04 Эксонмобил Рисерч Энд Инджиниринг Компани Polymer fibers with integrated adsorbent in contactors with packaged layer and tissue contactors and using their methods and devices
CN107635644A (en) 2014-12-23 2018-01-26 埃克森美孚上游研究公司 Structuring adsorbent bed, its production method and application thereof
AU2016265110B2 (en) 2015-05-15 2019-01-24 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
EA201792488A1 (en) 2015-05-15 2018-03-30 Эксонмобил Апстрим Рисерч Компани APPARATUS AND SYSTEM FOR PROCESSES OF SHORT-CYCLE ADSORPTION, ASSOCIATED WITH IT, CONTAINING SYSTEMS OF THE BLOWING OF THE MIDDLE LAYER
CA2996139C (en) 2015-09-02 2021-06-15 Exxonmobil Upstream Research Company Process and system for swing adsorption using an overhead stream of a demethanizer as purge gas
US10080991B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CN108348837B (en) 2015-10-27 2021-02-19 埃克森美孚上游研究公司 Apparatus having actively controlled feed poppet valves and passively controlled product valves and systems related thereto for swing adsorption processes
SG11201802606VA (en) 2015-10-27 2018-05-30 Exxonmobil Upstream Res Co Apparatus and system for swing adsorption processes related thereto having a plurality of valves
SG11201802394SA (en) 2015-10-27 2018-05-30 Exxonmobil Upstream Res Co Apparatus and system for swing adsorption processes related thereto having a plurality of valves
CA3005448A1 (en) 2015-11-16 2017-05-26 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
EP3429727A1 (en) 2016-03-18 2019-01-23 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10427091B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10427089B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
RU2019107147A (en) 2016-09-01 2020-10-01 Эксонмобил Апстрим Рисерч Компани ADSORPTION PROCESSES UNDER VARIABLE CONDITIONS FOR WATER REMOVAL USING ZEOLITES 3A STRUCTURES
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
KR102260066B1 (en) 2016-12-21 2021-06-04 엑손모빌 업스트림 리서치 캄파니 Self-supporting structure with foamed geometry and active material
RU2720940C1 (en) 2016-12-21 2020-05-14 Эксонмобил Апстрим Рисерч Компани Self-supported structures having active materials
WO2019147516A1 (en) 2018-01-24 2019-08-01 Exxonmobil Upstream Research Company Apparatus and system for temperature swing adsorption
WO2019168628A1 (en) 2018-02-28 2019-09-06 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
WO2020131496A1 (en) 2018-12-21 2020-06-25 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
EP3962641A1 (en) 2019-04-30 2022-03-09 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Rapid cycle adsorbent bed
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
EP4045173A1 (en) 2019-10-16 2022-08-24 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Dehydration processes utilizing cationic zeolite rho

Also Published As

Publication number Publication date
JPH04180978A (en) 1992-06-29

Similar Documents

Publication Publication Date Title
JP2838586B2 (en) Adhesive molding and plate bonding method
JP3171454B2 (en) Adsorbent filter
US6309587B1 (en) Composite molding tools and parts and processes of forming molding tools
JPH0813324B2 (en) Adsorbent filter
JPS6014909A (en) Adsorbing material
JPH071659A (en) Interior material
JP3712084B2 (en) Adsorbent
JP3213241B2 (en) Plastic sheet material containing magnetic fluid-encapsulated capsule for sound absorbing and insulating and radio wave absorbing and plastic panel for sound absorbing and insulating and radio wave absorbing
JPH0790168B2 (en) Adsorbent
JP3739583B2 (en) Manufacturing method for flooring
JPH034935A (en) Sheet-like adsorbent
JPH01156562A (en) Fiber molded body
JP2945421B2 (en) Diaphragm for electroacoustic transducer and method of manufacturing the same
JPH052292Y2 (en)
CA1316337C (en) Non-woven fibrous product containing natural fibers.
JP2003094583A (en) Sound absorbing and insulating material made of polyester fiber and its manufacturing method
JPH0630441Y2 (en) Breathing water absorption sheet
JPS64201B2 (en)
JPS60129248A (en) Manufacture of resin molding
JP2000210523A (en) Chemical filter and production thereof
JPS60199646A (en) Manufacture of double layer glass
JPS6046023B2 (en) Method for manufacturing laminate
JPH063606Y2 (en) Deodorant building board
JPS5852498B2 (en) Reinforced synthetic resin board
JPS5949913B2 (en) Vacuum forming process for composite products

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees