JP2831785B2 - Control device of resistance welding machine - Google Patents

Control device of resistance welding machine

Info

Publication number
JP2831785B2
JP2831785B2 JP2053494A JP5349490A JP2831785B2 JP 2831785 B2 JP2831785 B2 JP 2831785B2 JP 2053494 A JP2053494 A JP 2053494A JP 5349490 A JP5349490 A JP 5349490A JP 2831785 B2 JP2831785 B2 JP 2831785B2
Authority
JP
Japan
Prior art keywords
power
welding
current
voltage
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2053494A
Other languages
Japanese (ja)
Other versions
JPH03256106A (en
Inventor
千尋 岡土
達明 安保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2053494A priority Critical patent/JP2831785B2/en
Publication of JPH03256106A publication Critical patent/JPH03256106A/en
Application granted granted Critical
Publication of JP2831785B2 publication Critical patent/JP2831785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は抵抗溶接機の制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a control device for a resistance welding machine.

(従来の技術) 従来のインバータ式抵抗溶接機の制御回路を第6図に
示し構成作用を説明する。
(Prior Art) A control circuit of a conventional inverter type resistance welding machine is shown in FIG.

直流電源1の直流電圧はインバータブリッジ2によ
り、高周波の交流電圧に変換され、変圧器4により降圧
され、整流器5a,5bにより整流されて再び直流電圧に変
換され溶接電極6を介して溶接点に直流電力で供給され
る。溶接点に流れる溶接電流は、変圧器4の一次側の電
流を変流器3によって検出され、電流検出回路8により
ピーク整流することにより信号Iとして得られる。
The DC voltage of the DC power supply 1 is converted into a high-frequency AC voltage by the inverter bridge 2, stepped down by the transformer 4, rectified by the rectifiers 5 a, 5 b, converted again to a DC voltage, and returned to the welding point via the welding electrode 6. It is supplied by DC power. The welding current flowing at the welding point is obtained as a signal I by detecting the current on the primary side of the transformer 4 by the current transformer 3 and performing peak rectification by the current detection circuit 8.

溶接電流Iは電流設定器7により設定された電流基準
IRと比較され増幅器9によりその偏差値が三角波発振器
12の三角波信号と比較回路13により比較されPWM(パル
ス幅変調)信号とし、駆動回路14を介してインバータブ
リッジ2のトランジスタをオン・オフしてPWM制御し溶
接電流を電流基準IRに対応した値に制御する。
The welding current I is the current reference set by the current setting unit 7.
It is compared with I R and the deviation value is determined by the amplifier 9 as a triangular wave oscillator.
And 12 a triangular wave signal and is compared by the comparison circuit 13 PWM (pulse width modulation) signal, a by turning on and off the transistors of the inverter bridge 2 via the drive circuit 14 PWM controlled welding current corresponding to the current reference I R Control to a value.

(発明が解決しようとする課題) ところが従来の方法では溶接電流を一定に制御するの
で溶接点の抵抗が増加した場合は入力電力が増加し、溶
けた金属が周囲に飛散する所謂“チリ”の発生が増加す
るなどの不具合があった。
(Problems to be Solved by the Invention) However, in the conventional method, the welding current is controlled to be constant, so that when the resistance at the welding point increases, the input power increases, and so-called “dust” in which the molten metal scatters around. There were inconveniences such as an increase in occurrence.

本発明は、溶接点の抵抗が変化しても予定された電力
を供給することができ、所望の電力設定カーブに従って
溶接電流を制御することのできる溶接機の制御装置を得
ることを目的とする。
An object of the present invention is to provide a welding machine control device that can supply a predetermined power even if the resistance of a welding point changes and that can control a welding current according to a desired power setting curve. .

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は上記目的を達成するために、変圧器の一次側
から制御された交流電力が供給され二次側の交流電力を
直流電力に変換する電力変換手段と、この直流電力を溶
接電極を介して溶接点に供給する装置において、複数の
制御パラメータを設定する電力特性設定手段と、前記溶
接電極の直流電圧を検出し、前記制御パラメータを用い
て目標の溶接電流を決定する溶接電流演算手段を設け、
上記目標の溶接電流に基づいて前記交流電力を制御する
ようにした抵抗溶接機の制御装置である。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a power conversion unit that is supplied with controlled AC power from a primary side of a transformer and converts AC power on a secondary side into DC power. In an apparatus for supplying this DC power to a welding point via a welding electrode, a power characteristic setting means for setting a plurality of control parameters, a DC voltage of the welding electrode is detected, and a target welding is performed using the control parameter. Providing welding current calculation means for determining the current,
A control device for a resistance welding machine configured to control the AC power based on the target welding current.

(作用) 制御パラメータとしてP1,I1,αを電力特性設定手
段で設定し、溶接電極の直流電圧Vに基づき、溶接電流
演算手段は目標の溶接電流IR=(P1+αI1)/(V+
α)を演算し、このIRの値に基づいて交流電力を供給
することにより溶接点の抵抗が変化しても所望の溶接電
力(P1)で溶接を行うことが可能となる。
(Operation) P 1 , I 1 , α 1 are set as control parameters by the power characteristic setting means, and based on the DC voltage V of the welding electrode, the welding current calculation means sets the target welding current I R = (P 1 + α 1 I 1 ) / (V +
By calculating α 1 ) and supplying AC power based on the value of I R , welding can be performed with a desired welding power (P 1 ) even if the resistance at the welding point changes.

(実施例) 本発明による実施例を第1図に示す。第6図と重複す
る部分は同一番号を付し説明を省略する。
(Embodiment) An embodiment according to the present invention is shown in FIG. 6 are denoted by the same reference numerals and description thereof is omitted.

第1図において、電力カーブ設定手段15は後述する各
種の制御パラメータP1,I1,αを設定するものであ
る。電圧検出回路16は溶接電極6の端子間電圧Vを検出
する。電流基準演算手段17は上記端子間電圧Vに応じて
所望の電流基準 を算出するものである。
In FIG. 1, a power curve setting means 15 sets various control parameters P 1 , I 1 , and α 1 described later. The voltage detection circuit 16 detects a voltage V between terminals of the welding electrode 6. The current reference calculating means 17 calculates a desired current reference in accordance with the terminal voltage V. Is calculated.

上記構成とすることにより、溶接点の抵抗に変化が生
じても所定の電力を供給することができる。すなわち、
溶接点の抵抗が増加すると検出電圧Vが増加し、電流基
準IRが減少して電力の増加を抑制するように作用する。
With the above configuration, a predetermined electric power can be supplied even when a change occurs in the resistance at the welding point. That is,
When the resistance at the welding point increases, the detection voltage V increases, and the current reference I R decreases to act to suppress an increase in power.

抵抗溶接機の電力制御はどのような制御が最も好まし
いかは、ユーザーのノウハウになっていることが多く、
どのような特性でも設定出来るようにすることが望まれ
る。第2図は溶接電流と電力の関係を示す電力制御の特
性図である。
What kind of control is most preferable for power control of resistance welding machines often depends on the know-how of the user,
It is desired that any characteristic can be set. FIG. 2 is a characteristic diagram of power control showing the relationship between welding current and power.

同図に示す電力特性P(I)は電力カーブ設定手段15
の制御パラメータにより(1)式のように定められる。
The power characteristic P (I) shown in FIG.
(1) is determined by the control parameter (1).

P(I)=P1−α(I−I1) …(1) 但し、P1は溶接電流I1における目標の溶接電力、α
は溶接電力の垂下係数 一方、溶接電力P(I)は P(I)=VI …(2) が成立するので、(1),(2)式から により検出電圧における溶接電流Iを求めることがで
きる。電流基準演算手段17は上記(3)式で求めた値を
電流基準IRとして出力することにより前述の作用を行
う。
P (I) = P 1 −α 1 (I−I 1 ) (1) where P 1 is a target welding power at welding current I 1 , α 1
Is the droop coefficient of the welding power. On the other hand, the welding power P (I) is expressed as P (I) = VI (2). Thus, the welding current I at the detection voltage can be obtained. Current reference computation unit 17 performs the above-described effects by outputting the values obtained in the above (3) as a current reference I R.

また第3図に示すような複雑な曲線で電力を制御する
場合も電力カーブ設定手段15により(P1,α,I1
(P2,α,I2)を設定し、 の演算を行うことにより複雑な電力制御を容易に行う
ことが可能となる。
In the case where power is controlled by a complicated curve as shown in FIG. 3, the power curve setting means 15 also sets (P 1 , α 1 , I 1 ).
(P 2 , α 2 , I 2 ) By performing the above calculation, it is possible to easily perform complicated power control.

本実施例によれば、簡単な演算で制御することが出来
るのでCPUの負担が軽く、インバータの周波数が2〜3KH
zに上昇しても制御することが出来る。
According to the present embodiment, since the control can be performed by simple calculations, the load on the CPU is light and the frequency of the inverter is 2 to 3 KH.
It can be controlled even if it rises to z.

また、複雑な電力曲線も制御パラメータを増やすこと
で容易に行うことが可能である。
Also, a complicated power curve can be easily performed by increasing the control parameters.

なお、上記実施例では溶接の電極の両端の電圧を検出
していたが、この電圧を間接的に検出するようにしても
よい。例えば、第4図に示すように整流器5a,5bの出力
電圧V1を検出し、V=V1-IR1としてもよい。但し、R1
端子C,DからA,B迄の抵抗分である。この場合、演算時間
が増加するのでV≒V1と近似しても実用上支障はない。
この場合は第2図の電力特性は、Iが増加するに従って
αが増えた様な垂下カーブとなるが、抵抗分R1は比較的
小さいので実用上は支障ない。
In the above embodiment, the voltage at both ends of the welding electrode is detected, but this voltage may be detected indirectly. For example, rectifiers 5a as shown in FIG. 4, detects the output voltage V 1 of the 5b, may be V = V 1 -IR 1. However, R 1 is the resistance of the terminal from C, D A, until B. In this case, there is no practical problem even if approximate V ≒ V 1 because computing time increases.
Power characteristics of this case the second view is a drooping curve like α is increased in accordance with the I increases practically the resistance component R 1 is relatively small with no trouble.

更に、第1図の電圧検出回路16は直流電圧を絶縁して
検出する必要があり一般に絶縁増幅器と呼ばれているア
ンプを採用することになるが比較的高価である。
Further, the voltage detection circuit 16 in FIG. 1 needs to insulate and detect the DC voltage, and an amplifier generally called an insulation amplifier is employed, but it is relatively expensive.

これに対し変圧器4に三次巻線4bを設け、ダイオード
10a,10bで整流し、フィルタ20を介して電圧を検出すれ
ばV1とほぼ等しい直流電圧を絶縁して、しかも経済的に
検出することが可能である。
On the other hand, a tertiary winding 4b is provided in the transformer 4 and a diode is provided.
10a, rectified by 10b, and an insulating approximately equal DC voltage V 1 by detecting the voltage through the filter 20, yet it is possible to economically detect.

また、第5図に示すように、変圧器4の二次巻線に、
変圧器24を接続しダイオード10a,10bにて整流し、フィ
ルタ20を介してV1の代用として絶縁した出力を得ること
ができる。
Also, as shown in FIG. 5, the secondary winding of the transformer 4
Diode 10a is connected to a transformer 24, rectified at 10b, it is possible to obtain an output insulated as substitute for V 1 through the filter 20.

なお、インバータ式抵抗溶接器について説明したが、
サイリスタ式でも全く同様な制御が可能である。
Although the inverter type resistance welder has been described,
Exactly the same control is possible with a thyristor type.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば電力制御の特性
を自由に設定し、溶接機直流出力電圧を検出することに
より、設定された電力制御特性に従って極めて高速な電
力制御を経済的に行うことのできる抵抗溶接機の制御装
置を提供することが可能である。
As described above, according to the present invention, the power control characteristics can be freely set and the welding machine DC output voltage can be detected to economically perform extremely high-speed power control according to the set power control characteristics. It is possible to provide a control device for a resistance welding machine that can be used.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例図、第2図、第3図は上記実
施例の動作を説明するための電力制御特性図、第4図、
第5図は本発明の電圧検出部の他の実施例図、第6図は
従来の抵抗溶接機の制御装置の一例を示す構成図であ
る。 1……直流電源 2……インバータブリッジ、3……変流器 4……変圧器、5a,5b……整流器 6……溶接電極、7……電流設定器 8……電流検出回路、9……増幅器 12……三角波発生器、13……比較回路 14……駆動回路 15……電力カーブ設定手段、16……電圧検出回路 17……電流基準演算手段 10a,10b……ダイオード 20……フィルタ、24……変圧器
FIG. 1 is a diagram of one embodiment of the present invention, FIG. 2 and FIG. 3 are power control characteristic diagrams for explaining the operation of the above embodiment, FIG.
FIG. 5 is a diagram showing another embodiment of the voltage detector of the present invention, and FIG. 6 is a block diagram showing an example of a conventional control device for a resistance welding machine. DESCRIPTION OF SYMBOLS 1 ... DC power supply 2 ... Inverter bridge 3 ... Current transformer 4 ... Transformer, 5a, 5b ... Rectifier 6 ... Welding electrode, 7 ... Current setting device 8 ... Current detection circuit, 9 ... ... Amplifier 12 ... Triangular wave generator, 13 ... Comparison circuit 14 ... Drive circuit 15 ... Power curve setting means, 16 ... Voltage detection circuit 17 ... Current reference calculation means 10a, 10b ... Diode 20 ... Filter , 24 ... Transformer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】変圧器の一次側から制御された交流電力が
供給され二次側の交流電力を直流電力に変換する電力変
換手段と、この直流電力を溶接電極を介して溶接点に供
給する装置において、複数の制御パラメータを設定する
電力特性設定手段と、前記溶接電極の直流電圧を検出
し、前記制御パラメータを用いて目標の溶接電流を決定
する溶接電流演算手段を設け、上記目標の溶接電流に基
づいて前記交流電力を制御することを特徴とする抵抗溶
接機の制御装置。
1. A power conversion means for supplying controlled AC power from a primary side of a transformer to convert AC power on a secondary side into DC power, and supplying the DC power to a welding point via a welding electrode. In the apparatus, there are provided power characteristic setting means for setting a plurality of control parameters, and welding current calculation means for detecting a DC voltage of the welding electrode and determining a target welding current using the control parameters. A control device for a resistance welding machine, wherein the control device controls the AC power based on a current.
JP2053494A 1990-03-07 1990-03-07 Control device of resistance welding machine Expired - Lifetime JP2831785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2053494A JP2831785B2 (en) 1990-03-07 1990-03-07 Control device of resistance welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2053494A JP2831785B2 (en) 1990-03-07 1990-03-07 Control device of resistance welding machine

Publications (2)

Publication Number Publication Date
JPH03256106A JPH03256106A (en) 1991-11-14
JP2831785B2 true JP2831785B2 (en) 1998-12-02

Family

ID=12944388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2053494A Expired - Lifetime JP2831785B2 (en) 1990-03-07 1990-03-07 Control device of resistance welding machine

Country Status (1)

Country Link
JP (1) JP2831785B2 (en)

Also Published As

Publication number Publication date
JPH03256106A (en) 1991-11-14

Similar Documents

Publication Publication Date Title
US20070025124A1 (en) Power supply system and apparatus
JPH0694078B2 (en) Resistance welder
JP2831785B2 (en) Control device of resistance welding machine
JP3231649B2 (en) Consumable electrode type DC arc welding machine
US7230219B2 (en) Inverter power source control for high frequency heater
JPH0753313B2 (en) Power control device for inverter type resistance welding machine
JPH01215465A (en) Arc power unit
JP3376123B2 (en) Semiconductor integrated circuit device for insulated switching power supply device
JP2535912B2 (en) Power supply for arc processing
JP3981208B2 (en) Arc machining power supply
JPH0715965A (en) Switching mode rectification circuit
JP2572433B2 (en) Power supply for arc welding and cutting
JP3570173B2 (en) Control circuit provided in a device that generates direct current from alternating current
JPH0622758B2 (en) DC arc welding machine
JPS6344228Y2 (en)
JPH07337088A (en) Inverter
KR950003575B1 (en) Output control method and device of welding electric power
JPS5970471A (en) Pulse arc welding machine
JPH0318059Y2 (en)
JPH0622546A (en) Switching regulator
JP2523513B2 (en) Voltage detector for welding current and power supply for welding
JPH065027Y2 (en) Inverter resistance welding machine power supply
JPH0753315B2 (en) Power control device for inverter type resistance welding machine
JPH0324292Y2 (en)
JPH05300734A (en) Switching regulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees