JP2830932B2 - Molecular beam epitaxial growth method - Google Patents

Molecular beam epitaxial growth method

Info

Publication number
JP2830932B2
JP2830932B2 JP9396294A JP9396294A JP2830932B2 JP 2830932 B2 JP2830932 B2 JP 2830932B2 JP 9396294 A JP9396294 A JP 9396294A JP 9396294 A JP9396294 A JP 9396294A JP 2830932 B2 JP2830932 B2 JP 2830932B2
Authority
JP
Japan
Prior art keywords
molecular beam
temperature
growth
epitaxial growth
evaporation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9396294A
Other languages
Japanese (ja)
Other versions
JPH07277883A (en
Inventor
操 高草木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP9396294A priority Critical patent/JP2830932B2/en
Publication of JPH07277883A publication Critical patent/JPH07277883A/en
Application granted granted Critical
Publication of JP2830932B2 publication Critical patent/JP2830932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、分子線エピタキシャル
成長方法に係わり、成長終了後の蒸発源セルの保持温度
を適性に保ち、酸化物によるエピタキシャル層の表面欠
陥が少なく、かつ純度の高いエピタキシャル層を形成す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molecular beam epitaxial growth method, and more particularly, to a method for maintaining an evaporation source cell at an appropriate temperature after growth, reducing surface defects of the epitaxial layer due to oxides, and having a high purity. And a method for forming the same.

【0002】[0002]

【従来の技術】半導体基板上に超薄膜を形成する結晶成
長方法として、分子線エピタキシャル成長方法が最近注
目され研究されている。分子線エピタキシャル成長は超
高真空下で原料となる物質を蒸発させ加熱した基板上に
目的の結晶を成長する方法であり、分子線エピタキシャ
ル成長方法を用いたデバイスとして、高電子移動度トラ
ンジスタ(HEMT)等が実用化されている。
2. Description of the Related Art As a crystal growth method for forming an ultra-thin film on a semiconductor substrate, a molecular beam epitaxial growth method has recently attracted attention and has been studied. Molecular beam epitaxial growth is a method of evaporating a material as a raw material under ultra-high vacuum and growing a target crystal on a heated substrate. As a device using the molecular beam epitaxial growth method, a high electron mobility transistor (HEMT) or the like is used. Has been put to practical use.

【0003】分子線エピタキシャル成長法で成長したエ
ピタキシャル層の表面には微小な突起やディンプル状の
欠陥が見られ、その原因等が研究されている。原因別に
分類すると以下の3つに分けられる。 (1)成長室内の汚れによる微小な粒子による欠陥。 (2)Ga等の原料の酸化物やスピッティング(突ぷつ
現象)による原料に起因するオーバル欠陥と呼ばれる欠
陥。 (3)基板の転位に起因する欠陥に分類される。
[0003] On the surface of the epitaxial layer grown by the molecular beam epitaxial growth method, minute projections and dimple-like defects are found, and the causes thereof have been studied. When classified by cause, it is divided into the following three. (1) Defects due to minute particles due to contamination in the growth chamber. (2) A defect called an oval defect caused by an oxide of a raw material such as Ga or a raw material due to spitting (a sudden phenomenon). (3) Classified as defects caused by dislocations in the substrate.

【0004】これらの表面欠陥はデバイス作製後の特性
においてピンチオフ特性の劣化等の原因となり、歩留の
低下をもたらす。(1)の欠陥については成長室のクリ
ーニングや基板搬送や成長時の基板を下向きに保つこと
で低減できることが知られている。また、(2)の欠陥
については成長時の蒸発源セルの温度分布をセル内のる
つぼ先端部の温度が高くなるようにしてるつぼ先端部で
の液滴発生を防止して低減する方法が知られている。し
かし、この方法でも成長していない時に原料が酸化され
てしまうと、Ga酸化物による欠陥の形成が見られる。
この場合は、成長開始前に蒸発源セルの温度を成長に用
いる温度以上に昇温して、原料中の酸化物を除去する脱
ガス操作を十分に行えば解決できるが、原料を無駄遣い
することになりコストアップになる。
[0004] These surface defects cause deterioration of pinch-off characteristics in the characteristics after device fabrication, and lower the yield. It is known that the defect (1) can be reduced by cleaning the growth chamber, transporting the substrate, or keeping the substrate downward during growth. Regarding the defect (2), there is known a method of reducing the temperature distribution of the evaporation source cell at the time of growth by increasing the temperature at the tip of the crucible in the cell to prevent the generation of droplets at the tip of the crucible. Have been. However, even if the raw material is oxidized when it is not growing even in this method, formation of defects due to Ga oxide is observed.
This can be solved by raising the temperature of the evaporation source cell to a temperature equal to or higher than the temperature used for growth before the start of growth and performing a sufficient degassing operation to remove oxides in the raw material, but wastes the raw material. And increase costs.

【0005】通常、蒸発源セルの温度は成長時には成長
に必要な分子線強度が得られる温度まで昇温され、成長
終了後は分子線が出ないような温度まで降温して保持し
ている(この温度をアイドリング温度と呼ぶ)。成長に
用いる温度は通常は還元領域の温度となっており原料が
酸化されるという問題は生じないが、降温した場合には
成長室内の残留ガスとの反応で原料が酸化される恐れが
ある。
Normally, the temperature of the evaporation source cell is raised to a temperature at which a molecular beam intensity required for growth is obtained during growth, and after completion of growth, the temperature is kept at a temperature at which no molecular beam is generated (see FIG. 1). This temperature is called the idling temperature). The temperature used for the growth is usually the temperature in the reduction region, and there is no problem that the raw material is oxidized. However, when the temperature is lowered, the raw material may be oxidized by the reaction with the residual gas in the growth chamber.

【0006】[0006]

【発明が解決しようとする問題点】本発明は上記の欠点
を解決するためになされたもので、本発明の目的は成長
毎の脱ガス操作を行わずに常に原料の酸化を防ぎ、表面
欠陥の少ないエピタキシャル層が得られるアイドリング
温度を決定する方法を得ることにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and an object of the present invention is to always prevent the raw material from being oxidized without performing a degassing operation for each growth and to improve the surface defects. It is an object of the present invention to obtain a method for determining an idling temperature at which an epitaxial layer having a small number of layers can be obtained.

【0007】[0007]

【問題点を解決するための手段及び作用】すなわち、本
発明は、成長を行わない時の分子線エピタキシャル装置
内の蒸発源セルの温度を、該分子線エピタキシャル装置
内の水素と水の分圧比(PH2/PH2O)に応じて、該蒸
発源原料の酸化反応が進行しない温度以上で、かつ分子
線強度が成長時の100分の1となる温度以下に保つこ
とを特徴とする分子線エピタキシャル成長方法を提供す
るものである。
That is, according to the present invention, the temperature of the evaporation source cell in the molecular beam epitaxy apparatus when the growth is not performed is controlled by the partial pressure ratio of hydrogen and water in the molecular beam epitaxy apparatus. (Ph 2 / PH 2 O), wherein the molecular source is maintained at a temperature not lower than the temperature at which the oxidation reaction of the evaporation source material does not proceed and at a temperature lower than the temperature at which the molecular beam intensity becomes 1/100 of that during the growth. A line epitaxial growth method is provided.

【0008】また、上記蒸発源原料がGaおよび/また
はInであることを特徴とする分子線エピタキシャル成
長方法を提供するものである。
Another object of the present invention is to provide a molecular beam epitaxial growth method characterized in that the evaporation source material is Ga and / or In.

【0009】まずここでは、IIIーV 族化合物半導体の
GaAsをエピタキシャル成長する場合を考える。
First, a case where GaAs of a group III-V compound semiconductor is epitaxially grown will be considered.

【0010】Gaの酸化還元反応及び平衡定数は次の
(1)、(2)式で与えられる。 2Ga+3H2O = Ga23+3H2 (1) Kp=(PH2/PH2O)3 (2)
The redox reaction and the equilibrium constant of Ga are given by the following equations (1) and (2). 2Ga + 3H 2 O = Ga 2 O 3 + 3H 2 (1) Kp = (PH 2 / PH 2 O) 3 (2)

【0011】ここで、各分子の熱力学定数を用いてKp
の値は計算することができる(ここではGaとGa23
の活量は1としている)。計算結果を図1に示す。図の
横軸は温度の逆数を、縦軸にはlog(PH2/PH2O)
を取っている。この図において平衡定数の曲線よりも上
の領域(図中で領域Aと表している領域)では(1)式
の反応は左に進み原料は還元領域にあることになる。一
方、平衡定数の曲線よりも下の領域(図中で領域Bと表
している領域)では(1)式の反応は右へ進み原料が酸
化されることになる。
Here, Kp is calculated using the thermodynamic constant of each molecule.
Can be calculated (here, Ga and Ga 2 O 3
Has an activity of 1). FIG. 1 shows the calculation results. The horizontal axis represents the reciprocal of the temperature of the figure, the vertical axis log (PH 2 / PH 2 O )
Is taking. In this figure, in the region above the equilibrium constant curve (region indicated as region A in the figure), the reaction of equation (1) proceeds to the left, and the raw material is in the reduction region. On the other hand, in a region below the equilibrium constant curve (region indicated as region B in the figure), the reaction of equation (1) proceeds to the right, and the raw material is oxidized.

【0012】通常、分子線エピタキシャル成長装置には
四重極質量分析装置が付属しており、成長室内の残留ガ
ス分析が可能となっている。そこで、成長室内の残留ガ
ス分析を行い水素と水の分圧比(PH2/PH2O)の値を
求めて(2)式の平衡定数がその値よりも小さくなる様
なセルの温度を選択してアイドリング温度とすれば、原
料の酸化は進まないことになる。成長時はクライオシュ
ラウドに液体窒素を入れて成長室内の水の分圧を低くし
ているが、成長終了後は液体窒素の供給を停止するた
め、残留ガス組成は大きく変化し水素と水の分圧比(P
H2/PH2O)は急激に小さくなるので、クライオシュラ
ウドに液体窒素を供給していないときの分圧比を基準に
するればよい。
Usually, a quadrupole mass spectrometer is attached to the molecular beam epitaxial growth apparatus, and the residual gas in the growth chamber can be analyzed. Therefore, the residual gas in the growth chamber is analyzed to obtain the value of the partial pressure ratio of hydrogen and water (PH 2 / PH 2 O), and the temperature of the cell is selected so that the equilibrium constant of equation (2) becomes smaller than that value. If the temperature is set to the idling temperature, the oxidation of the raw material will not proceed. During growth, liquid nitrogen is introduced into the cryoshroud to lower the partial pressure of water in the growth chamber.However, after the growth is completed, the supply of liquid nitrogen is stopped. Pressure ratio (P
Since H 2 / PH 2 O) rapidly decreases, the partial pressure ratio when liquid nitrogen is not supplied to the cryoshroud may be used as a reference.

【0013】一方、アイドリング温度の上限は分子線強
度で決定する。アイドリング温度が高すぎると成長して
いないときでも分子線は蒸発し続けることになり、原料
の消費が大きくなるばかりではなくシャッターの劣化も
促進することになる。そこで、上限は分子線強度で規定
すればよい。通常の値としては、成長時の分子線強度の
100分の1となる蒸発源セル温度以下とするのが適当
である。
On the other hand, the upper limit of the idling temperature is determined by the molecular beam intensity. If the idling temperature is too high, the molecular beam will continue to evaporate even when it is not growing, which not only increases the consumption of raw materials but also accelerates the deterioration of the shutter. Therefore, the upper limit may be defined by the molecular beam intensity. It is appropriate that the normal value be equal to or lower than the evaporation source cell temperature at which the molecular beam intensity at the time of growth becomes 1/100.

【0014】[0014]

【実施例】ここでは、GaAs層の成長について実施し
た結果について示す。成長室は原料を装填した後200
℃で装置全体を3日間ベーキングして、到達真空度5×
10-9Paを得た。この状態でクライオシュラウドに液体
窒素を入れた状態と、入れない状態での成長室内の残留
ガス分析を行った。四重極質量分析計により水素分圧と
水分圧を求めた。その結果水素と水の分圧比はそれぞれ
の状態で以下の値となった。
EXAMPLE Here, the result of the growth of a GaAs layer will be described. The growth chamber is 200
Baking the whole device at 3 ° C for 3 days, and the ultimate vacuum 5 ×
10 -9 Pa was obtained. In this state, the residual gas in the growth chamber was analyzed with and without liquid nitrogen in the cryoshroud. Hydrogen partial pressure and water pressure were determined by a quadrupole mass spectrometer. As a result, the partial pressure ratio of hydrogen and water was as follows in each state.

【0015】 液体窒素を入れた状態 :(PH2/PH2O)=1×1
4 液体窒素を入れない状態 :(PH2/PH2O)=7×1
2
A state in which liquid nitrogen is put: (PH 2 / PH 2 O) = 1 × 1
0 4 states not put liquid nitrogen: (PH 2 / PH 2 O ) = 7 × 1
0 2

【0016】ここで、図1に示されたGaの酸化還元反
応の平衡定数からこれらの分圧比で平衡となるGaの温
度はそれぞれ、611℃、790℃となる。一方、Ga
の分子線強度は基板位置に移動可能なビームモニターを
用いて測定した。通常の成長条件である1μm/hとな
る分子線強度として6×10-5Paが得られた。また、分
子線強度がその100分の1となるGaセル温度として
は850℃であった。
Here, based on the equilibrium constants of the oxidation-reduction reaction of Ga shown in FIG. 1, the temperatures of Ga to be balanced at these partial pressure ratios are 611 ° C. and 790 ° C., respectively. On the other hand, Ga
Was measured using a beam monitor movable to the substrate position. 6 × 10 −5 Pa was obtained as a molecular beam intensity of 1 μm / h, which is a normal growth condition. The Ga cell temperature at which the molecular beam intensity became 1/100 was 850 ° C.

【0017】これらの予備実験からGaの酸化還元反応
において常に還元領域にあり、分子線強度が通常の使用
強度の100分の1以下となる温度領域として790〜
850℃が得られた。そこで、本実施例ではアイドリン
グ温度として800℃として50回成長実験を行った。
From these preliminary experiments, it was found that the temperature range in which the molecular beam intensity is always in the reduction region in the oxidation-reduction reaction of Ga and the molecular beam intensity is 1/100 or less of the normal use intensity is 790-790
850 ° C. was obtained. Therefore, in this example, a growth experiment was performed 50 times at an idling temperature of 800 ° C.

【0018】図2に成長毎の成長したエピタキシャル層
のオーバル欠陥(Gaの酸化物に起因する欠陥であり、
ゴミ等の微粒子に起因する欠陥は除いている)密度の変
化を示す。本実施例では、成長時にはGaセル温度は成
長に必要な温度まで昇温し、それ以上の温度まで上げる
脱ガス工程は行っていない。表面欠陥密度は成長開始後
数回は密度が高いものの、それ以後は10個/cm2
下と安定して低い値を維持できた。クライオシュラウド
に液体窒素が入っていないアイドリング時にGa原料が
酸化されなくなり、コストのかかる脱ガス工程を行うこ
となくオーバル欠陥(Gaの酸化物に起因する欠陥)密
度を低減できた。
FIG. 2 shows an oval defect (a defect caused by an oxide of Ga) of an epitaxial layer grown for each growth.
Defects caused by fine particles such as dust are excluded). In the present embodiment, during the growth, the degassing step of raising the Ga cell temperature to a temperature necessary for growth and raising it to a temperature higher than that is not performed. Although the surface defect density was high several times after the start of growth, it was able to maintain a low value stably at 10 defects / cm 2 or less thereafter. The Ga raw material was not oxidized at the time of idling when liquid nitrogen was not contained in the cryoshroud, and the oval defect (defect caused by Ga oxide) density could be reduced without performing a costly degassing step.

【0019】なお、上記実施例では蒸発源原料としてG
aについて説明したが、Inについても適用できる。た
だし、Inの表面欠陥に対する影響はGaより少ない。
In the above embodiment, G was used as the evaporation source material.
Although a has been described, it is also applicable to In. However, the influence of In on surface defects is smaller than that of Ga.

【0020】[0020]

【発明の効果】以上説明したように、本発明による決定
方法を用いてアイドリング温度を決定することにより、
酸化物等による表面欠陥が低減され、成長を繰り返して
も増加せず、安定して低い欠陥密度のエピタキシャル層
を得ることが可能となる。
As described above, by determining the idling temperature using the determination method according to the present invention,
Surface defects due to oxides and the like are reduced, and the number of defects is not increased even when the growth is repeated, so that an epitaxial layer having a low defect density can be stably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Gaの酸化還元反応の平衡定数の温度変化を
示す図である。
FIG. 1 is a diagram showing a temperature change of an equilibrium constant of a redox reaction of Ga.

【図2】 本発明による成長ごとの表面欠陥密度の推移
を表示す図である。
FIG. 2 is a diagram showing transition of surface defect density for each growth according to the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 成長を行わない時の分子線エピタキシャ
ル装置内の蒸発源セルの温度を、該分子線エピタキシャ
ル装置内の水素と水の分圧比(PH2/PH2O)に応じ
て、該蒸発源原料の酸化反応が進行しない温度以上で、
かつ分子線強度が成長時の100分の1となる温度以下
に保つことを特徴とする分子線エピタキシャル成長方
法。
1. The temperature of an evaporation source cell in a molecular beam epitaxy apparatus when growth is not performed is determined according to the partial pressure ratio (PH 2 / PH 2 O) of hydrogen and water in the molecular beam epitaxy apparatus. Above the temperature at which the oxidation reaction of the evaporation source material does not proceed,
A molecular beam epitaxial growth method characterized in that the molecular beam intensity is maintained at a temperature at which the molecular beam intensity becomes 1/100 or less during the growth.
【請求項2】 上記蒸発源原料がGaおよび/またはI
nであることを特徴とする請求項1記載の分子線エピタ
キシャル成長方法。
2. The method according to claim 1, wherein the evaporation source material is Ga and / or I.
2. The molecular beam epitaxial growth method according to claim 1, wherein n is n.
JP9396294A 1994-04-08 1994-04-08 Molecular beam epitaxial growth method Expired - Lifetime JP2830932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9396294A JP2830932B2 (en) 1994-04-08 1994-04-08 Molecular beam epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9396294A JP2830932B2 (en) 1994-04-08 1994-04-08 Molecular beam epitaxial growth method

Publications (2)

Publication Number Publication Date
JPH07277883A JPH07277883A (en) 1995-10-24
JP2830932B2 true JP2830932B2 (en) 1998-12-02

Family

ID=14097041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9396294A Expired - Lifetime JP2830932B2 (en) 1994-04-08 1994-04-08 Molecular beam epitaxial growth method

Country Status (1)

Country Link
JP (1) JP2830932B2 (en)

Also Published As

Publication number Publication date
JPH07277883A (en) 1995-10-24

Similar Documents

Publication Publication Date Title
Hu et al. Reactive‐ion etching of GaAs and InP using CCl2F2/Ar/O2
US6872248B2 (en) Liquid-phase growth process and liquid-phase growth apparatus
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
JP2830932B2 (en) Molecular beam epitaxial growth method
US8231728B2 (en) Epitaxial growth process
JPH0529234A (en) Epitaxial crowing method
JPS59116192A (en) Crystal growth method by molecular beam
JP2735190B2 (en) Molecular beam epitaxy growth method and growth apparatus
JPH0722344A (en) Vapor growth method
JP3106526B2 (en) Compound semiconductor growth method
US4371420A (en) Method for controlling impurities in liquid phase epitaxial growth
JPH04306821A (en) Compound semiconductor crystal growth method
JP2897107B2 (en) Crystal growth method
JPH0529221A (en) Molecular beam crystal growing method
JPH076957A (en) Semiconductor epitaxial substrate
JPH0526760B2 (en)
JPH02296791A (en) Liquid phase epitaxial growth method
JPH0687459B2 (en) Vapor phase growth equipment
JPH01158720A (en) Method and apparatus for growing compound semiconductor crystal
JPH02191319A (en) Method of forming soi structure
JPH02254715A (en) Manufacture of compound semiconductor crystal layer
JPH0613328A (en) Growing method for compound semiconductor thin film
JPS62291018A (en) Production of gradient composition compound semiconductor by me
JPH04291918A (en) Growing method for compound semiconductor
JPH0415912A (en) Doping of te into gaas

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090925

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100925

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100925

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110925

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110925

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110925

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110925

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120925