JP2829810B2 - Carbohydrate hydrolases - Google Patents

Carbohydrate hydrolases

Info

Publication number
JP2829810B2
JP2829810B2 JP32897592A JP32897592A JP2829810B2 JP 2829810 B2 JP2829810 B2 JP 2829810B2 JP 32897592 A JP32897592 A JP 32897592A JP 32897592 A JP32897592 A JP 32897592A JP 2829810 B2 JP2829810 B2 JP 2829810B2
Authority
JP
Japan
Prior art keywords
lacto
enzyme
sugar chain
biosidase
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32897592A
Other languages
Japanese (ja)
Other versions
JPH06153944A (en
Inventor
睦 佐野
久美 早川
郁之進 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Shuzo Co Ltd
Original Assignee
Takara Shuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co Ltd filed Critical Takara Shuzo Co Ltd
Priority to JP32897592A priority Critical patent/JP2829810B2/en
Publication of JPH06153944A publication Critical patent/JPH06153944A/en
Application granted granted Critical
Publication of JP2829810B2 publication Critical patent/JP2829810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は糖質の構造解析に有用な
新規エキソ型糖質加水分解酵素に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel exo-type carbohydrate hydrolase useful for analyzing the structure of carbohydrate.

【0002】[0002]

【従来の技術】近年、高等動物由来の糖タンパク質、糖
脂質等の複合糖質中の糖鎖部分の構造と機能が研究され
ているが、このためには、特異性の高い糖加水分解酵素
が重要な役割を果す。従来、糖鎖の非還元末端から単糖
を遊離する酵素は種々の起源から単離され、糖鎖の構造
と機能の研究に利用されており、糖鎖の非還元末端から
二糖を遊離する酵素としては、デンプンからマルトース
を遊離するβ−アミラーゼやセルロースからセロビオー
スを遊離するセロビアーゼ等が知られている。糖鎖の非
還元末端には、しばしば、タイプ1の Galβ1-3GlcNAc
β1- 構造とタイプ2の Galβ1-4GlcNAcβ1- 構造の
2種類が見出される。従来この糖鎖構造の解析には、メ
チル化分析や核磁気共鳴スペクトル法などの分析法が用
いられてきたが、試料を大量に用いなければならないと
いう欠点を有していた。また微量の糖鎖試料で構造の推
定を行う方法として、タイプ1及び2の糖鎖を切断する
ストレプトコッカス(Streptococcus)6646K 又はナタマ
メのβ−ガラクトシダーゼと、タイプ2糖鎖のみを切断
するディプロコッカス ニューモニエ(Diprococcus pn
eumoniae) のβ−ガラクトシダーゼを併用する方法が知
られているが、ストレプトコッカス6646K 及びナタマメ
のβ−ガラクトシダーゼはいずれもタイプ2糖鎖の方を
速やかに加水分解するので、タイプ1の糖鎖を完全に加
水分解するには大量の酵素を用いて長時間反応させなけ
ればならないなど反応条件の設定がむずかしく、実際に
はタイプ1とタイプ2の糖鎖構造の識別は困難であり、
該ヘテロオリゴ糖に特異的に作用する酵素の提供が求め
られていた。本発明者らはタイプ1糖鎖構造に特異的に
作用して、その糖鎖中のラクト−N−ビオシド結合を加
水分解しラクト−N−ビオースを遊離するエキソ型糖質
加水分解酵素を見出し、該酵素をラクト−N−ビオシダ
ーゼと命名した〔プロシーディングズ オブ ザ ナシ
ョナル アカデミー オブ サイエンシーズ オブザ
USA(Proceedings of the National Academy of Sci
ences of the USA)、第89巻、第8512頁(1
992)〕。
2. Description of the Related Art In recent years, the structure and function of sugar chains in complex carbohydrates such as glycoproteins and glycolipids derived from higher animals have been studied. Plays an important role. Conventionally, enzymes that release monosaccharides from the non-reducing end of sugar chains have been isolated from various sources and have been used to study the structure and function of sugar chains, releasing disaccharides from the non-reducing end of sugar chains. As enzymes, β-amylase which releases maltose from starch and cellobiase which releases cellobiose from cellulose are known. The non-reducing end of the sugar chain often contains Galβ1-3GlcNAc of type 1
Two types of β1-structure and type 2 Galβ1-4GlcNAcβ1-structure are found. Conventionally, analysis methods such as methylation analysis and nuclear magnetic resonance spectroscopy have been used to analyze the sugar chain structure, but have the disadvantage that a large amount of sample must be used. As a method for estimating the structure using a trace amount of a sugar chain sample, Streptococcus 6646K that cuts type 1 and 2 sugar chains or β-galactosidase of common bean, and Diprococcus pneumoniae that cuts only type 2 sugar chain ( Diprococcus pn
eumoniae) -β-galactosidase is also known, but Streptococcus 6646K and bean β-galactosidase all hydrolyze the type 2 sugar chain more quickly, so that the type 1 sugar chain is completely converted. It is difficult to set the reaction conditions, such as a long time reaction with a large amount of enzyme for hydrolysis, and it is actually difficult to distinguish type 1 and type 2 sugar chain structures.
It has been required to provide an enzyme that specifically acts on the hetero-oligosaccharide. The present inventors have found an exo-type saccharide hydrolase that specifically acts on a type 1 sugar chain structure and hydrolyzes a lacto-N-bioside bond in the sugar chain to release lacto-N-biose. The enzyme was named lacto-N-biosidase [Proceedings of the National Academy of Sciences of the
USA (Proceedings of the National Academy of Sci.
ences of the USA), Vol. 89, pp. 8512 (1
992)].

【0003】[0003]

【発明が解決しようとする課題】しかしながら、該酵素
は菌体内に産生され、かつ、その生産量も少なく、ま
た、同じ培養条件下でラクト−N−ビオシダーゼよりも
大量にα−フコシダーゼが菌体内に生産され、該α−フ
コシダーゼとの分離も困難であることなどの問題を有し
ていた。本発明の目的は、高度に精製し易く、工業的製
造に適した糖鎖構造解析用試薬として有用な新規ラクト
−N−ビオシダーゼを提供することにある。
However, the enzyme is produced intracellularly and its production is small, and under the same culture conditions, α-fucosidase is produced in a larger amount than lacto-N-biosidase. And had a problem that separation from the α-fucosidase was difficult. An object of the present invention is to provide a novel lacto-N-biosidase which is highly purified easily and is useful as a sugar chain structure analysis reagent suitable for industrial production.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明は下記の理化学的性質を有することを特徴とするエ
キソ型糖質加水分解酵素に関する。 (1)作用 下記式(化1)で表される糖鎖に作用してラクト−N−
ビオシド結合のみを加水分解する。
SUMMARY OF THE INVENTION In summary, the present invention relates to an exo-type saccharide hydrolase having the following physicochemical properties. (1) Action It acts on a sugar chain represented by the following formula (Formula 1) to cause lacto-N-
Hydrolyzes only biosidic bonds.

【0005】[0005]

【化1】Galβ1−3GlcNAcβ1−REmbedded image Galβ1-3GlcNAcβ1-R

【0006】(Rは糖残基を表す) (2)基質特異性 ラクト−N−ビオシド結合に作用して、 Galβ1-3GlcN
Acを遊離するが、N−アセチルラクトサミニド結合( G
alβ1-4GlcNAcβ1-R )には作用しない。また、p−ニ
トロフェニル−β−ラクト−N−ビオシドに作用して G
alβ1-3GlcNAcを遊離する。 (3)至適pH:5.5付近 (4)至適温度:60℃付近 (5)分子量:約6×104 (SDS−ポリアクリルア
ミドゲル電気泳動法による)
(R represents a sugar residue) (2) Substrate specificity Acting on a lacto-N-bioside bond, Galβ1-3GlcN
Ac is released, but an N-acetyllactosaminide bond (G
alβ1-4GlcNAcβ1-R). It acts on p-nitrophenyl-β-lacto-N-bioside to produce G
Releases alβ1-3GlcNAc. (3) Optimum pH: around 5.5 (4) Optimum temperature: around 60 ° C. (5) Molecular weight: about 6 × 10 4 (by SDS-polyacrylamide gel electrophoresis)

【0007】なお、式(化1)で表される糖鎖とは、そ
の非還元末端にラクト−N−ビオース構造( Galβ1-3
GlcNAcβ1 )を有する糖鎖であり、Rで示される糖残基
とは、例えば単糖類、オリゴ糖類、多糖類、あるいは糖
タンパク質や糖脂質のオリゴ糖類等の糖類の残基であ
る。
[0007] The sugar chain represented by the formula (Formula 1) has a lacto-N-biose structure (Galβ1-3) at its non-reducing end.
GlcNAcβ1), and the sugar residue represented by R is, for example, a residue of a saccharide such as a monosaccharide, an oligosaccharide, a polysaccharide, or an oligosaccharide of a glycoprotein or a glycolipid.

【0008】本発明者らは、上記現状にかんがみ、工業
的製造に適したラクト−N−ビオシシド結合分解酵素を
探索中の所、ある種の放線菌がラクト−N−ビオシド結
合に特異的な新規エキソ型糖質加水分解酵素を主に菌体
外に産生することを見出し、本発明に到達した。
In view of the above situation, the present inventors have been searching for a lacto-N-biosiside bond-degrading enzyme suitable for industrial production, and found that certain actinomycetes are specific for lacto-N-bioside bond. The present inventors have found that a novel exo-type saccharide hydrolase is mainly produced extracellularly, and have reached the present invention.

【0009】以下、本発明について詳細に説明する。本
発明に使用される菌株は、ラクト−N−ビオシダーゼ生
産能を有する菌株であればいかなる菌株でもよく、また
これらの菌株の変異株でもよい。本発明のラクト−N−
ビオシダーゼ生産能を有する菌株の具体例としては、例
えば、ストレプトミセスSP142が挙げられる。本菌
株はStreptomyces sp142と表示さ
れ、通商産業省工業技術院生命工学工業技術研究所に、
FERM BP−4569として寄託されている。
Hereinafter, the present invention will be described in detail. The strain used in the present invention may be any strain as long as it has lacto-N-biosidase-producing ability, or may be a mutant of these strains. Lact-N- of the present invention
Specific examples of the strain having biosidase-producing ability include, for example, Streptomyces SP142. This strain is designated as Streptomyces sp142, and the Ministry of International Trade and Industry has
Deposited as FERM BP-4569 .

【0010】本発明のラクト−N−ビオシダーゼは、例
えば上述した菌を栄養培地中で培養し、該培養物から酵
素を分離することによって得られる。培養に当っては、
通常の微生物の培養方法が用いられる。培地に加える栄
養源は、本菌株が利用し、ラクト−N−ビオシダーゼを
生産するものであればよく、炭素源としては、例えばグ
リセロール、グルコース、ガラクトース、マルトース、
ラクトース、フコース、ムチンなどが利用でき、窒素源
としては、酵母エキス、ペプトン、コーンスティープリ
カー、肉エキス、脱脂大豆、硫安、塩化アンモニウムな
どが適当である。また、胃ムチン、卵白ムチンなどのム
チン型糖タンパク質の添加は、本発明の酵素の誘導に有
効である。その他にリン酸塩、カリウム塩、マグネシウ
ム塩、亜鉛塩などの無機質及び金属塩類を加えてもよ
い。本発明のラクト−N−ビオシダーゼ生産菌を培養す
るに当り、生産量は培養条件により大きく変動するが、
一般に培養温度は20〜35℃、培地のpH5〜8が良
く、1日〜7日の通気かくはん培養で、本発明によるラ
クト−N−ビオシダーゼが生産される。培養条件は使用
する菌株、培地組成などに応じ、本発明のラクト−N−
ビオシダーゼの生産量が最大になるように設定するのは
当然である。
The lacto-N-biosidase of the present invention can be obtained, for example, by culturing the above-mentioned bacteria in a nutrient medium and separating the enzyme from the culture. When culturing,
A usual method for culturing microorganisms is used. The nutrient source to be added to the medium may be any one that utilizes the present strain and produces lacto-N-biosidase. Examples of the carbon source include glycerol, glucose, galactose, maltose,
Lactose, fucose, mucin and the like can be used, and as a nitrogen source, yeast extract, peptone, corn steep liquor, meat extract, defatted soybean, ammonium sulfate, ammonium chloride and the like are suitable. The addition of mucin-type glycoproteins such as gastric mucin and egg white mucin is effective for inducing the enzyme of the present invention. In addition, inorganic and metal salts such as phosphates, potassium salts, magnesium salts, and zinc salts may be added. In culturing the lacto-N-biosidase-producing bacterium of the present invention, the amount of production greatly varies depending on the culture conditions.
In general, the culturing temperature is preferably 20 to 35 ° C., and the pH of the medium is preferably 5 to 8, and the lacto-N-biosidase according to the present invention is produced by aeration and agitation culturing for 1 to 7 days. The culturing conditions are determined according to the strain used, the composition of the medium, etc.
It is natural that the biosidase production is set to be maximized.

【0011】上述の放線菌によって生産された本発明の
ラクト−N−ビオシダーゼは、例えば豚胃ムチンを培地
に加えて培養すると主に菌体外に分泌される上に、他の
エキソグリコシダーゼ、特にα−フコシダーゼがほとん
ど生産されないので菌体内に生産される前出プロシーデ
ィングズ オブ ザ ナショナル アカデミー オブサ
ンエンシーズ オブ ザ USAに記載の酵素に比べて
容易に精製を行うことができる。すなわち培養液を固液
分離し、得られた上清から通常用いられる精製手段によ
り精製酵素標品を得ることができる。例えば、塩析、有
機溶媒沈殿、イオン交換カラムクロマトグラフィー、疎
水結合カラムクロマトグラフィー、ハイドロキシアパタ
イトカラムクロマトグラフィー、ゲルろ過クロマトグラ
フィー、凍結乾燥などにより、精製を行い、ポリアクリ
ルアミドゲルディスク電気泳動的に単一な精製酵素標品
を得ることができる。
The lacto-N-biosidase of the present invention produced by the above-mentioned actinomycete is secreted mainly outside the cells, for example, when porcine stomach mucin is added to a culture medium and cultured, and other exoglycosidases, especially Since almost no α-fucosidase is produced, purification can be performed more easily than the enzyme described in the above-mentioned Proceedings of the National Academy of Sun Enzyes of the USA, which is produced in the cells. That is, the culture solution is subjected to solid-liquid separation, and a purified enzyme preparation can be obtained from the obtained supernatant by a commonly used purification means. For example, purification is performed by salting out, organic solvent precipitation, ion exchange column chromatography, hydrophobic binding column chromatography, hydroxyapatite column chromatography, gel filtration chromatography, lyophilization and the like. A single purified enzyme preparation can be obtained.

【0012】本発明により得られるラクト−N−ビオシ
ダーゼの酵素化学的及び理化学的性質は次のとおりであ
る。 (1)作用 ラクト−N−ビオシド結合に作用して、ラクト−N−ビ
オースを遊離する。 (2)基質特異性 本酵素は、人乳由来のラクト−N−テトラオース( Gal
β1-3GlcNAcβ1-3Galβ1-4Glc) に作用してその非還元
末端からラクト−N−ビオースを遊離させるが、人乳由
来のラクト−N−ネオテトラオース( Galβ1-4GlcNAc
β1-3Galβ1-4Glc)には作用しない。また牛胎児血清タ
ンパク質であるフェチュイン由来のラクト−N−ビオシ
ド結合を有する下記式(化2):
The lacto-N-biosidase obtained by the present invention has the following enzymatic and physicochemical properties. (1) Action It acts on a lacto-N-bioside bond to release lacto-N-biose. (2) Substrate specificity This enzyme is derived from human milk-derived lacto-N-tetraose (Gal
acts on β1-3GlcNAc (β1-3Galβ1-4Glc) to release lacto-N-biose from its non-reducing end, but lacto-N-neotetraose (Galβ1-4GlcNAc) derived from human milk
It does not act on β1-3Galβ1-4Glc). Further, the following formula having a lacto-N-bioside bond derived from fetuin, a bovine fetal serum protein:

【0013】[0013]

【化2】 Embedded image

【0014】(以下、式中Gは Gal、GNはGlcNAc、M
は Manを示す)で表される複合型糖鎖に作用して、ラク
ト−N−ビオースを遊離するが、ラクト−N−ビオシド
結合を有しない複合型糖鎖には作用しない。すなわち、
本酵素はラクト−N−ビオシド結合に特異的で、糖鎖の
非還元末端からラクト−N−ビオースを遊離する。
(Hereinafter, G is Gal, GN is GlcNAc, M
Acts on the complex type sugar chain represented by the formula (1) to release lacto-N-biose, but does not act on the complex type sugar chain having no lacto-N-bioside bond. That is,
This enzyme is specific for lacto-N-bioside linkage and releases lacto-N-biose from the non-reducing end of the sugar chain.

【0015】(3)至適pH及びpH安定性 本酵素の至適pHは図1の曲線で表されるごとくpH
5.5付近に高い活性を有している。本酵素を4℃にお
いて、それぞれのpHで16時間処理したときのpH安
定性を図2に示した。図2より明らかなように本酵素は
pH4.0−10.0の間で安定である。なお、図1は
本発明により得られるラクト−N−ビオシダーゼのpH
(横軸)と相対活性(%、縦軸)の関係を表すグラフ、
図2はpH(横軸)と残存活性(%、縦軸)との関係を
示すグラフであり、図2中、白丸印は酢酸−塩酸、黒丸
印は酢酸ナトリウム、白三角印はクエン酸ナトリウム、
黒三角印はリン酸ナトリウム、白四角印はグリシンナト
リウム、黒四角印は炭酸ナトリウムの各緩衝液を用いて
測定した。 (4)至適温度及び熱安定性 本酵素の作用最適温度は図3の曲線で表されるごとく6
0℃付近である。なお、図3は本発明のラクト−N−ビ
オシダーゼの相対活性(%、縦軸)と反応温度(℃、横
軸)との関係を表すグラフである。また、本酵素は、図
4に示すように、45℃で少なくとも0.5時間安定で
あり、4℃で少なくとも6カ月間安定である。なお図4
は本発明のラクト−N−ビオシダーゼをそれぞれの温度
で0.5時間処理した後の残存活性(%、縦軸)と処理
温度(℃、横軸)との関係を表すグラフである。 (5)分子量 分子量は約6×104 である(SDS−ポリアクリルア
ミドゲル電気泳動法による)
(3) Optimum pH and pH stability The optimum pH of the enzyme is determined by the pH as shown by the curve in FIG.
It has a high activity around 5.5. FIG. 2 shows the pH stability when this enzyme was treated at 4 ° C. at each pH for 16 hours. As is clear from FIG. 2, the present enzyme is stable between pH 4.0 and 10.0. FIG. 1 shows the pH of lacto-N-biosidase obtained by the present invention.
A graph showing the relationship between (horizontal axis) and relative activity (%, vertical axis),
FIG. 2 is a graph showing the relationship between pH (horizontal axis) and residual activity (%, vertical axis). In FIG. 2, white circles indicate acetic acid-hydrochloric acid, black circles indicate sodium acetate, and white triangles indicate sodium citrate. ,
The black triangles were measured using sodium phosphate, the white squares were measured using sodium glycine, and the black squares were measured using sodium carbonate. (4) Optimum temperature and thermostability The optimal temperature of action of the present enzyme is 6 as shown by the curve in FIG.
It is around 0 ° C. FIG. 3 is a graph showing the relationship between the relative activity (%, vertical axis) and the reaction temperature (° C., horizontal axis) of the lacto-N-biosidase of the present invention. In addition, as shown in FIG. 4, the present enzyme is stable at 45 ° C. for at least 0.5 hour and at 4 ° C. for at least 6 months. FIG. 4
Is a graph showing the relationship between the residual activity (%, vertical axis) and the processing temperature (° C., horizontal axis) after treating the lacto-N-biosidase of the present invention at each temperature for 0.5 hour. (5) Molecular weight The molecular weight is about 6 × 10 4 (by SDS-polyacrylamide gel electrophoresis).

【0016】(6)酵素活性の測定 ラクト−N−ビオシダーゼ活性の測定は次のようにして
求めた。基質として下記式(化3):
(6) Measurement of enzyme activity The measurement of lacto-N-biosidase activity was determined as follows. As a substrate, the following formula (Formula 3):

【0017】[0017]

【化3】Galβ1−3GlcNAcβ1−pNPEmbedded image Galβ1-3GlcNAcβ1-pNP

【0018】〔以下、式中pNPはp−ニトロフェニル
基を意味する〕で表される構造の糖鎖を用いた。この基
質1mMを含む35mMリン酸カリウム緩衝液、pH6.0
に酵素液を加え、最終液量0.1mlで37℃で20分間
反応させた後、1Mの炭酸ナトリウム溶液を加えて反応
を停止させ、405nmの吸光度を測定した。この条件下
で、1分間に1μmol のp−ニトロフェノールを生じる
酵素量を1単位とした。
In the following, a sugar chain having a structure represented by the following formula: pNP means p-nitrophenyl group was used. 35 mM potassium phosphate buffer containing 1 mM of this substrate, pH 6.0
, And reacted at 37 ° C. for 20 minutes in a final volume of 0.1 ml. The reaction was stopped by adding a 1 M sodium carbonate solution, and the absorbance at 405 nm was measured. Under these conditions, the amount of enzyme that produces 1 μmol of p-nitrophenol per minute was defined as one unit.

【0019】本発明のラクト−N−ビオシダーゼを利用
して以下の事項を解明することができる。 (1)複合糖質中のラクト−N−ビオシル残基の役割を
知ることができる。 (2)本酵素を用いれば、複合糖質中のラクト−N−ビ
オシル基の有無を直接推定することができ、タイプ1糖
鎖とタイプ2糖鎖の識別が直接できる。 (3)糖鎖還元末端をあらかじめ還元ピリジルアミノ化
法〔ジャーナル オブバイオケミストリー(Journal of
Biochemistry)、第95巻、第197〜203頁(19
84)〕にて蛍光標識した糖鎖を用いて、上記の酵素消
化法と2次元糖鎖マップ法〔アナリティカル バイオケ
ミストリー(Analytical Biochemistry)、第171巻、
第73頁(1988)〕を組合せることによって、ラク
ト−N−ビオシル基も含めた糖鎖構造全体を、従来の数
百倍の感度で推定することができる。 (4)還元末端を〔 3H〕標識した糖鎖、あるいは、未
標識糖鎖を用いて、本酵素で酵素化を行い、酵素消化物
をゲルろ過クロマトグラフィーやイオン交換クロマトグ
ラフィーなどで分析することによって、糖鎖構造を推定
することができる。
The following items can be elucidated by using the lacto-N-biosidase of the present invention. (1) The role of lacto-N-biosyl residue in glycoconjugates can be known. (2) The use of the present enzyme makes it possible to directly estimate the presence or absence of a lacto-N-biosyl group in a glycoconjugate, and to directly discriminate type 1 sugar chains from type 2 sugar chains. (3) The reducing end of the sugar chain is previously reduced by a pyridyl amination method [Journal of Biochemistry (Journal of
Biochemistry), 95, 197-203 (19
84)], and using the above-mentioned enzyme digestion method and two-dimensional sugar chain map method (Analytical Biochemistry, Vol. 171,
73 (1988)], it is possible to estimate the entire sugar chain structure including the lacto-N-biosyl group with a sensitivity several hundred times higher than the conventional one. (4) Using a sugar chain labeled with [ 3 H] or an unlabeled sugar chain at the reducing end, the enzyme is enzymatically treated with the present enzyme, and the enzyme digest is analyzed by gel filtration chromatography or ion exchange chromatography. Thereby, the sugar chain structure can be estimated.

【0020】[0020]

【実施例】次に、実施例を挙げて本発明を説明するが、
本発明は以下の実施例の範囲のみに限定されるものでは
ない。
Next, the present invention will be described with reference to examples.
The present invention is not limited only to the scope of the following examples.

【0021】実施例1 (1)菌の培養と培養上清及び無細胞抽出液の調製 Streptomyces sp 142(FERM
BP−4569)をペプトン0.3%、イーストエキス
0.01%、リン酸一カリウム0.1%、硫酸マグネシ
ウム7水和物0.05%及び豚胃ムチン1%を含む50
0mlの液体培地(pH7.0)を用いて25〜27℃
で2日間培養した後、培養液を遠心分離して培養上清及
び菌体を得た。菌体を1mMのエチレンジアミン四酢酸
を含む10mMリン酸ナトリウム緩衝液pH7.0で洗
浄後、同緩衝液に懸濁して超音波処理し、遠心分離によ
って菌体残渣を除いて、無細胞抽出液を得た。上清中
の、すなわち菌体外に生産されたN−ラクト−ビオシダ
ーゼの活性は2.4mU/ml培養液、α−フコシダー
ゼの活性は0.01mU/ml培養液であった。また、
無細胞抽出液の、すなわち菌体内に生産されたN−ラク
ト−ビオシダーゼの活性は0.5mU/ml培養液、α
−フコシダーゼの活性は0.002mU/ml培養液で
あった。なお、α−フコシダーゼの活性はジャーナル
オブ バイオロジカル ケミストリー(Journal
of Biological Chemistr
y)、第267巻、第1522頁(1992)に記載の
方法で行った。
Example 1 (1) Culture of bacteria and preparation of culture supernatant and cell-free extract Streptomyces sp 142 (FERM)
BP-4569) containing 0.3% of peptone, 0.01% of yeast extract, 0.1% of monopotassium phosphate, 0.05% of magnesium sulfate heptahydrate and 1% of swine stomach mucin 50
25 to 27 ° C. using 0 ml of a liquid medium (pH 7.0)
After culture for 2 days, the culture solution was centrifuged to obtain a culture supernatant and cells. The cells were washed with 10 mM sodium phosphate buffer containing 1 mM ethylenediaminetetraacetic acid, pH 7.0, suspended in the same buffer, sonicated, and the cell-free extract was removed by removing the cell residues by centrifugation. Obtained. The activity of N-lacto-biosidase produced in the supernatant, ie, extracellularly, was 2.4 mU / ml culture, and the activity of α-fucosidase was 0.01 mU / ml culture. Also,
The activity of the cell-free extract, ie, the N-lacto-biosidase produced in the cells, was 0.5 mU / ml culture, α
-Fucosidase activity was 0.002 mU / ml culture. The activity of α-fucosidase was determined by the journal.
Of Biological Chemistry (Journal
of Biological Chemistr
y), vol. 267, p. 1522 (1992).

【0022】(2)酵素の調製 上記に得た培養上清500mlを、0.5mMフェニルメタ
ンスルホニルフルオリド及び0.05%ブリッジ(Bri
j) 58を含む50mMリン酸カリウム緩衝液pH7.5
に対して透析後、同緩衝液で平衡化したQ−セファロー
スのカラム(2.5×18cm)に供した。カラムをその
3倍容量の同一の緩衝液で洗浄し、溶出してきた素通り
画分を集めた。活性画分は0.1mMフェニルメタンスル
ホニルフルオリド及び0.05%ブリッジ58を含む5
0mM酢酸ナトリウム緩衝液pH5.5に対して透析後、
同緩衝液で平衡化したS−セファロースのカラム(1.
5×8.5cm)に供した。カラムをその3倍容量の同一
の緩衝液で洗浄した後、0−0.4MまでのNaClの
濃度勾配をかけて溶出した。活性画分を0.05%ブリ
ッジ58を含む50mM酢酸ナトリウム緩衝液pH5.5
に対して透析後、同緩衝液で平衡化したMono−Sカ
ラム(0.5×5.0cm)に供した。溶出は0−0.5
MまでのNaClの濃度勾配で行った。0.05%ブリ
ッジ58を含む50mMリン酸カリウム緩衝液pH6.8
であらかじめ平衡化したP6DGのカラムにかけて緩衝
液を交換した後、同緩衝液で平衡化したハイドロキシア
パタイトのカラム(0.6×4.0cm)に供した。溶出
はリン酸カリウム緩衝液の濃度を50mM−500mMまで
直線的に上げて行った。活性画分を限外ろ過(分画分子
量1万)にて濃縮後0.05%ブリッジ58及び0.2
M NaClを含む50mM酢酸ナトリウム緩衝液pH
5.5で平衡化したトヨパールHW−55Sのカラム
(1.5×90cm)にかけた。同緩衝液で溶出し、活性
画分を集めて本発明のラクト−N−ビオシダーゼを得
た。この様にして得られたラクト−N−ビオシダーゼの
比活性は8000ミリ単位/mgであり、菌体内に生産さ
れる酵素(前出プロシーディングズ オブ ザ ナショ
ナル アカデミー オブ サイエンシ−ズオブ ザ U
SA)の比活性、684ミリ単位/mgに比べてはるかに
精製された酵素標品であり、糖鎖構造解析用試薬として
十分使用可能であった。なお、上記酵素の比活性は前記
の測定法によって測定した。
(2) Preparation of enzyme 500 ml of the culture supernatant obtained above was mixed with 0.5 mM phenylmethanesulfonyl fluoride and 0.05% bridge (Bri).
j) 50 mM potassium phosphate buffer pH 7.5 containing 58
After dialysis, the mixture was applied to a column of Q-Sepharose (2.5 × 18 cm) equilibrated with the same buffer. The column was washed with three volumes of the same buffer, and the eluted flow-through fractions were collected. The active fraction contains 0.1 mM phenylmethanesulfonyl fluoride and 0.05% bridge 58.
After dialysis against 0 mM sodium acetate buffer pH 5.5,
A column of S-Sepharose equilibrated with the same buffer (1.
5 × 8.5 cm). The column was washed with three volumes of the same buffer and eluted with a NaCl gradient from 0-0.4M. The active fraction was treated with 50% sodium acetate buffer pH 5.5 containing 0.05% bridge 58.
After dialysis, the mixture was applied to a Mono-S column (0.5 × 5.0 cm) equilibrated with the same buffer. Elution is 0-0.5
Performed with a concentration gradient of NaCl up to M. 50 mM potassium phosphate buffer pH 6.8 containing 0.05% bridge 58
After changing the buffer over a P6DG column which had been equilibrated in advance, the mixture was applied to a hydroxyapatite column (0.6 × 4.0 cm) equilibrated with the same buffer. Elution was performed by linearly increasing the concentration of the potassium phosphate buffer from 50 mM to 500 mM. The active fraction was concentrated by ultrafiltration (molecular weight cut off: 10,000) and then 0.05% bridge 58 and 0.2%.
50 mM sodium acetate buffer with M NaCl pH
The mixture was applied to a column (1.5 × 90 cm) of Toyopearl HW-55S equilibrated in 5.5. Elution was carried out with the same buffer, and the active fraction was collected to obtain lacto-N-biosidase of the present invention. The specific activity of the lacto-N-biosidase thus obtained is 8,000 milliunits / mg, and the enzyme produced in the cells (Proceedings of the National Academy of Sciences of the U.
The enzyme preparation was much more purified than the specific activity of SA), 684 milliunits / mg, and was sufficiently usable as a reagent for analyzing a sugar chain structure. The specific activity of the above enzyme was measured by the above-mentioned measuring method.

【0023】実施例2 ピリジルアミン化糖鎖に対する
作用 基質として下記式(化4):
Example 2 Action on Pyridylamined Sugar Chain As a substrate, the following formula (Formula 4):

【0024】[0024]

【化4】 Embedded image

【0025】で表される構造のピリジルアミノ化糖鎖
(宝酒造社製)を用いて実施例1で得た酵素を作用させ
た。3.3μMの基質を含む80mMリン酸緩衝液pH
6.0に本酵素50μ単位を加えて37℃、16時間反
応を行った。反応終了後反応液をHPLCで分析し、下
記式(化5):
The enzyme obtained in Example 1 was reacted with a pyridylaminated sugar chain (manufactured by Takara Shuzo) having a structure represented by the following formula: 80 mM phosphate buffer pH with 3.3 μM substrate
6.0 was added with 50 µ units of the present enzyme, and reacted at 37 ° C for 16 hours. After completion of the reaction, the reaction solution was analyzed by HPLC, and the following formula (Formula 5) was obtained.

【0026】[0026]

【化5】 Embedded image

【0027】で表される構造のピリジルアミノ化糖鎖が
生成している事を確認した。更に反応液を濃縮乾固し、
糖質ピリジルアミノ化装置・パルステーション(PALSTA
TION:宝酒造社製)にて還元ピリジルアミノ化した後、
HPLC分析を行い、式(化5)並びに下記式(化
6):
It was confirmed that a pyridylaminated sugar chain having a structure represented by the following formula was generated. The reaction solution was further concentrated to dryness,
Carbohydrate Pyridyl Amination System / Pulsation (PALSTA
TION: manufactured by Takara Shuzo Co., Ltd.)
HPLC analysis was performed to obtain the compound represented by the formula (5) and the following formula (6):

【0028】[0028]

【化6】G(β1−3)GN−PAEmbedded image G (β1-3) GN-PA

【0029】で表される構造のピリジルアミノ化糖鎖の
生成を確認した。
The formation of a pyridylaminated sugar chain having the structure represented by the following formula was confirmed.

【0030】[0030]

【発明の効果】本発明により、複合糖鎖の構造と機能の
解明に有用で、工業的製造にも適した新規ラクト−N−
ビオシダーゼが提供された。
Industrial Applicability According to the present invention, a novel lacto-N- useful for elucidating the structure and function of a complex sugar chain and suitable for industrial production.
Biosidase was provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明により得られるラクト−N−ビオシダー
ゼのpHと活性の関係を表すグラフである。
FIG. 1 is a graph showing the relationship between pH and activity of lacto-N-biosidase obtained by the present invention.

【図2】ラクト−N−ビオシダーゼを4℃において、そ
れぞれのpHで16時間処理した後のpHと活性の関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between pH and activity after treating lacto-N-biosidase at 4 ° C. at each pH for 16 hours.

【図3】本発明のラクト−N−ビオシダーゼの相対活性
(%、縦軸)と反応温度(℃、横軸)との関係を表すグ
ラフである。
FIG. 3 is a graph showing the relationship between the relative activity (%, vertical axis) of lacto-N-biosidase of the present invention and the reaction temperature (° C., horizontal axis).

【図4】本発明のラクト−N−ビオシダーゼをそれぞれ
の温度で0.5時間処理した後の残存活性(%、縦軸)
と処理温度(℃、横軸)との関係を表すグラフである。
FIG. 4 shows the residual activity (%, vertical axis) after treating the lacto-N-biosidase of the present invention for 0.5 hour at each temperature.
6 is a graph showing the relationship between the temperature and the processing temperature (° C., horizontal axis).

フロントページの続き (56)参考文献 Proc.Natl.Acad.Sc i.USA 89 p.8512−8516 (1992) (58)調査した分野(Int.Cl.6,DB名) C12N 9/24 C12N 9/38 BIOSIS(DIALOG) WPI(DIALOG)Continuation of front page (56) References Proc. Natl. Acad. Sc i. USA 89 p. 8512-8516 (1992) (58) Fields investigated (Int. Cl. 6 , DB name) C12N 9/24 C12N 9/38 BIOSIS (DIALOG) WPI (DIALOG)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記の理化学的性質を有することを特徴
とするエキソ型糖質加水分解酵素。 (1)作用 下記式(化1)で表される糖鎖に作用してラクト−N−
ビオシド結合のみを加水分解する。 【化1】Galβ1−3GlcNAcβ1−R (Rは糖残基を表す) (2)基質特異性 ラクト−N−ビオシド結合に作用して、 Galβ1-3GlcN
Acを遊離するが、N−アセチルラクトサミニド結合( G
alβ1-4GlcNAcβ1-R )には作用しない。また、p−ニ
トロフェニル−β−ラクト−N−ビオシドに作用して G
alβ1-3GlcNAcを遊離する。 (3)至適pH:5.5付近 (4)至適温度:60℃付近 (5)分子量:約6×104 (SDS−ポリアクリルア
ミドゲル電気泳動法による)
An exo-type saccharide hydrolase having the following physicochemical properties: (1) Action It acts on a sugar chain represented by the following formula (Formula 1) to cause lacto-N-
Hydrolyzes only biosidic bonds. ## STR1 ## Galβ1-3GlcNAcβ1-R (R represents a sugar residue) (2) Substrate Specificity Galβ1-3GlcN acts on a lacto-N-bioside bond.
Ac is released, but an N-acetyllactosaminide bond (G
alβ1-4GlcNAcβ1-R). It acts on p-nitrophenyl-β-lacto-N-bioside to produce G
Releases alβ1-3GlcNAc. (3) Optimum pH: around 5.5 (4) Optimum temperature: around 60 ° C. (5) Molecular weight: about 6 × 10 4 (by SDS-polyacrylamide gel electrophoresis)
JP32897592A 1992-11-16 1992-11-16 Carbohydrate hydrolases Expired - Fee Related JP2829810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32897592A JP2829810B2 (en) 1992-11-16 1992-11-16 Carbohydrate hydrolases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32897592A JP2829810B2 (en) 1992-11-16 1992-11-16 Carbohydrate hydrolases

Publications (2)

Publication Number Publication Date
JPH06153944A JPH06153944A (en) 1994-06-03
JP2829810B2 true JP2829810B2 (en) 1998-12-02

Family

ID=18216211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32897592A Expired - Fee Related JP2829810B2 (en) 1992-11-16 1992-11-16 Carbohydrate hydrolases

Country Status (1)

Country Link
JP (1) JP2829810B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739983B1 (en) * 1995-04-27 2009-12-30 Takara Bio Inc. Gene encoding lacto-n-biosidase

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Proc.Natl.Acad.Sci.USA 89 p.8512−8516(1992)

Also Published As

Publication number Publication date
JPH06153944A (en) 1994-06-03

Similar Documents

Publication Publication Date Title
Watkins Enzymes of Trichomonas foetus. The action of cell-free extracts on blood-group substances and low-molecular-weight glycosides
Spiro et al. Studies on the Biosynthesis of the Hydroxylysine-linked Disaccharide Unit of Basement Membranes and Collagens: II. KIDNEY GALACTOSYLTRANSFERASE
Scudder et al. Isolation and characterization of an endo-β-galactosidase from Bacteroides fragilis
Ito et al. [40] Endoglycoceramidase from Rhodococcus species G-74-2
Caccam et al. Glycoprotein biosynthesis: purification and characterization of a glycoprotein: galactosyl transferase from Ehrlich ascites tumor cell membranes
Wadström et al. Bacteriolytic enzymes from Staphylococcus aureus. Specificity of action of endo-β-N-acetylglucosaminidase
Messer et al. Changes in a-lactalbumin, total lactose, UDP-galactose hydrolase and other factors in tammar wallaby (Macropus eugenii) milk during lactation
JP2829810B2 (en) Carbohydrate hydrolases
JP2782563B2 (en) New carbohydrate hydrolase
Bakunina et al. α-N-Acetylgalactosaminidase from Marine Bacterium Arenibacter latericius KMM 426 T Removing Blood Type Specificity of A-Erythrocytes
Li et al. [57] Endo-β-galactosidase from Escherichia freundii
Percheron et al. Mammalian β-d-mannosidase and β-mannosidosis
Pardoe The inducible neuraminidase (N-acyl-neuraminyl hydrolase EC 3.2. 1.18) of Klebsiella aerogenes NCIB 9479
JP3100012B2 (en) Novel neuraminidase, method for producing the same, and method for producing sialic acid binding compound using the same
Erzberger et al. Assay of ganglioside GM2-N-acetyl-β-d-galactosaminidase activity in human fibroblasts employing the natural activator protein—Diagnosis of variant forms of GM2 gangliosidosis
Uda et al. Purification and Characterization of β-N-Acetylhexosaminidase from the Ascidian, Halocynthia roretzi
JP2854541B2 (en) Hydrolysis method of sugar compounds
JPH01281082A (en) Neuraminidase isozyme s and production of gangliosides
JP2970932B2 (en) Novel heat-stable β-galactosyltransferase, its production method and its use
YUZIUK et al. Two different sialidases, KDN-sialidase and regular sialidase in the starfish Asterina pectinifera
WO1996000781A1 (en) Novel deaminoneuraminidase and process for producing the same
Melgar et al. Kinetic studies on β-d-fucosidase of Littorina littorea L.
JPH07107988A (en) Production of lysoglycolipid
JP2699078B2 (en) Muscin degrading enzyme and its production method
JP3617688B2 (en) β-N-acetylglucosaminidase

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090925

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100925

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees