JP2828751B2 - Recording / reproducing method for optical recording medium - Google Patents

Recording / reproducing method for optical recording medium

Info

Publication number
JP2828751B2
JP2828751B2 JP22635190A JP22635190A JP2828751B2 JP 2828751 B2 JP2828751 B2 JP 2828751B2 JP 22635190 A JP22635190 A JP 22635190A JP 22635190 A JP22635190 A JP 22635190A JP 2828751 B2 JP2828751 B2 JP 2828751B2
Authority
JP
Japan
Prior art keywords
light
wavelength
recording
polarized light
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22635190A
Other languages
Japanese (ja)
Other versions
JPH04106724A (en
Inventor
強 辻岡
宏太郎 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP22635190A priority Critical patent/JP2828751B2/en
Priority to DE69028908T priority patent/DE69028908T2/en
Priority to EP90125700A priority patent/EP0436228B1/en
Priority to KR1019900023010A priority patent/KR100196015B1/en
Publication of JPH04106724A publication Critical patent/JPH04106724A/en
Application granted granted Critical
Publication of JP2828751B2 publication Critical patent/JP2828751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は光記録媒体に対して情報の記録及び若しくは
再生を行う光記録媒体の記録及び若しくは再生方法に関
する。
The present invention relates to a recording and / or reproducing method for an optical recording medium for recording and / or reproducing information on / from an optical recording medium.

(ロ) 従来の技術 近年、フォトクロミック材料を媒体の記録層に用いる
研究が盛んに進められている。斯かるフォトクロミック
材料は、所定波長の光を照射すると、光化学反応によっ
て分子の構造が変化し、該分子の構造変化に応じて特定
の波長を有する光に対する光学的特性が変化するといっ
た様な性質を有している。また他の所定の波長の光が照
射されると、上記変化した分子の構造が元の構造に戻る
といった性質を有している。
(B) Conventional technology In recent years, research on using a photochromic material for a recording layer of a medium has been actively promoted. Such a photochromic material has properties such that when irradiated with light of a predetermined wavelength, the structure of a molecule changes due to a photochemical reaction, and the optical characteristics of light having a specific wavelength change according to the change in the structure of the molecule. Have. In addition, when light of another predetermined wavelength is irradiated, the structure of the changed molecule returns to the original structure.

最近、斯かる材料を用いて媒体に情報を多重記録する
研究が検討されている。この種の波長多重記録方法とし
ては、例えば、特開昭61−203450号(G03C 1/733)に開
示されたものが公知である。斯かる媒体は光吸収波長領
域がそれぞれ異なるホトクロミック材を含む複数の記録
層が形成されている。この媒体に特定波長の光線を照射
すると、各記録層のうち上記波長の光を吸収する記録層
中のフォトクロミック材が光化学反応を起こし、以っ
て、この記録層に対して情報の記録が行われる。而し
て、上記記録層に上記フォトクロミック材によって吸収
される複数種の波長の光線をこの媒体に照射することに
より、各記録層に対して情報の波長多重記録が行われ
る。各記録層中の情報の読み取りは、この媒体に記録時
の約1/10の強度の上記複数種の波長の光線を照射するこ
とによって行われる。この光線は対応する記録層におい
て主に吸収されるが、更にこの記録層の上記フォトクロ
ミック材に光化学反応が発生しているか否かによって吸
収される度合が変化する。従って、媒体が反射型である
場合には、媒体からの反射光の強度差を検出することに
より、対応する記録層上の情報を読み取ることができ
る。尚、逆の光化学反応を起こす光線を媒体に照射する
と、照射された部分のフォトクロミック材は初めの状態
に戻り、これにより情報の消去が行われる。
Recently, a study of multiplex recording of information on a medium using such a material has been studied. As this type of wavelength multiplex recording method, for example, a method disclosed in Japanese Patent Application Laid-Open No. 61-203450 (G03C1 / 733) is known. In such a medium, a plurality of recording layers including photochromic materials having different light absorption wavelength regions are formed. When this medium is irradiated with a light beam of a specific wavelength, a photochromic material in the recording layer that absorbs the light of the above-mentioned wavelength among the recording layers causes a photochemical reaction, whereby information is recorded on this recording layer. Will be By irradiating the recording layer with light beams of a plurality of wavelengths absorbed by the photochromic material, wavelength multiplex recording of information is performed on each recording layer. Reading of information in each recording layer is performed by irradiating this medium with light rays of the above-mentioned plural wavelengths having about 1/10 the intensity at the time of recording. This light beam is mainly absorbed in the corresponding recording layer, and the degree of absorption varies depending on whether or not a photochemical reaction has occurred in the photochromic material of the recording layer. Therefore, when the medium is a reflection type, the information on the corresponding recording layer can be read by detecting the difference in the intensity of the reflected light from the medium. When the medium is irradiated with a light beam causing a reverse photochemical reaction, the irradiated portion of the photochromic material returns to the initial state, thereby erasing information.

(ハ) 発明が解決しようとする課題 然し乍ら、上記従来の波長多重記録方法では、フォト
クロミック材は一般に吸収スペクトルが急峻でなく、フ
ォトクロミック材同士のスペクトルに重なりがあるた
め、一つの波長の光線が複数種のフォトクロミック材に
光化学反応を起こさせる惧れがあった。この結果、情報
の記録再生を行う際、クロストークが発生するという問
題があった。本発明は斯かる不都合を解決せんとするも
ので、クロストークを防止する光記録媒体の記録再生方
法を提案するものである。
(C) Problems to be Solved by the Invention However, in the above-described conventional wavelength multiplex recording method, the photochromic material generally does not have a steep absorption spectrum and the spectra of the photochromic materials overlap each other. Some photochromic materials may cause photochemical reactions. As a result, there is a problem that crosstalk occurs when recording and reproducing information. The present invention has been made to solve such a problem, and proposes a recording / reproducing method for an optical recording medium which prevents crosstalk.

(ニ) 課題を解決するための手段 上記課題を鑑み本発明の記録再生方法は、光吸収波長
領域が夫々異なる第1、第2のフォトクロミック材を含
む光記録媒体に、前記第1のフォトクロミック材に対応
する第1の波長の光と前記第2のフォトクロミック材に
対応する第2の波長の光とを照射して情報の記録再生を
行う光記録媒体の記録再生方法において、前記第1の波
長の光と前記第2の波長の光とは互いに偏光方向が直交
する直線偏光であり、前記第1の波長の光と前記第2の
波長の光とにより光記録媒体に光学的異方性を生じせし
めて情報の記録を行い、前記光学的異方性の方向に応じ
た前記第1の波長の光と前記第2の波長の光とにより情
報の再生を行うことを特徴とする。
(D) Means for Solving the Problems In view of the above problems, the recording / reproducing method of the present invention provides an optical recording medium including first and second photochromic materials having different light absorption wavelength regions, respectively. A recording / reproducing method of an optical recording medium for recording / reproducing information by irradiating light of a first wavelength corresponding to the second wavelength and light of a second wavelength corresponding to the second photochromic material, The light of the second wavelength and the light of the second wavelength are linearly polarized lights whose polarization directions are orthogonal to each other, and the optical recording medium has optical anisotropy by the light of the first wavelength and the light of the second wavelength. It is characterized in that the information is recorded by causing it to occur, and the information is reproduced by the light of the first wavelength and the light of the second wavelength according to the direction of the optical anisotropy.

(ホ) 作用 記録層中にフォトクロミック材料の分子が、未記録状
態にあるときに記録層中に無配向な状態に分散されてい
る場合、斯かる記録層に直線偏光の光が照射されると、
記録層中に分散された前記分子の内、上記直線偏光の偏
光方向(偏光面)に応じた特定の分子だけが光化学反応
を起こし、分子構造が変化する。この様に、記録層中に
分散された分子の内、特定の分子のみが、他の分子に対
して分子構造を異にする(異方性の発生)ようになり、
情報の記録が行うことができる。この異方性(光学的異
方性)の一種としては、吸光度に角度依存性が存在する
ものがある。即ち、情報の記録が行われた記録層に直線
偏光の光を照射すると、記録に用いた直線偏光と再生に
用いる直線偏光との2つの直線偏光の偏光方向のなす角
度に依存する吸光度の差異(二色性)が存在する。従っ
て、記録用の光の偏光状態に対応した偏光状態の光を照
射して吸光度の変化を検出して情報の再生ができる。本
発明は、斯かる原理を多重記録に利用している。即ち、
光吸収波長領域が夫々異なる複数のフォトクロミック材
からなる光記録媒体に、各フォトクロミック材に吸収さ
れる波長の光が偏光した状態で照射すると、複数のフォ
トクロミック材のうち各波長の光に対応したフォトクロ
ミック材が偏光状態に対応して主に光化学反応を起こし
て情報の記録が行われる。記録が行われた記録層には吸
光度の差異に方向依存性と波長依存性とを有する。又、
情報の再生は、上記記録時の光の性質(波長及び偏光状
態)に応じた偏光の光が照射されて生じる吸光度の差異
を検出して行われる。従って、上記情報の記録再生で
は、従来の方法の波長依存性の他に、各波長には吸光度
の差異に方向依存性を有しているため、クロストークの
低減を図ることができる。
(E) Function When the molecules of the photochromic material are dispersed in the recording layer in a non-oriented state in the unrecorded state when the recording layer is irradiated with linearly polarized light. ,
Of the molecules dispersed in the recording layer, only specific molecules corresponding to the polarization direction (polarization plane) of the linearly polarized light cause a photochemical reaction, and the molecular structure changes. In this way, among the molecules dispersed in the recording layer, only specific molecules have a different molecular structure from other molecules (the generation of anisotropy),
Recording of information can be performed. As one type of this anisotropy (optical anisotropy), there is one in which the absorbance has an angle dependency. That is, when the recording layer on which information is recorded is irradiated with linearly polarized light, the difference in absorbance depending on the angle formed by the two linearly polarized light directions of the linearly polarized light used for recording and the linearly polarized light used for reproduction. (Dichroism). Therefore, information can be reproduced by irradiating light having a polarization state corresponding to the polarization state of the light for recording and detecting a change in absorbance. The present invention utilizes such a principle for multiplex recording. That is,
When an optical recording medium composed of a plurality of photochromic materials having different light absorption wavelength regions is irradiated with polarized light having a wavelength absorbed by each photochromic material, a photochromic material corresponding to light of each wavelength among the plurality of photochromic materials is obtained. The information is recorded by mainly causing a photochemical reaction according to the polarization state of the material. The recording layer on which recording has been performed has a direction dependency and a wavelength dependency in the difference in absorbance. or,
Reproduction of information is performed by detecting a difference in absorbance caused by irradiating polarized light according to the nature (wavelength and polarization state) of the light at the time of recording. Therefore, in the recording and reproduction of the information, in addition to the wavelength dependency of the conventional method, the difference in absorbance at each wavelength has direction dependency, so that crosstalk can be reduced.

(ヘ) 実施例 以下、図面を参照しつつ本発明について詳細に説明す
る。
(F) Example Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明は以下の原理を利用する。 The present invention utilizes the following principle.

第1図に示すように無配向のフォトクロミック材料よ
りなる記録層において、記録用の直線偏光の光が照射さ
れた上記記録層(記録状態)と照射されていない上記記
録層(未記録状態)とでは吸光度が異なり、且つ、記録
用の直線偏光の光を照射した上記記録層に対して、上記
記録用の直線偏光の光の偏光方向に対して角度θを有す
る再生用の直線偏光の光の吸光度が上記角度θに依存し
て異なることを利用して行われる。即ち、特定の方向
(光学的異方性方向)の直線偏光の光で大きな出力が得
られ(第1図の場合、θ=0゜)、他方未記録トラック
及びに上記特定方向と90度異なる方向の直線偏光の光で
上記記録トラックを再生すると出力が低下することを利
用する。ただし、フォトクロミック材料及び記録または
再生用の光の波長により第1図に示す関係は異なったも
のとなる可能性がある。この時、光学的異方性方向には
一般に使用する記録用及び再生用の光において大きな吸
光度の差異が生じる方向と定義するが、記録層に大きな
複屈折が生じる場合には再生用の光の直線偏光の偏光方
向はθ=0゜となるように設定されるのが望ましい。
As shown in FIG. 1, in a recording layer made of a non-oriented photochromic material, the recording layer irradiated with linearly polarized light for recording (recording state) and the recording layer not irradiated (unrecorded state) Absorbance is different, and, for the recording layer irradiated with the linearly polarized light for recording, the linearly polarized light for reproduction having an angle θ with respect to the polarization direction of the linearly polarized light for recording. This is performed using the fact that the absorbance differs depending on the angle θ. In other words, a large output is obtained with linearly polarized light in a specific direction (optically anisotropic direction) (θ = 0 ° in FIG. 1), and on the other hand, in an unrecorded track and 90 ° different from the above specific direction. The fact that the output decreases when the recording track is reproduced with linearly polarized light in the direction is used. However, the relationship shown in FIG. 1 may be different depending on the photochromic material and the wavelength of the light for recording or reproduction. At this time, the direction of optical anisotropy is defined as a direction in which a large difference in absorbance occurs between generally used light for recording and light for reproduction. However, when a large birefringence occurs in the recording layer, the direction of light for reproduction is defined. It is desirable that the polarization direction of the linearly polarized light be set so that θ = 0 °.

本発明では、数種のフォトクロミック材を含む記録媒
体に各フォトクロミック材の光吸収波長領域の波長で、
且つ特定の偏光方向の直線偏光の光を照射して情報の記
録が行われ、上記波長の光を記録時の直線偏光の偏光方
向に応じた方向(一般にθ=0゜で十分である)の直線
偏光の微弱光を照射して吸光度の変化により情報の再生
が行われる。
In the present invention, a recording medium containing several types of photochromic materials has a wavelength in a light absorption wavelength region of each photochromic material,
In addition, information is recorded by irradiating linearly polarized light having a specific polarization direction, and the light having the above wavelength has a direction corresponding to the polarization direction of the linearly polarized light at the time of recording (generally, θ = 0 ° is sufficient). Information is reproduced by irradiating weak light of linearly polarized light and changing the absorbance.

以下、第2図に示す概念図を用いて説明する。例え
ば、記録層に従来と同様に光吸収を波長λ(一般に
は、吸収極大波長)にもつフォトクロミック材(X)と
光吸収を波長λ(一般には、吸収極大波長)にもつフ
ォトクロミック材(Y)を含む場合、未記録状態での微
弱なランダム偏光又は直線偏光の光の吸光度曲線は第2
図(a)〜(c)の実線で示す曲線となる。
Hereinafter, description will be made with reference to the conceptual diagram shown in FIG. For example, the recording layer has a photochromic material (X) having light absorption at a wavelength λ X (generally, a maximum absorption wavelength) and a photochromic material having light absorption at a wavelength λ Y (generally, a maximum absorption wavelength). Y), the absorbance curve of the weakly random polarized light or linearly polarized light in the unrecorded state is the second.
The curves shown by the solid lines in FIGS.

従来と同様に上記記録層に波長λのランダム偏光ま
たは円偏光の光を照射して、しかる後に上記と同じ偏光
状態のランダム偏光又は円偏光の微弱光で吸光度を測定
すると、第2図(a)に示す吸光度曲線(破線)が得ら
れる。上記の結果から分かるように、従来の方法では記
録層に波長λの光が照射されると、波長λだけでな
く波長λの吸光度も大きく変化する。これは波長λ
に情報の記録の際、波長λにも情報の記録が行われ、
従ってクロストークが発生することを意味する。上記ク
ロストークの発生はフォトクロミック材の吸収スペクト
ルが急峻でなく、吸収波長領域が重なっていることに起
因している。
Conventional irradiated with light of the randomly polarized light or circularly polarized light of wavelength lambda X in the recording layer in the same manner, when absorbance is measured at weak light of the randomly polarized light or circularly polarized light of the same polarization state as the Thereafter, the second view ( An absorbance curve (broken line) shown in a) is obtained. As it can be seen from the above results, in the conventional method when the light of wavelength lambda X in the recording layer is irradiated, greatly changes the absorbance at a wavelength lambda Y not only the wavelength lambda X. This is the wavelength λ X
At the time of recording information, information is also recorded at the wavelength λ Y ,
Therefore, it means that crosstalk occurs. The occurrence of the crosstalk is caused by the fact that the absorption spectrum of the photochromic material is not steep and the absorption wavelength regions overlap.

これに対して、波長λの直線偏光の光を上記記録層
に照射して、しかる後に偏光方向がθ=0゜の直線偏光
の光で吸光度を測定すると第2図(b)に示す吸光度曲
線(破線)が得られ、偏光方向がθ=90゜の直線偏光の
光で吸光度を測定すると第2図(c)に示す吸光度曲線
(破線)が得られる。即ち、本発明の方法では、波長λ
でθ=0゜の直線偏光の光での吸光度が従来と同様の
結果となるが、θ=90゜の直線偏光の光では波長λ
の吸光度がほとんど変化しない。又、波長λの直線偏
光の光の照射でも上記と同様に波長λでθ=0゜の直
線偏光の光での吸光度が従来と同様の結果となるが、θ
=90゜の直線偏光の光では波長λでの吸光度がほとん
ど変化しない。更に、互いに直交する波長λと波長λ
の直線偏光の光を照射しても、同様に各波長の照射に
よる影響をほとんど受けない吸光度の差異を検出ができ
る。従って、互いに直交する直線偏光の光であって、波
長λと波長λとの2種類の光で情報の記録再生を行
うことにより、クロストークの低減が行えることができ
る。
In contrast, linearly polarized light of wavelength lambda X is irradiated to the recording layer, absorbance shown in FIG. 2 when the polarization direction measuring absorbance with light of theta = 0 ° linearly polarized light (b) thereafter A curve (broken line) is obtained. When the absorbance is measured with linearly polarized light having a polarization direction of θ = 90 °, an absorbance curve (dashed line) shown in FIG. 2C is obtained. That is, in the method of the present invention, the wavelength λ
Absorbance with light of theta = 0 ° linearly polarized light by Y Although the same result as the conventional, almost unchanged absorbance at the wavelength lambda Y in light of theta = 90 ° linearly polarized light. Although the absorbance at the light even in the same manner as above at the wavelength λ X θ = 0 ° linearly polarized light in the irradiation of linear polarized light of wavelength lambda Y is the same result as the conventional, theta
= Hardly changes absorbance at a wavelength lambda X in the light of 90 ° linearly polarized light. Further, the wavelengths λ X and λ
Irradiation with linearly polarized light of Y can similarly detect a difference in absorbance that is hardly affected by irradiation of each wavelength. Therefore, a linearly polarized light perpendicular to each other, by performing recording and reproduction of information in two light with wavelength lambda X and wavelength lambda Y, it is possible to perform the reduction of crosstalk.

以下、第1実施例について図面を参照しつつ詳細に説
明する。
Hereinafter, the first embodiment will be described in detail with reference to the drawings.

記録層に含有されるフォトクロミック材料としては、
フルキド系、ジアリルエテン系、スピロピラン系等のフ
ォトクロミック材が使用できる。一例として第3図に示
す2種類のスピロピラン系のフォトクロミック材料(以
下、一方のフォトクロミック材を材料(A)と、他方を
材料(B)と呼ぶ)について説明する。斯かる2種類の
材料は紫外光の照射によりスピロピラン型からフォトメ
ロシアニン型へと分子構造が変化し、また可視光の照射
によりフォトメロシアニン型からスピロピラン型へと分
子構造を復帰する。このフォトメロシアン型からスピロ
ピラン型へ分子構造を復帰するために、材料(A)の場
合は、吸収極大波長620nm近傍の光が照射され、材料
(B)の場合は、吸収極大波長470nm近傍の光が照射さ
れる。材料(A)及び材料(B)がフォトメロシアン型
であると、夫々の上記吸収極大波長での吸光度は小さく
なる。
As a photochromic material contained in the recording layer,
Fluchromic, diallylethene, spiropyran-based photochromic materials can be used. As an example, two types of spiropyran-based photochromic materials shown in FIG. 3 (hereinafter, one photochromic material is referred to as material (A) and the other is referred to as material (B)) will be described. The molecular structure of these two materials changes from a spiropyran type to a photomerocyanine type by irradiation with ultraviolet light, and reverts from a photomerocyanine type to a spiropyran type by irradiation with visible light. In order to restore the molecular structure from the photomerocyanine type to the spiropyran type, the material (A) is irradiated with light having a maximum absorption wavelength of about 620 nm, and the material (B) is irradiated with light having a maximum absorption wavelength of about 470 nm. Is irradiated. When the material (A) and the material (B) are of the photomerocyanine type, the absorbance at each of the absorption maximum wavelengths becomes small.

次に、上記2種類のフォトクロミック材を混合して石
英の基板上にスピンコート法で塗布して記録層を形成し
た記録媒体を作製した。前記記録媒体はフォトクロミッ
ク材を分子配向をそろえることなく無配向な状態に含有
せしめている。この記録媒体に対して記録再生する実験
を、従来方法と本発明の方法について行ったので、以下
に説明する。
Next, a recording medium in which a recording layer was formed by mixing the two types of photochromic materials and applying the mixture by spin coating on a quartz substrate was manufactured. The recording medium contains a photochromic material in a non-oriented state without uniform molecular orientation. Experiments for recording and reproducing data on and from this recording medium were performed for the conventional method and the method of the present invention, and will be described below.

まず従来方法について述べる。最初に、上記記録媒体
にランダム偏光の紫外光を照射して上記記録層の全面を
着色状態、即ち未記録状態(フォトメロシアニン状態)
にした後に、ランダム偏光の光で吸光度を測定した。第
4図の曲線aにその結果を示す(この曲線aは未記録状
態の吸光度を示している。)。次に、着色状態(未記録
状態)の記録媒体に波長470nmで円偏光の光を照射した
後に、即ち記録した後に、ランダム偏光の光で吸光度を
測定した。その結果を第4図の曲線bに示す。更に、引
き続いて、上記記憶媒体に前記記録波長と異なる波長62
0nmで円偏光の光を照射した後、即ち記録した後、ラン
ダム偏光の光で吸光度を測定した。その結果を第4図の
曲線cに示す。上記第4図から、一方の波長の光の照射
がもう一方の波長の吸光度に大きな影響を与えているこ
とが分かる。これは情報の記録再生において、クロスト
ークが顕著に生じることを意味する。
First, the conventional method will be described. First, the recording medium is irradiated with UV light of random polarization to color the entire surface of the recording layer, that is, an unrecorded state (photomerocyanine state).
After that, the absorbance was measured with light of random polarization. The result is shown in a curve a of FIG. 4 (the curve a shows the absorbance in an unrecorded state). Next, after irradiating the recording medium in a colored state (unrecorded state) with circularly polarized light at a wavelength of 470 nm, that is, after recording, the absorbance was measured with randomly polarized light. The result is shown by curve b in FIG. Further, subsequently, the storage medium has a wavelength 62 different from the recording wavelength.
After irradiation with circularly polarized light at 0 nm, that is, recording, the absorbance was measured with randomly polarized light. The result is shown by curve c in FIG. From FIG. 4, it can be seen that irradiation of light of one wavelength has a large effect on the absorbance of the other wavelength. This means that crosstalk occurs remarkably in recording and reproducing information.

次に本実施例について述べる。第5図(a)及び第5
図(b)は夫々曲線bに係る記録時の直線偏光の偏光方
向に対してθ=0゜、θ=90゜の偏光方向の直線偏光の
光での吸光度特性を示す。第5図(a)及び(b)にお
いて、曲線aはランダム偏光の紫外光を照射して着色し
た状態、即ち未記録状態の記録媒体の吸光度、曲線bは
着色した状態(未記録状態)の記録媒体に波長470nmの
直線偏光の光を照射して記録した後の吸光度、曲線cは
着色した状態の記録媒体に偏光方向が互いに直交する2
つの直線偏光からなる偏光状態が同じ波長470nmと620nm
の光を同時に照射して記録した後の吸光度に係る。この
結果から、波長470nm及び波長620nmに係る直線偏光の状
態を直交することにより、一方の波長の直線偏光の光に
よる記録層への照射が、他方の波長の上記直線偏光と直
交する直線偏光の光による吸光度にほとんど影響を与え
ないことがわかる。又、図示していないが、ランダム偏
光の紫外光を照射して着色した記録媒体(未記録状態)
に直線偏光の波長620nmの光を照射しても同様に偏光方
向θ=90゜の直線偏光での波長470nmにおける吸光度に
影響をほとんど与えなかった。従って、記録層に互いに
直交する2つの波長の直線偏光の光を照射して情報の記
録を行い、記録時と同じ波長で、記録時の偏光方向と同
じ偏光方向の直線偏光の光で情報の再生を行うことによ
りクロストークがほとんどない記録再生が行えることに
なる。
Next, this embodiment will be described. FIG. 5 (a) and FIG.
FIG. 7B shows the absorbance characteristics of linearly polarized light having a polarization direction of θ = 0 ° and θ = 90 ° with respect to the polarization direction of the linearly polarized light during recording according to the curve b. 5 (a) and 5 (b), the curve a shows the state of being colored by irradiating random polarized ultraviolet light, that is, the absorbance of the unrecorded recording medium, and the curve b shows the colored state (unrecorded state). The absorbance after recording by irradiating the recording medium with linearly polarized light having a wavelength of 470 nm, and the curve c indicates that the polarization directions are orthogonal to each other on the colored recording medium.
Polarization state consisting of two linearly polarized light is the same wavelength 470nm and 620nm
And the absorbance after recording by simultaneously irradiating this light. From this result, by orthogonalizing the state of linearly polarized light according to the wavelength 470 nm and the wavelength 620 nm, irradiation of the recording layer with light of linearly polarized light of one wavelength, the linearly polarized light orthogonal to the linearly polarized light of the other wavelength. It can be seen that it hardly affects the absorbance due to light. Although not shown, a recording medium colored by irradiating random polarized ultraviolet light (unrecorded state)
Irradiation with linearly polarized light having a wavelength of 620 nm similarly hardly affected the absorbance at a wavelength of 470 nm with linearly polarized light having a polarization direction θ = 90 °. Therefore, information is recorded by irradiating the recording layer with linearly polarized light having two wavelengths orthogonal to each other, and information is recorded with linearly polarized light having the same polarization direction as the recording direction at the same wavelength as during recording. By performing reproduction, recording and reproduction with almost no crosstalk can be performed.

尚、上述では2種類のフォトクロミック材を含む記録
層をもつ記録媒体について述べたが、3種類以上のフォ
トクロミック材を含む記録媒体においても利用できる。
例えば、3種類のフォトクロミック材(材料a、材料b
及び材料c)が第6図のような吸光度特性をもつ場合に
ついて説明する。但し、このとき各各フォトクロミック
材は無配向に分散されている。
In the above description, a recording medium having a recording layer containing two types of photochromic materials has been described. However, the present invention can be applied to a recording medium containing three or more types of photochromic materials.
For example, three types of photochromic materials (material a, material b
The case where the material c) has the absorbance characteristic as shown in FIG. 6 will be described. However, at this time, each photochromic material is dispersed non-oriented.

この場合、波長λと波長λの光は同じ偏光方向を
もつ直線偏光で、波長λの光は上記2つの直線偏光の
光と直交する直線偏光で情報の記録再生を行えばよい。
この時、波長λと波長λ、又波長λと波長λ
の間は上述の2種類のフォトクロミック材を用いた場合
と同様の効果により、クロストークが防止できる。又、
波長λと波長λの吸収線はほとんど重なっていない
ため、クロストークは十分に小さい。従ってクロストー
クのほとんどない情報の記録再生が行える。
In this case, light of wavelength lambda a and the wavelength lambda c is a linear polarized light having the same polarization direction, light of the wavelength lambda b may be performed recording and reproducing information with linear polarization perpendicular to the light of the two linearly polarized light.
At this time, between the wavelength lambda a and the wavelength lambda b, also the wavelength lambda b and the wavelength lambda c by the same effect as in the case of using two kinds of photochromic materials described above, it can prevent crosstalk. or,
Since the absorption line wavelength lambda a and the wavelength lambda c hardly overlap, the crosstalk is sufficiently small. Therefore, recording and reproduction of information with almost no crosstalk can be performed.

以下に、第2実施例について述べる。第1実施例と同
一部分には同一符号を付してその説明は割愛する。
Hereinafter, a second embodiment will be described. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

記録媒体の記録層は、材料(A)と材料(B)の2種
類のフォトクロミック材を混合した後、スピンコート法
で透明基板上に形成される。上記フォトクロミック材
は、記録層中に無配向な状態で分散されている。情報の
記録は、上記記録層に材料(A)に吸収される波長λ
の直線偏光の光と材料(B)に吸収される波長λの直
線偏光の光が照射されて行われる。この時、記録層上の
同一場所において、波長λの直線偏光の光と波長λ
の直線偏光の光の偏光方向は互いに直交され、且つ各波
長の直線偏光の方向は隣接するトラック毎に直交するよ
うに照射されて情報の記録が行われる。即ち、第7図に
示すように吸収波長λと吸収波長λの直線偏光の光
(図中、夫々実線矢印、点線矢印で示す)が照射され
る。さらに情報の再生は記録時と同じ波長で、且つ記録
時の各波長の偏光方向に応じた直線偏光の光を照射して
情報の再生を行う。
The recording layer of the recording medium is formed on a transparent substrate by spin coating after mixing two types of photochromic materials of the material (A) and the material (B). The photochromic material is dispersed in the recording layer in a non-oriented state. Information is recorded on the recording layer by the wavelength λ A absorbed by the material (A).
Of linearly polarized light and the material linearly polarized light of wavelength lambda B is absorbed to (B) is carried out by irradiation. At this time, at the same location on the recording layer, the linearly polarized light of wavelength λ A and the wavelength λ B
The information is recorded by irradiating such that the polarization directions of the linearly polarized light are orthogonal to each other, and the directions of the linearly polarized light of each wavelength are orthogonal to each adjacent track. That is, as shown in FIG. 7, linearly polarized light having an absorption wavelength λ A and an absorption wavelength λ B (indicated by a solid arrow and a dotted arrow in the figure, respectively) is applied. Further, information is reproduced by irradiating linearly polarized light having the same wavelength as that at the time of recording and corresponding to the polarization direction of each wavelength at the time of recording.

以上の様に第2実施例によれば、異なる波長の光に基
づくクロストークを防止できる。又、隣接するトラック
毎に各吸収波長の光の直線偏光方向が直交するため、隣
接するトラックに係る出力が低減でき、隣接するトラッ
クからのクロストークも低減できる。
As described above, according to the second embodiment, it is possible to prevent crosstalk based on light of different wavelengths. Further, since the linear polarization directions of the light having the respective absorption wavelengths are orthogonal to each other in the adjacent tracks, the output of the adjacent tracks can be reduced, and the crosstalk from the adjacent tracks can be reduced.

尚、第1、第2実施例では単一の記録層に複数のフォ
トクロミック材を含む記録媒体について述べたが、異な
る吸収波長領域を持つフォトクロミック材からなる記録
層を複数重ねて形成した積層型の記録媒体でも同様にク
ロストークの低減が図れる。更に、異なる吸収波長領域
を持つ複数のフォトクロミック材からなる記録層を複数
重ねた積層型の記録媒体でも同様の効果が得られる。
In the first and second embodiments, a recording medium including a plurality of photochromic materials in a single recording layer has been described. However, a stacked recording layer formed by stacking a plurality of recording layers made of photochromic materials having different absorption wavelength regions. Crosstalk can be similarly reduced in a recording medium. Further, the same effect can be obtained also in a laminated recording medium in which a plurality of recording layers made of a plurality of photochromic materials having different absorption wavelength regions are stacked.

以下に、本発明を実施するための記録再生装置の光学
系の1例をを第8図に示す。
FIG. 8 shows an example of an optical system of a recording / reproducing apparatus for implementing the present invention.

記録媒体()は、透明基板(21)上に記録層(23)
が形成され、該記録層(22)上には更にAu等の反射層
(22)が形成されている。上記記録層(23)は、第1実
施例の第6図に示されるような吸光度特性をもつ3種類
のフォトクロミック材が無配向に分散されている。第1
光源(301)、第2光源(401)及び第3光源(501)か
ら夫々上記3種類のフォトクロミック材に吸収される波
長λ、λ及びλの直線偏光の光が出力される。上
記第1光源(301)から出力された波長λの直線偏光
の光はレンズ(302)で直線偏光の状態で平行光にされ
た後、反射光が第1光源(301)にもどることにより生
じるノイズを防止するためのファラデー回転子、偏光子
等を組み合わせたアイソレーター(303)を通過する。
上記平行光はハーフミラー(304)をP波またはS波で
透過し、ダイクロックミラー(6)及びダイクロックミ
ラー(7)を通過して対物レンズ(2)により記録媒体
)の記録層(23)に集光されて情報の記録が行われ
る。同様に、第2光源(401)から出力された波長λ
の直線偏光の光はレンズ(402)で直線偏光の状態のま
まで平行光にされた後、アイソレーター(403)及びハ
ーフミラー(404)を通過する。上記通過した平行光は
波長λの光の反射率の高いダイクロックミラー(6)
に反射した後、ダイクロックミラー(7)を通過する。
上記通過した平行光は対物レンズ(2)により記録層
(23)に集光して情報の記録が行われる。又、同様に、
第3光源(501)から出力された波長λの直線偏光の
光はレンズ(502)で直線偏光の状態のままで平行光に
された後、アイソレーター(503)及びハーフミラー(5
04)を通過する。上記通過した平行光は波長λの光の
反射率の高いダイクロックミラー(7)に反射した後、
対物レンズ(2)により記録層(23)に集光して情報の
記録が行われる。この時、記録層に集光される波長λ
と波長λの直線偏光の光の偏光方向は同方向、波長λ
の直線偏光の光は波長λと波長λの直線偏光の光
と偏光方向が直交するように調整している(例えば、1/
2波長板等を適宜使用して調整してもよい)。
The recording medium ( 1 ) comprises a recording layer (23) on a transparent substrate (21).
Is formed, and a reflective layer (22) of Au or the like is further formed on the recording layer (22). In the recording layer (23), three types of photochromic materials having absorbance characteristics as shown in FIG. 6 of the first embodiment are dispersed in a non-oriented manner. First
The light source (301), the second light source (401), and the third light source (501) output linearly polarized light having wavelengths λ a , λ b, and λ c that are absorbed by the three types of photochromic materials, respectively. After being collimated beam while linearly polarized light in the light of the linearly polarized light of wavelength lambda a outputted from the first light source (301) is a lens (302), by the reflected light returns to the first light source (301) It passes through an isolator (303) that combines a Faraday rotator, a polarizer, and the like for preventing generated noise.
The parallel light passes through the half mirror (304) as a P wave or an S wave, passes through the dichroic mirror (6) and the dichroic mirror (7), and is recorded by the objective lens (2) on the recording layer of the recording medium ( 1 ). The information is condensed on (23) and information is recorded. Similarly, the wavelength λ b output from the second light source (401)
The linearly polarized light is converted into parallel light by the lens (402) while keeping the linearly polarized light, and then passes through the isolator (403) and the half mirror (404). High dichroic mirror reflectance of the parallel light as described above passed through the wavelength lambda b of light (6)
Then, the light passes through the dichroic mirror (7).
The passed parallel light is condensed on the recording layer (23) by the objective lens (2) to record information. Also,
After being collimated light in the state of the linearly polarized light of the linearly polarized light of wavelength lambda c output from the third light source (501) is a lens (502), isolator (503) and the half mirror (5
04). After the parallel light above passage is reflected in high dichroic mirror (7) reflectance of light of wavelength lambda c,
The information is recorded by focusing the light on the recording layer (23) by the objective lens (2). At this time, the wavelength λ a condensed on the recording layer
And the polarization direction of the linearly polarized light having the wavelength λ c is the same, and the wavelength λ
linearly polarized light of b are adjusted such that the light and the polarization direction of the linearly polarized light of wavelength lambda a and the wavelength lambda c is orthogonal (e.g., 1 /
It may be adjusted by appropriately using a two-wavelength plate or the like).

情報の再生は、一般に各光源の出力を微弱にして、上
記記録層に各波長の直線偏光を偏光方向が記録時に記録
層に照射される各波長の直線偏光の偏光方向に応じて
(一般には同方向で十分である)照射して生じる反射光
を各波長に対応したセンサーにより検出されて行われ
る。即ち、第1光源(301)から出力された波長λ
直線偏光の光はレンズ(302)、アイソレーター(30
3)、ハーフミラー(304)、ダイクロックミラー
(6)、及びダイクロックミラー(7)を通過した後、
対物レンズ(2)で記録層(23)に集光される。この
時、波長λの直線偏光の偏光方向は一般に記録時の波
長λの直線偏光の偏光方向に一致している。記録層
(23)に集光された直線偏光の光は記録層(23)を透過
して反射層(22)で反射されて記録媒体()から反射
光が出射される。反射光はダイクロックミラー(7)及
びダイクロックミラー(6)を通過した後、ハーフミラ
ー(304)に反射されて、波長λの光のみ主にを通過
させるフィルター(305)を通過する。その後レンズ(3
07)によりセンサー(306)に集光されて検出されて情
報の再生が行われる。又、第2光源(401)から出射さ
れた波長λの直線偏光の光は同様に記録媒体()で
反射光を生じ、該反射光は対物レンズ(2)及びダイク
ロックミラー(7)を透過した後、波長λの光の反射
率が高いダイクロックミラー(6)で反射される。その
後、ハーフミラー(404)により反射されて、波長λ
の光のみを主に透過するフィルター(405)を透過す
る。透過された反射光はレンズ(407)によりセンサー
(406)に集光されて情報の再生が行われる。更に、第
3光源(501)から出射された波長λの直線偏光の光
は同様に記録媒体()で反射光を生じ、該反射光は波
長λの光の反射率が高いダイクロックミラー(7)で
反射された後、ハーフミラー(504)により反射され
て、波長λの光のみを主に透過するフィルター(50
5)を透過する。透過された反射光はレンズ(507)によ
りセンサー(506)に集光されて情報の再生が行われ
る。
In reproducing information, generally, the output of each light source is weakened, and linear polarization of each wavelength is applied to the recording layer according to the polarization direction of linear polarization of each wavelength applied to the recording layer at the time of recording. The same direction is sufficient) and the reflected light generated by irradiation is detected by sensors corresponding to the respective wavelengths. That is, linearly polarized light of wavelength lambda a output from the first light source (301) is a lens (302), isolator (30
3) After passing through the half mirror (304), the dichroic mirror (6), and the dichroic mirror (7),
The light is focused on the recording layer (23) by the objective lens (2). At this time, the polarization direction of the linearly polarized light of wavelength lambda a is in general coincide with the polarization direction of the linearly polarized light at the time of recording wavelength lambda a. The linearly polarized light condensed on the recording layer (23) passes through the recording layer (23), is reflected on the reflection layer (22), and the reflected light is emitted from the recording medium ( 1 ). After reflected light passes through the dichroic mirror (7) and the dichroic mirror (6), is reflected by the half mirror (304), passes through a filter (305) for passing only the main light of the wavelength lambda a. Then the lens (3
07), the light is collected and detected by the sensor (306), and the information is reproduced. Further, the linearly polarized light of wavelength lambda b emitted from the second light source (401) produces a reflected light in the recording medium (1) as well, the reflected light is the objective lens (2) and dichroic mirrors (7) after passing through the light reflectance of the wavelength lambda b is reflected at a high dichroic mirror (6). Thereafter, the light is reflected by the half mirror (404), and the wavelength λ b
Through the filter (405), which mainly transmits only the light. The transmitted reflected light is condensed on the sensor (406) by the lens (407) and the information is reproduced. Furthermore, linearly polarized light of the third light source (501) emitted from the wavelength lambda c produces a reflected light in the recording medium (1) as well, the reflected light is a wavelength lambda dichroic high reflectance of light c after being reflected by the mirror (7), is reflected by the half mirror (504), a filter (50 mainly transmits only light of the wavelength lambda c
5) through. The transmitted reflected light is condensed on the sensor (506) by the lens (507) and the information is reproduced.

尚、光源としては、He−Neレーザー、Arレーザー等の
ガスレーザー及び半導体レーザー等のレーザーが一般に
用いられる。上記ガスレーザーを採用する場合には、出
力される光を変調するためのAO素子等が付設される。更
に、上記各波長に応じた光学系を、同一光ヘッド内に配
置されていてもよく、又、各波長に応じた複数の光ヘッ
ドの構成としてもよい。又、上述では、反射型の記録媒
体について一光学系を示したが、上記以外の構成にして
もよい。又、透過型の記録媒体も類似の原理を用いて容
易に実現できる。更に、上記記録媒体は3種類のフォト
クロミック材を含む構成となっているが、2種類以上の
フオトクロミック材を含む記録層では同様の光学系で可
能である。尚、第1、第2及び第3実施例において、情
報の記録再生には直線偏光の光を用いたが、他の偏光状
態(楕円偏光)でも同様の効果が得られる。又、直線偏
光及び楕円偏光の偏光方向は上記実施例に限定されるも
のでない。例えば、第1実施例において直線偏光の偏光
方向のなす角度は90゜(直交)であるが、クロストーク
防止の効果がなくならない程度に直線偏光のなす角度を
90゜と異なるようにしてもよい。
As a light source, a gas laser such as a He-Ne laser and an Ar laser and a laser such as a semiconductor laser are generally used. When the above-mentioned gas laser is adopted, an AO element or the like for modulating the output light is provided. Further, the optical system corresponding to each wavelength may be arranged in the same optical head, or a configuration of a plurality of optical heads corresponding to each wavelength may be employed. In the above description, one optical system is shown for the reflection type recording medium, but a configuration other than the above may be adopted. Further, a transmission type recording medium can be easily realized using a similar principle. Further, the above-mentioned recording medium is configured to include three types of photochromic materials, but a recording layer including two or more types of photochromic materials can be realized by the same optical system. In the first, second and third embodiments, linearly polarized light is used for recording and reproducing information. However, similar effects can be obtained in other polarization states (elliptically polarized light). The polarization directions of the linearly polarized light and the elliptically polarized light are not limited to those in the above-described embodiment. For example, in the first embodiment, the angle formed by the polarization directions of the linearly polarized light is 90 ° (perpendicular), but the angle formed by the linearly polarized light is such that the effect of preventing the crosstalk is not lost.
It may be different from 90 ゜.

(ト) 発明の効果 光記録媒体の波長多重記録方法において、異なる波長
の光に基づくクロストークを十分に抑えることができ
る。
(G) Effects of the Invention In the wavelength multiplex recording method for an optical recording medium, crosstalk based on light of different wavelengths can be sufficiently suppressed.

【図面の簡単な説明】[Brief description of the drawings]

図は何れも本発明に係り、第1図は吸光度の方向依存性
を示す概念図、第2図は本発明の原理を示す概念図、第
3図乃至第6図は第1実施例に係り、第3図(a)及び
第3図(b)は分子構造を示す構造式、第4図は吸光度
特性を示す図、第5図(a)及び第5図(b)は吸光度
特性を示す図、第6図は記録媒体に含まれるフォトクロ
ミック材の吸光度特性を示す図、第7図は第2実施例に
係る記録層上に照射される光の偏光方向を示す図、第8
図は本発明を実施するための記録再生装置の一例を示す
図である。 ()……記録媒体、(23)……記録層。
1 is a conceptual diagram showing the direction dependency of the absorbance, FIG. 2 is a conceptual diagram showing the principle of the present invention, and FIGS. 3 to 6 are related to the first embodiment. 3 (a) and 3 (b) are structural formulas showing molecular structures, FIG. 4 is a diagram showing absorbance characteristics, and FIGS. 5 (a) and 5 (b) are diagrams showing absorbance characteristics. FIG. 6, FIG. 6 is a diagram showing the absorbance characteristics of the photochromic material contained in the recording medium, FIG. 7 is a diagram showing the polarization direction of light irradiated on the recording layer according to the second embodiment, FIG.
FIG. 1 is a diagram showing an example of a recording / reproducing apparatus for implementing the present invention. ( 1 ) Recording medium, (23) Recording layer.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G11B 7/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G11B 7/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光吸収波長領域が夫々異なる第1、第2の
フォトクロミック材を含む光記録媒体に、前記第1のフ
ォトクロミック材に対応する第1の波長の光と前記第2
のフォトクロミック材に対応する第2の波長の光とを照
射して情報の記録再生を行う光記録媒体の記録再生方法
において、前記第1の波長の光と前記第2の波長の光と
は互いに偏光方向が直交する直線偏光であり、前記第1
の波長の光と前記第2の波長の光とにより光記録媒体に
光学的異方性を生じせしめて情報の記録を行い、前記光
学的異方性の方向に応じた前記第1の波長の光と前記第
2の波長の光とにより情報の再生を行うことを特徴とす
る光記録媒体の記録再生方法。
An optical recording medium including first and second photochromic materials having different light absorption wavelength regions, wherein light of a first wavelength corresponding to the first photochromic material and light of the second
In the recording / reproducing method of an optical recording medium for recording / reproducing information by irradiating light of a second wavelength corresponding to the photochromic material of (1), the light of the first wavelength and the light of the second wavelength are mutually Linearly polarized light whose polarization directions are orthogonal to each other;
Optical anisotropy is generated in the optical recording medium by the light of the second wavelength and the light of the second wavelength to record information, and the first wavelength corresponding to the direction of the optical anisotropy is recorded. A method for recording / reproducing information on / from an optical recording medium, wherein information is reproduced using light and the light having the second wavelength.
JP22635190A 1989-12-28 1990-08-27 Recording / reproducing method for optical recording medium Expired - Fee Related JP2828751B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22635190A JP2828751B2 (en) 1990-08-27 1990-08-27 Recording / reproducing method for optical recording medium
DE69028908T DE69028908T2 (en) 1989-12-28 1990-12-28 Recording and playback processes
EP90125700A EP0436228B1 (en) 1989-12-28 1990-12-28 Recording and reproducing methods
KR1019900023010A KR100196015B1 (en) 1989-12-28 1990-12-28 Recording and reproducing method and apparatus for an optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22635190A JP2828751B2 (en) 1990-08-27 1990-08-27 Recording / reproducing method for optical recording medium

Publications (2)

Publication Number Publication Date
JPH04106724A JPH04106724A (en) 1992-04-08
JP2828751B2 true JP2828751B2 (en) 1998-11-25

Family

ID=16843800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22635190A Expired - Fee Related JP2828751B2 (en) 1989-12-28 1990-08-27 Recording / reproducing method for optical recording medium

Country Status (1)

Country Link
JP (1) JP2828751B2 (en)

Also Published As

Publication number Publication date
JPH04106724A (en) 1992-04-08

Similar Documents

Publication Publication Date Title
JPH10340479A (en) Optical recording medium, optical recording method, optical recorder, optical reading method, optical reader, optical retrieving method, output retriever
JPH11508719A (en) Optical storage device
US5410531A (en) Noise reduction in a multiplex recorded optical information system
JP2000082213A (en) Optical recording method and device and optical reading method and device
JP2919632B2 (en) Recording and / or reproducing apparatus for optical recording medium
US5420846A (en) Recording medium having a plurality of nonlinear transmission characteristics
JPH0581977B2 (en)
JP2828751B2 (en) Recording / reproducing method for optical recording medium
US6025866A (en) Superresolution optical pickup apparatus
JP2002014228A (en) Phase shifter and optical head device
JP4649748B2 (en) Two-wavelength phase plate and optical head device
JP3439903B2 (en) Optical head for optical disk device
EP0436228B1 (en) Recording and reproducing methods
JP3101355B2 (en) Recording / reproducing method for optical recording medium
JP4120838B2 (en) Optical recording method, optical reading method, optical reading device, and optical recording medium
JP2783901B2 (en) Recording, reproduction and recording / reproduction method of optical recording medium
JP2714244B2 (en) Tracking control method
JP2810523B2 (en) Recording and reproducing method of optical recording medium
WO2004104696A1 (en) Information recording medium, method of recording and regeneration therewith and information recording regeneration apparatus
KR100196015B1 (en) Recording and reproducing method and apparatus for an optical recording medium
JP2810466B2 (en) Optical recording medium and reproducing method thereof
JP2771656B2 (en) Recording / reproducing method for optical recording medium
JP4120837B2 (en) Optical recording method, optical recording apparatus, optical reading method, optical reading apparatus, optical search method, optical search apparatus, optical recording medium
JPH06168477A (en) Optical recording and reproducing device and spatial optical modulator
JPH08153336A (en) Optical head device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees