JP2828517B2 - Ceramic firing container - Google Patents

Ceramic firing container

Info

Publication number
JP2828517B2
JP2828517B2 JP3064179A JP6417991A JP2828517B2 JP 2828517 B2 JP2828517 B2 JP 2828517B2 JP 3064179 A JP3064179 A JP 3064179A JP 6417991 A JP6417991 A JP 6417991A JP 2828517 B2 JP2828517 B2 JP 2828517B2
Authority
JP
Japan
Prior art keywords
container
cylinder
ceramic
inner cylinder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3064179A
Other languages
Japanese (ja)
Other versions
JPH04302991A (en
Inventor
昭二 新田
昌男 藤田
光蔵 木村
慎一 鳥光
孝久 越田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3064179A priority Critical patent/JP2828517B2/en
Publication of JPH04302991A publication Critical patent/JPH04302991A/en
Application granted granted Critical
Publication of JP2828517B2 publication Critical patent/JP2828517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、原料の粉体を高温に加
熱してセラミック微粉末に焼成処理するためのセラミッ
ク焼成用容器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic sintering vessel for heating a raw material powder to a high temperature to sinter the powder into ceramic fine powder.

【0002】[0002]

【従来の技術】セラミックの微粉末は、例えば特開昭61
-58806号公報、特開昭62−100404号公報に示される如く
原料の粉体を非酸化性等の所定の雰囲気中で1200℃〜20
00℃の高温に加熱し、精製すると同時にセラミック微粉
末に焼成処理される。この場合、焼成用容器として通常
黒鉛ルツボが使用されている。この従来の焼成用容器
(以下単に容器という)は外径が 300mm程度のものが多
用されており、図5に示すように容器1内に原料の粉体
2を充填し、積木状の段積みにしてマッフル炉3内のマ
ッフル4で全体を覆い、電極5によりマッフル4を介し
て加熱している。なお、6は炉床で、7は排ガスのダク
トである。
2. Description of the Related Art Ceramic fine powder is disclosed in
As disclosed in JP-A-58806 and JP-A-62-100404, the raw material powder is heated to 1200 ° C to 20 ° C in a predetermined atmosphere such as non-oxidizing.
It is heated to a high temperature of 00 ° C., refined, and simultaneously fired into ceramic fine powder. In this case, a graphite crucible is usually used as a firing container. As the conventional firing vessel (hereinafter simply referred to as a vessel), an outer diameter of about 300 mm is frequently used. As shown in FIG. The whole is covered with the muffle 4 in the muffle furnace 3 and heated by the electrode 5 through the muffle 4. In addition, 6 is a hearth and 7 is a duct for exhaust gas.

【0003】[0003]

【発明が解決しようとする課題】ところが、前記容器は
積木状に段積みされているため、マッフル内の容積効率
が悪く、しかも容器が小径であるにもかかわらず、容器
内面の近傍と中央部で温度差が生じ昇温カーブは図6に
示すように容器1の中央部で大きな遅れが生じる。この
図において、容器1の底部および側壁の近傍ではで示
す如く設定昇温カーブと余り差がなく、上部ものよう
に最終的にはとほぼ同時に設定温度に到達している
が、中央部はΔtの遅れが発生するため、必然的に設
定温度での保持時間もそれだけ長くしなければならな
い。
However, since the containers are stacked in a block shape, the volume efficiency in the muffle is low, and despite the small diameter of the container, the vicinity of the inner surface of the container and the central portion are reduced. , A temperature difference occurs, and the temperature rise curve has a large delay at the center of the container 1 as shown in FIG. In this figure, there is not much difference from the set temperature rise curve near the bottom and the side wall of the container 1 as shown by. Inevitably, the holding time at the set temperature must be extended accordingly.

【0004】従って、容器中央部では結晶粒子径にバラ
ツキが生じるとともに、加熱電力の使用量も多くなり問
題となっていた。そしてこの傾向は容器の径が大きくな
れば当然助長されるものである。本発明は上述従来のセ
ラミック焼成用容器における課題を解決するためになさ
れたもので、充填した原料粉体が全てほぼ均一に加熱、
昇温できる容器を提供することを目的とする。
[0004] Therefore, the crystal particle diameter varies at the center of the container, and the amount of heating power used increases, which is a problem. This tendency is naturally promoted as the diameter of the container increases. The present invention has been made in order to solve the above-described problems in the conventional ceramic firing container, all the filled raw material powder is almost uniformly heated,
It is an object to provide a container that can be heated.

【0005】[0005]

【課題を解決するための手段】本発明は、外筒を有する
竪形の容器内に少なくとも1個の前記外筒と同心円状の
内筒、およびまたは容器中心に伝熱円柱を立設し、さら
にこの容器の外径D0 に対する各部の寸法が下記条件の
範囲になるようにして、上述従来のセラミック焼成用容
器における課題を解決した。
According to the present invention, there is provided a vertical container having an outer cylinder, wherein an inner cylinder concentric with at least one of the outer cylinders and / or a heat transfer cylinder is erected at the center of the vessel. Furthermore the size of each part to the outer diameter D 0 of the container is set to be in the range of the following conditions to solve the problems in the conventional ceramic firing vessel above.

【0006】 容器底部の厚さ h =0.05D0 〜0.1D0 最も内側にある内筒の外径 D1 =0.2 D0 〜0.5 D0 外筒の厚さ t0 =0.02D0 〜0.05D0 内筒の厚さ t1 =0.02D0 〜0.05D0 伝熱円柱の直径 d =0.05D0 〜 0.1D0 [0006] The container bottom thickness h = 0.05D 0 ~0.1D 0 most of the inner cylinder in the inside of the outer diameter D 1 = 0.2 D 0 ~0.5 D 0 outer tube thickness t 0 = 0.02D 0 ~0.05D the thickness of 0 inner cylinder t 1 = 0.02D 0 ~0.05D 0 heat transfer cylinder of diameter d = 0.05 d 0 ~ 0.1 d 0

【0007】[0007]

【作 用】本発明の容器は、従来の竪形の容器内に少な
くとも1個の内筒、およびまたは容器中心に伝熱円柱を
立設し容器底部に加えられる熱をこれら内筒、伝熱円柱
を介して容器内の原料粉体に伝達することにより、容器
内全体のセラミック粉体をほぼ均一に加熱、昇温するこ
とが可能となった。
The container according to the present invention comprises at least one inner cylinder and / or a heat transfer cylinder standing at the center of the container in a conventional vertical container, and transfers the heat applied to the bottom of the container to these inner cylinders. By transmitting the powder to the raw material powder in the container via the column, it was possible to heat and raise the temperature of the ceramic powder in the whole container almost uniformly.

【0008】先ず、容器の構成について種々なものを試
作し、上記構成の容器が最も効果的であることが判明し
た。ただし、容器中心に立設する伝熱円柱については円
筒状のものでもよいが、一般に高温の容器は黒鉛素材か
ら旋削により作製するものであるから、内径のあまり小
さな円筒の旋削は困難であり、また原料粉体を充填する
ためにはできるだけ容器の内容積が大きい方が有利であ
るため円柱状の伝熱体にするのが望ましい。
First, various types of containers were experimentally manufactured, and it was found that the container having the above configuration was most effective. However, the heat transfer cylinder erected at the center of the container may be cylindrical, but in general, a high-temperature container is made by turning from a graphite material, so it is difficult to turn a cylinder with an inner diameter that is too small, In order to fill the raw material powder, it is advantageous that the inner volume of the container is as large as possible.

【0009】そして、本発明における容器の上記した各
部寸法条件は原料の粉体の均一加熱、昇温のためと、加
熱、冷却の繰り返しによる熱応力に基づく割れ防止のた
めに、その範囲を定めたものである。これらの知見に基
づき、図1に示す如き3種の容器を試作した。Aは従来
の容器に相当し、B、Cは本発明による容器で、Bは内
筒のみ、Cは内筒と伝熱円柱とを立設してある。これら
容器の寸法は表1に示すとおりであり、容器内に原料の
粉体を充填し、マッフル内の雰囲気温度を 970℃〜1100
℃に設定して約 220分間加熱した。そのときの容器側面
近傍の粉体温度と中央部の粉体温度との温度差−
を表1に併せて示す。
The above-mentioned dimensions of each part of the container according to the present invention are determined in order to uniformly heat and raise the temperature of the raw material powder and to prevent cracking due to thermal stress due to repeated heating and cooling. It is a thing. Based on these findings, three types of containers as shown in FIG. 1 were prototyped. A corresponds to a conventional container, B and C are containers according to the present invention, B is only an inner cylinder, and C is an upright cylinder and a heat transfer cylinder. The dimensions of these containers are as shown in Table 1. The containers were filled with the raw material powder, and the atmosphere temperature in the muffle was increased from 970 ° C to 1100 ° C.
C. and heated for about 220 minutes. The temperature difference between the powder temperature near the container side and the powder temperature at the center at that time-
Are also shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】表からわかるように、従来の容器に相当す
るAでは可成の温度差が生じ、また内筒のみ立設したB
でも相当の効果があり、内筒と伝熱円柱を立設したCで
はほとんど温度差が生じない。また中心に伝熱円柱のみ
を立設したものでも小径の容器では十分効果があること
がわかった。さらに、上記本発明によるCの容器につい
て粉体の昇温カーブを調査した。このときのマッフル内
雰囲気温度は1000℃で図2に示すように約 230分後に粉
体の温度は約 950℃となり測温点との昇温カーブは
ほとんど一致していることがわかる。
As can be seen from the table, in the case of A corresponding to a conventional container, a considerable temperature difference occurs, and B in which only the inner cylinder is erected.
However, there is a considerable effect, and there is almost no temperature difference in C where the inner cylinder and the heat transfer cylinder are erected. It was also found that a small-diameter vessel was effective even if only a heat transfer cylinder was erected at the center. Further, the temperature rise curve of the powder was examined for the container C according to the present invention. At this time, the atmosphere temperature in the muffle was 1000 ° C., and the temperature of the powder became about 950 ° C. after about 230 minutes, as shown in FIG.

【0012】なお、容器の寸法条件についてさらに詳し
く説明すると、各部寸法は強度上相互に関係するもので
あり、特に容器の外径D0 と底部の厚さh、底部の厚さ
hと外筒ならびに内筒の厚さt0 、t1 は関係が大き
い。一方、容器の内容積はできるだけ大きい方がよいこ
とは前述のとおりである。そして、前記実験において確
認した粉体の加熱状態を加味して定めたのが上記した条
件である。
The dimensions of the container will be described in more detail. The dimensions of each part are related to each other in terms of strength. In particular, the outer diameter D 0 of the container and the bottom thickness h, the bottom thickness h and the outer cylinder In addition, the thicknesses t 0 and t 1 of the inner cylinder have a large relationship. On the other hand, the inner volume of the container should be as large as possible, as described above. The above conditions are determined in consideration of the heating state of the powder confirmed in the experiment.

【0013】また、容器の高さHについては処理する原
料の成分により、焼成反応で発生するガスの組成、量に
合わせて適宜決定されるべきもので、例えば窒化硼素系
セラミックの場合であれば、高さHが 300mmを超えると
発生するガスの脱出が困難となり、結晶粒子径の大きさ
にバラツキが生じることがあるので 300mm以下にするの
が望ましい。
The height H of the container should be appropriately determined according to the composition and amount of the gas generated in the firing reaction depending on the components of the raw material to be treated. For example, in the case of a boron nitride ceramic, If the height H exceeds 300 mm, it is difficult to escape the generated gas, and the size of the crystal grains may vary, so it is preferable to set the height to 300 mm or less.

【0014】[0014]

【実施例】図3は本発明の一実施例の説明図であり、図
4はこの容器を用いてセラミック粉末を焼成処理してい
る場合の例である。図3において、容器10は外筒11、底
部12から成る竪形の容器であり、この底部12から外筒11
と同心円状の内筒13と、その中心に伝熱円柱14を立設し
てある。さらに、マッフルの中心と容器の中心とを一致
させるために設けたセンタリング用切込み15と、図4に
示す如く容器の軸心を一致させて段積みしたとき、容器
相互の位置合わせをするために下縁全周に設けた段差部
16と、上縁4箇所に設けたガス抜用開口部17とを有す
る。段差部16、開口部17は段積みして使用しないのであ
れば必要ではない。18はハンドリング用の切込みであ
る。
FIG. 3 is an explanatory view of one embodiment of the present invention, and FIG. 4 is an example in which a ceramic powder is fired using this container. In FIG. 3, a container 10 is a vertical container including an outer cylinder 11 and a bottom portion 12.
And a heat transfer cylinder 14 is provided upright at the center thereof. Further, the centering notch 15 provided to match the center of the muffle with the center of the container, and the stacking of the containers with the center of the container aligned as shown in FIG. Steps provided around the entire lower edge
16 and gas vent openings 17 provided at four places on the upper edge. The step 16 and the opening 17 are not necessary if they are not stacked and used. 18 is a notch for handling.

【0015】そして、この容器の寸法条件はその外径D
0 に対して、 容器底部12の厚さ h =0.05D0 〜0.1 D0 最も内側にある内筒13の外径 D1 =0.2 D0 〜0.5 D0 外筒11の厚さ t0 =0.02D0 〜0.05D0 内筒13の厚さ t1 =0.02D0 〜0.05D0 伝熱円柱14の直径 d =0.05D0 〜 0.1D0 にしてあることはもちろんである。
The dimensional condition of this container is that its outer diameter D
Against 0, the thickness t of the outer diameter D 1 = 0.2 D 0 ~0.5 D 0 outer tube 11 of the inner cylinder 13 in the most thickness h = 0.05 D 0 to 0.1 D 0 interior of the container bottom 12 0 = 0.02 it is a matter of course you have a diameter d = 0.05D 0 ~ 0.1D 0 thickness t 1 = 0.02D 0 ~0.05D 0 heat transfer cylinder 14 of the D 0 ~0.05D 0 inner cylinder 13.

【0016】ここで内筒は一個に限られるものではな
く、必要に応じて複数個適宜な位置に設ければよいが、
その場合にも最も内側にある内筒の外径は上記条件の範
囲内とし、全ての内筒の厚さも上記条件の範囲内にする
必要がある。また内筒に代えてその全てを、または一部
の内筒を円柱等の伝熱体にすることも考えられるが、本
発明の容器はほとんどが黒鉛素材から旋削して作製する
ものであるから、全ての形状を同心円状に配設した構成
のものに限定した。
Here, the number of inner cylinders is not limited to one, and a plurality of inner cylinders may be provided at appropriate positions as needed.
Also in that case, the outer diameter of the innermost inner cylinder must be within the above range, and the thickness of all the inner cylinders must be within the above range. It is also conceivable to use all or some of the inner cylinders as heat conductors such as cylinders in place of the inner cylinder, but most of the containers of the present invention are made by turning from a graphite material. However, the configuration is limited to a configuration in which all the shapes are arranged concentrically.

【0017】図4に、本発明の容器10をその軸心を一致
させて3段の段積みにし、反応処理している状態を示し
た。4はマッフルで6は炉床、6′は容器10の受台であ
る。そして5は電極等の加熱体であり、図示省略したマ
ッフル炉内でマッフル4、容器10を介して窒化硼素系の
原料粉体2を約2000℃に昇温、 120分間保持して反応処
理した。なおこの場合に使用した容器10の寸法は表1の
Cに示すものであり、その処理結果を従来の技術と比較
して表2に示す。
FIG. 4 shows a state in which the containers 10 of the present invention are stacked in three stages with their axes aligned so as to be reacted. 4 is a muffle, 6 is a hearth, and 6 'is a cradle for the container 10. Reference numeral 5 denotes a heating element such as an electrode. The boron nitride-based raw material powder 2 was heated to about 2000 ° C. through a muffle 4 and a container 10 in a muffle furnace (not shown), and subjected to a reaction treatment by holding the powder for about 120 minutes. . The dimensions of the container 10 used in this case are shown in Table 1C, and the processing results are shown in Table 2 in comparison with the conventional technology.

【0018】[0018]

【表2】 [Table 2]

【0019】表2に示すように、本発明の方が結晶粒子
径のバラツキが少なく、歩留りも向上したことがわか
る。
As shown in Table 2, it can be seen that the present invention has less variation in crystal particle diameter and improved yield.

【0020】[0020]

【発明の効果】本発明によるセラミック焼成用容器を使
用した場合、容器内の全体にわたって加熱、昇温を均一
に行い得ることから、セラミック微粉末の結晶粒子径の
バラツキが少なくなり歩留りの向上が達成されるととも
に、全体の処理時間が短縮できるので消費電力が軽減さ
れ、直立状に段積みして処理することも可能で処理効率
の向上も図れる利点がある。
When the ceramic firing vessel according to the present invention is used, the heating and heating can be performed uniformly throughout the entire vessel, so that the variation in the crystal particle diameter of the ceramic fine powder is reduced and the yield is improved. In addition to this, there is an advantage that power consumption can be reduced because the entire processing time can be shortened, processing can be performed in an upright state, and processing efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の作用の説明図である。FIG. 1 is an explanatory diagram of the operation of the present invention.

【図2】本発明によるセラミック焼成用容器の昇温カー
ブの例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a temperature rise curve of the ceramic firing container according to the present invention.

【図3】本発明によるセラミック焼成用容器の実施例で
(ア)は断面図、(イ)は平面図である。
3 (a) is a sectional view, and FIG. 3 (a) is a plan view of an embodiment of the ceramic firing container according to the present invention.

【図4】本発明のセラミック焼成用容器を使用して焼成
処理をする場合の一例を示す説明図である。
FIG. 4 is an explanatory view showing an example of a case of performing a firing treatment using the ceramic firing container of the present invention.

【図5】従来の焼成用容器を使用して焼成処理する場合
の説明図である。
FIG. 5 is an explanatory view in the case of performing a baking treatment using a conventional baking container.

【図6】従来技術における容器内各部の昇温カーブの説
明図である。
FIG. 6 is an explanatory diagram of a temperature rise curve of each part in a container in the related art.

【符号の説明】[Explanation of symbols]

1 セラミック焼成用容器 2 原料粉体 3 マッフル炉 4 マッフル 5 電極 6 炉床 7 ダクト 10 セラミック焼成用容器 11 外筒 12 容器底部 13 内筒 14 伝熱円柱 15 切込み 16 段差部 17 開口部 18 切込み DESCRIPTION OF SYMBOLS 1 Ceramic firing container 2 Raw material powder 3 Muffle furnace 4 Muffle 5 Electrode 6 Hearth 7 Duct 10 Ceramic firing container 11 Outer cylinder 12 Container bottom 13 Inner cylinder 14 Heat transfer cylinder 15 Cut 16 Stepped part 17 Opening 18 Cut

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鳥光 慎一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 (72)発明者 越田 孝久 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社 水島製鉄所内 (56)参考文献 特開 平2−172858(JP,A) 特開 平1−230409(JP,A) 実開 平3−67899(JP,U) 実開 昭62−83837(JP,U) (58)調査した分野(Int.Cl.6,DB名) F27D 3/00 - 3/18 C04B 35/64──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichi Toriko 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. 1-chome (without address) Kawasaki Steel Corporation Mizushima Works (56) References JP-A-2-172858 (JP, A) JP-A-1-230409 (JP, A) JP-A-3-67899 (JP, U) Japanese Utility Model Sho 62-83837 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) F27D 3/00-3/18 C04B 35/64

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粉末セラミックの焼成用容器であって、
外筒を有する竪形の容器内に少なくとも1個の前記外筒
と同心円状の内筒、およびまたは容器中心に伝熱円柱を
立設したことを特徴とするセラミック焼成用容器。
1. A container for firing powder ceramic, comprising:
A ceramic firing container comprising: a vertical container having an outer cylinder; an inner cylinder concentric with at least one of the outer cylinders; and / or a heat transfer cylinder standing upright at the center of the vessel.
【請求項2】 容器の外径D0 に対する各部の寸法が下
記条件の範囲であることを特徴とする請求項1記載のセ
ラミック焼成用容器。 容器底部の厚さ h =0.05D0 〜0.1D0 最も内側にある内筒の外径 D1 =0.2 D0 〜0.5 D0 外筒の厚さ t0 =0.02D0 〜0.05D0 内筒の厚さ t1 =0.02D0 〜0.05D0 伝熱円柱の直径 d =0.05D0 〜 0.1D0
2. A container according to claim 1 ceramic firing vessel according to the dimensions of each part to the outer diameter D 0 is characterized in that it is a range of the following conditions. Container bottom portion having a thickness of h = 0.05 D 0 outside diameter of ~0.1D 0 inner cylinder which innermost D 1 = 0.2 D 0 ~0.5 D 0 of the outer tube thickness t 0 = 0.02D 0 ~0.05D 0 inner cylinder thickness t 1 = 0.02D 0 ~0.05D 0 heat transfer cylinder with a diameter d = 0.05D 0 ~ 0.1D 0
JP3064179A 1991-03-28 1991-03-28 Ceramic firing container Expired - Lifetime JP2828517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3064179A JP2828517B2 (en) 1991-03-28 1991-03-28 Ceramic firing container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3064179A JP2828517B2 (en) 1991-03-28 1991-03-28 Ceramic firing container

Publications (2)

Publication Number Publication Date
JPH04302991A JPH04302991A (en) 1992-10-26
JP2828517B2 true JP2828517B2 (en) 1998-11-25

Family

ID=13250579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3064179A Expired - Lifetime JP2828517B2 (en) 1991-03-28 1991-03-28 Ceramic firing container

Country Status (1)

Country Link
JP (1) JP2828517B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152279A (en) * 1994-11-30 1996-06-11 Matsushita Electric Ind Co Ltd Box for calcining ceramic powder
JP5792813B2 (en) * 2010-07-30 2015-10-14 エルジー イノテック カンパニー リミテッド Heat treatment container for vacuum heat treatment equipment
JP5980006B2 (en) * 2012-06-21 2016-08-31 イビデン株式会社 Container used for firing graphite material, firing container, and firing method

Also Published As

Publication number Publication date
JPH04302991A (en) 1992-10-26

Similar Documents

Publication Publication Date Title
JP2828517B2 (en) Ceramic firing container
JPS6224237Y2 (en)
US6031207A (en) Sintering kiln
JP3134433B2 (en) Hearth rotating batch furnace
US2837428A (en) Method of sintering chromium-alumina metal ceramics
JPS5838717B2 (en) sagger
JPS62283876A (en) Method of burning dough formed article comprising ceramic substance and equipment for carrying out same
JPH06103156B2 (en) Oxidizing atmosphere furnace
CN218693873U (en) Carbon-controlled sintering device for metal powder injection molding
JPH0440157Y2 (en)
SU865789A1 (en) Method of producing coal-graphite articles and container for placing and annealing cake-pitch billets
JP2610701B2 (en) Ceramic tube firing method
JP2005127628A (en) Heat treatment furnace
JP2926881B2 (en) Ceramic firing method
JP6754305B2 (en) Manufacturing method of ceramic molded product and manufacturing equipment used for it
JP3020263B2 (en) Method for sintering sludge incineration ash compact and continuous sintering furnace
JPH04198062A (en) Method for sintering ceramics and sintering tool used for the method
JPH046158A (en) Produciton of silicon nitride-based ceramics sintered body
JPH06116042A (en) Method for degreasing and calcining ceramic compact
JP2610702B2 (en) Ceramic tube firing method
JPS61282785A (en) Batch type baking furnace
JPS61282790A (en) Sheath for cylindrical type batch type baking furnace
JP2001019563A (en) Production of ceramic part
JPH0468294A (en) Batch type baking furnace
JPH0613434B2 (en) Method and apparatus for high temperature pressure degreasing and firing of ceramic molded body