JP2827678B2 - Microwave tube - Google Patents

Microwave tube

Info

Publication number
JP2827678B2
JP2827678B2 JP7972692A JP7972692A JP2827678B2 JP 2827678 B2 JP2827678 B2 JP 2827678B2 JP 7972692 A JP7972692 A JP 7972692A JP 7972692 A JP7972692 A JP 7972692A JP 2827678 B2 JP2827678 B2 JP 2827678B2
Authority
JP
Japan
Prior art keywords
getter
temperature
tube
hydrogen
activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7972692A
Other languages
Japanese (ja)
Other versions
JPH05347127A (en
Inventor
稔 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7972692A priority Critical patent/JP2827678B2/en
Publication of JPH05347127A publication Critical patent/JPH05347127A/en
Application granted granted Critical
Publication of JP2827678B2 publication Critical patent/JP2827678B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波管の構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a microwave tube.

【0002】[0002]

【従来の技術】マイクロ波管は、電子管の一種でマイク
ロ波通信網をはじめ、レーダや衛星放送など広い分野に
おいて使われている。このようなマイクロ波管は、内部
を高真空とし、電子ビームとマイクロ波の相互作用を利
用して信号の増幅や発振を行なう真空管である。従っ
て、管内は常に高真空を維持する必要があり、そのため
に使用材料を選択し、部品の表面処理を厳密に実施して
ガスの発生に備えている。
2. Description of the Related Art A microwave tube is a kind of electron tube and is used in a wide range of fields such as a microwave communication network, radar and satellite broadcasting. Such a microwave tube is a vacuum tube in which the inside is made to have a high vacuum and a signal is amplified or oscillated by utilizing an interaction between an electron beam and a microwave. Therefore, it is necessary to maintain a high vacuum in the tube at all times. For this purpose, materials to be used are selected, and surface treatment of parts is strictly performed to prepare for gas generation.

【0003】それでも、進行波管の作動中には管内部品
や気密容器の内壁からのわずかなガス放出は避け難く、
このガスの捕集をするための部品であるゲッタを内蔵す
るのが一般的である。
[0003] Nevertheless, during the operation of the traveling wave tube, it is inevitable to release a small amount of gas from the inner parts of the tube or the inner wall of the airtight container.
Generally, a getter, which is a component for collecting the gas, is incorporated.

【0004】こうした目的に使用されるゲッタの一つに
非蒸発型ゲッタがあって、Ti,Zr,Ta,Th,V
等ガス分子、原子に対し活性な金属を板状や粉末焼結体
とし、表面での吸着および内部への拡散によって気体を
捕集する。
[0004] One of the getters used for such a purpose is a non-evaporable getter, which is Ti, Zr, Ta, Th, V
Metals active on isogas molecules and atoms are made into a plate or powder sintered body, and gas is collected by adsorption on the surface and diffusion inside.

【0005】この中でもマイクロ波管で主に用いられて
いる非蒸発型ゲッタはZr(ジルコニウム)を主体とし
たZr−C(ジルコンカーボン)ゲッタ、Zr−Alゲ
ッタ、Zr−V−Feゲッタなどがある。Zr系のゲッ
タはマイクロ波管の排気中および動作中に放出されるH
2 (水素ガス)の吸収能が特に大きいのが特徴である。
Among these, non-evaporable getters mainly used in microwave tubes include Zr (zirconium) -based Zr-C (zircon carbon) getters, Zr-Al getters, and Zr-V-Fe getters. is there. The Zr-based getter has a function of releasing H during the evacuation and operation of the microwave tube.
2 It is characterized by a particularly high absorption capacity for (hydrogen gas).

【0006】こうした非蒸発型ゲッタ(以下ゲッタと呼
ぶ)の使用にあたっては、このゲッタは水素ガスについ
ては常温付近で温度が低いほど多くのガスを吸収し、約
600℃以上の温度では水素を放出する。これは、水素
がゲッタ材(ジルコニウム)と水素化物の形で固定され
ていて、高温では分解して水素を放出する可逆反応型の
吸収をすることによる。一方、水素以外のガス、例えば
CO,CO 2 ,N 2 ,O 2 などは、それぞれZrC,Z
rN,ZrO 2 などの比較的安定な化合物を作ってガス
を固定する非可逆反応型の吸収が起こる。このため水素
以外のガスは、温度が高ければ高いほどガス吸収速度,
量が大きくなる。従って、ゲッタは200〜300℃付
近で使うのが、水素およびその他のガスに対しても最も
効率が良く、マイクロ波管の内部の比較的高温部で、か
つ電子ビームや絶縁に影響のない部分を選んで取り付け
る。一般に、電子銃部のカソードルームやコレクタ部付
近が選択される。
[0006] Such a non-evaporable getter (hereinafter referred to as getter).
In use of this gas, this getter
The lower the temperature near normal temperature, the more gas is absorbed,
At a temperature of 600 ° C. or higher, hydrogen is released. This is hydrogen
Is fixed in the form of hydride with getter material (zirconium)
Reversible reaction type that decomposes and releases hydrogen at high temperature
By absorbing. On the other hand, gases other than hydrogen, for example,
CO, CO 2 , N 2 , O 2, etc. are ZrC, Z
Make relatively stable compounds such as rN, ZrO 2
An irreversible reaction-type absorption of immobilization occurs. Because of this hydrogen
For other gases, the higher the temperature, the higher the gas absorption rate,
The amount increases. Therefore, getter is 200 ~ 300 ℃
Most often used for hydrogen and other gases
Efficient and relatively high temperature inside the microwave tube
Select and attach parts that do not affect the electron beam or insulation
You. Generally, with the cathode room and the collector of the electron gun
Near is selected.

【0007】また、これ等ゲッタの使用にあたっては、
真空中でゲッタを所定の温度に加熱し、ゲッタ材の表面
に予め生成させておいた保護層を除去しゲッタ能を発現
させる活性化処理を行なう。この活性化過程でゲッタに
吸収されている水素(水素化物となっている)は熱分解
してゲッタ外に放出され、その他のガスは濃度勾配によ
り内部に拡散・吸収される。市販のゲッタでは、Zr−
Al系、Zr−C系(高温活性型)と500℃付近のZ
r−V−Fe系(低温活性型)のものが知られている。
In using these getters,
The getter is heated to a predetermined temperature in a vacuum to remove a protective layer previously formed on the surface of the getter material and perform an activation process for expressing the getter function. In the activation process, the hydrogen (hydride) absorbed by the getter is thermally decomposed and released outside the getter, and other gases are diffused and absorbed inside by the concentration gradient. In commercial getters, Zr-
Al type, Zr-C type (high temperature activation type) and Z around 500 ° C
An r-V-Fe (low-temperature activation type) is known.

【0008】特に低温活性型ゲッタは、その活性化温度
が一般的なマイクロ波管の排気ベーキング温度(500
〜600℃)と同程度のため、特に活性化のための加熱
は不要である。また、このゲッタは排気ベーキング過程
ではマイクロ波管から放出される多量の水素ガスに対し
ては、この温度では水素を放出する温度域であるため水
素を吸収しない。
Particularly, a low-temperature activation type getter has an activation temperature at an exhaust baking temperature of a general microwave tube (500 degrees).
600600 ° C.), so that heating for activation is not particularly necessary. In addition, this getter does not absorb hydrogen for a large amount of hydrogen gas released from the microwave tube in the exhaust baking process because the temperature is in a temperature range in which hydrogen is released at this temperature.

【0009】一方、この時高温活性型ゲッタは排気ベー
キング過程では完全活性時の約10%程度の水素を吸収
する。Zr系ゲッタのある機種では水素吸収量は完全活
性後で最大20ccTorr/mgと非常に大きいた
め、10%活性でも非常に多量の水素(2ccTorr
/mg)を吸収することになり、この水素が排気後の活
性化加熱で放出され後述する問題点となっていた。
On the other hand, at this time, the high temperature activation type getter absorbs about 10% of the hydrogen at the time of full activation in the exhaust baking process. In a model with a Zr-based getter, the amount of hydrogen absorption is extremely large at a maximum of 20 cc Torr / mg after complete activation, so that a very large amount of hydrogen (2 cc Torr) even at 10% activity.
/ Mg), and this hydrogen is released by activation heating after evacuation, which is a problem described later.

【0010】[0010]

【発明が解決しようとする課題】非蒸発型ゲッタをマイ
クロ波管に用いた場合の不具合点として、以下に説明す
る活性化時の放出水素による種々の問題があった。即
ち、ゲッタの活性は排気の最終工程で実施されるので、
マイクロ波管の品質確保の観点から管内真空度を所定の
限度以内に維持しながら速やかに活性化(水素出し)を
行いたい。しかし、ゲッタが多量の水素を放出するので
活性化加熱は緩やかにせざるを得ないこととなり、これ
に十数時間を要する場合があった。特に、使用周波数が
高いミリ波用マイクロ波管では、前述の遅波回路の横断
面の内径が数ミリメートル台となって排気抵抗が従来の
数倍となるなど一層不利な状況となっていた。また、あ
る条件下では、ゲッタ自身の放出ガスを再吸収して急激
な発熱反応を起こし熱応力でゲッタ材層が割れる場合、
カソード等に悪影響を及ぼすこともあった。また、電子
管の長寿命化のため、ゲッタを複数備えることも普通行
われていて、この場合、低温活性型ゲッタだけを用いる
と、前述のとおり、排気ベーキング中に水素以外のガス
吸収があるため、その分ゲッタ能力が低下する問題があ
った。特に、高信頼性、高出力のマイクロ波用電子管で
は、排気ベーキングが2〜3昼夜実施されることもあ
り、ベーキング温度で活性化する低温活性型ゲッタの利
点が却って損なわれるという不都合があった。
As a drawback when a non-evaporable getter is used for a microwave tube, there are various problems due to hydrogen released during activation as described below. That is, since the getter activity is performed in the final step of the exhaust,
From the viewpoint of ensuring the quality of the microwave tube, it is desired to quickly activate (dehydrogen) while maintaining the degree of vacuum in the tube within a predetermined limit. However, since the getter emits a large amount of hydrogen, the activation heating has to be slowed down, which may take ten and several hours. In particular, in a millimeter-wave microwave tube having a high working frequency, the inside diameter of the cross section of the above-described slow-wave circuit is on the order of several millimeters, and the exhaust resistance is several times greater than in the past. Also, under certain conditions, when the getter material layer is reabsorbed and a sudden exothermic reaction occurs and the getter material layer cracks due to thermal stress,
In some cases, it adversely affected the cathode and the like. Also electronic
It is common practice to have multiple getters to extend the life of the tube.
In this case, only low-temperature getters are used
As described above, gases other than hydrogen during exhaust baking
There is a problem that getter ability is reduced by absorption.
Was. Especially for high-reliability, high-power microwave electron tubes.
In some cases, exhaust baking may be performed
Low-temperature getter activated at baking temperature
There was an inconvenience that the points were rather damaged.

【0011】[0011]

【課題を解決するための手段】本発明のマイクロ波管で
は、排気抵抗の大きい遅波回路部又は空胴部を境にし
て、カソード側およびコレクタ側のいずれか一方のうち
排気管から遠い方、即ち排気抵抗が大きく管内ガスの排
出がより困難な方に排気ベーキング温度(約500℃)
では水素の吸収が少ない低温活性型ゲッタを取付ける。
一方、活性化(ガス出し)温度に達しないが部分活性に
より多量の水素を吸収する高温活性型ゲッタは、後の活
性化(約950℃)時に放出される水素ガスの排出を容
易にするため、排気抵抗の小さい遅波回路部又は空胴部
の手前側に取付ける。言いかえれば、電子銃とコレクタ
のうち排気管を取付けた方に高温活性型ゲッタを、その
他の側に低温活性型ゲッタを取付ける構造である。
According to the microwave tube of the present invention, one of the cathode side and the collector side, which is farther from the exhaust pipe, is separated from the cathode side or the collector side by a slow wave circuit or a cavity having a large exhaust resistance. In other words, the exhaust baking temperature (approximately 500 ° C.) for those who have a large exhaust resistance and are more difficult to discharge gas in the pipe.
Then, a low-temperature active getter that absorbs less hydrogen is installed.
On the other hand, a high-temperature activation type getter that does not reach the activation (degassing) temperature but absorbs a large amount of hydrogen due to partial activation facilitates the discharge of hydrogen gas released during the subsequent activation (about 950 ° C.). It is mounted on the front side of the slow wave circuit or cavity where the exhaust resistance is small. In other words, the high-temperature active getter is mounted on the electron gun and the collector on which the exhaust pipe is mounted, and the low-temperature active getter is mounted on the other side.

【0012】[0012]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の第1の実施例を示す進行波管の縦断
面図である。このマイクロ波管は結合空胴型進行波管と
呼ばれるもので、1が電子銃部、2が遅波回路部、3が
コレクタ部である。ここで2個の非蒸発型ゲッタを用い
電子銃部の低温活性型ゲッタ4aは、イタリア国サエス
ゲッターズ社が発売するST172シリーズのゲッタで
ある。一方、コレクタ部の高温活性型ゲッタ4bは、同
じくサエスゲッターズ社のST171シリーズのゲッタ
である。これ等は気密に接合された容器内に収容されて
いてコレクタ部3には無酸素銅管からなる排気管5が取
付けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a traveling wave tube showing a first embodiment of the present invention. This microwave tube is called a coupled cavity traveling wave tube, 1 is an electron gun unit, 2 is a slow wave circuit unit, and 3 is a collector unit. Here, two non-evaporable getters are used, and the low-temperature active type getter 4a of the electron gun section is a ST172 series getter sold by Saes Getters, Italy. On the other hand, the high-temperature active type getter 4b of the collector is a getter of the ST171 series of SAES Getters. These are accommodated in an airtightly joined container, and an exhaust pipe 5 made of an oxygen-free copper pipe is attached to the collector section 3.

【0013】前記2個のゲッタはそれぞれ活性化用のヒ
ータを内蔵していて、そのリード線は互に絶縁して夫々
の取付位置に設けられた管外引出電極6a,6bに抵抗
溶接法により接続されている。同時にゲッタはこのリー
ド線で管内に保持される。なお、この進行波管の組立
て、排気ベーキング工程までは従来と全く同じなので特
に説明は省略する。
Each of the two getters has a built-in heater for activation, and its lead wires are insulated from each other and are connected to the external lead-out electrodes 6a and 6b provided at the respective mounting positions by resistance welding. It is connected. At the same time the getter is held in the tube with this lead. Since the assembling of the traveling wave tube and the exhaust baking process are completely the same as those in the related art, the description thereof is omitted.

【0014】排気終了後、管球温度が約300℃になっ
たら低温活性ゲッタ4aに所定の電流を流し、900℃
に加熱し活性化を行なう。この時ガスの放出は従来ゲッ
タに比べ1/10以下と少なかった。次に、このゲッタ
の温度を400℃に保持したまま、高温活性型ゲッタ4
bを活性化する。この時かなり多量の水素が放出される
が、従来に比べ排気管に近い位置のため、従来の約1/
2の時間で活性化(ガス出し)が終了した。その後カソ
ードの活性など従来の進行波管と同じ工程を経て、結合
空胴型進行波管が完成した。
After the evacuation, when the bulb temperature reaches about 300 ° C., a predetermined current is applied to the low-temperature active getter 4a,
Activate by heating. At this time, the release of gas was as small as 1/10 or less as compared with the conventional getter. Next, while keeping the temperature of the getter at 400 ° C.,
Activate b. At this time, a considerably large amount of hydrogen is released.
Activation (outgassing) was completed in 2 hours. Thereafter, through the same steps as those of the conventional traveling wave tube, such as the activity of the cathode, a coupled cavity traveling wave tube was completed.

【0015】図2は、本発明の第2の実施例によるクラ
イストロンの構造を示す縦断面図である。11は電子銃
部、12は空胴部でこのクライストロンでは6つの共振
空胴を備えている。13はコレクタ部である。ここでは
排気管14が電子銃部11の先端に取付けてあり、第1
の実施例と同じサエスゲッターズ社が発売するST17
1シリーズの高温活性型ゲッタ15b(Zr−C系)を
カソードルームの下に取付けた。
FIG. 2 is a longitudinal sectional view showing the structure of a klystron according to a second embodiment of the present invention. Numeral 11 denotes an electron gun and numeral 12 denotes a cavity. This klystron has six resonant cavities. 13 is a collector unit. Here, an exhaust pipe 14 is attached to the tip of the electron gun section 11, and the first
ST17 marketed by SAES Getters, Inc.
A series of high temperature active getters 15b (Zr-C based) were mounted under the cathode room.

【0016】一方コレクタ部13には、金属テープの表
面にゲッタ材の粉末を焼結・固着したテープ状の低温活
性型ゲッタ15a(サエスゲッターズ社のST707シ
リーズ)を採用した。このゲッタは加熱用のヒータが無
く、排気ベーキング加熱で活性化するだけでも十分なゲ
ッタ作用を発揮するので、図示のようにコレクタ電極と
外囲器の隙間に挿入し、スポット溶接で固定した。この
クライストロンの組立排気工程は従来と同じであり省略
する。
On the other hand, for the collector section 13, a tape-shaped low-temperature active type getter 15a (ST707 series manufactured by SAES Getters Co., Ltd.) in which a getter material powder is sintered and fixed on the surface of a metal tape is used. Since this getter does not have a heater for heating and activates only by exhaust baking heating, the getter exerts a sufficient getter effect. Therefore, the getter was inserted into the gap between the collector electrode and the envelope as shown in the figure and fixed by spot welding. The process of assembling and exhausting the klystron is the same as that of the conventional one and will not be described.

【0017】排気ベーキングの後、電子銃部11に取付
けた高温活性型ゲッタ15bに通電して、900℃,1
0分間保持し活性化した。管内真空度が所定値となるま
で排気した後、排気管14を冷間圧接して密閉管が製造
された。以後は従来のクライストロンの製造工程と同様
に枯化,仕上げ、調整を行なってクライストロンが完成
した。
After the exhaust baking, the high-temperature active type getter 15b attached to the electron gun section 11 is energized to a temperature of 900.degree.
Hold for 0 minutes to activate. After evacuation was performed until the degree of vacuum in the pipe reached a predetermined value, the exhaust pipe 14 was cold-pressed to produce a sealed pipe. Thereafter, the klystron was completed by finishing, finishing, and adjusting in the same manner as in the conventional klystron manufacturing process.

【0018】[0018]

【発明の効果】以上説明したように本発明では、排気抵
抗の大きい遅波回路部又は空胴部の向う側に排気工程で
水素吸収の少ない低温活性型ゲッタを、また、遅波回路
又は空胴部の手前側に高温活性型ゲッタをそれぞれ取付
けたことによって、ミリ波帯用電子管のように排気抵抗
が従来のマイクロ波帯用電子管の数倍も大きくならざる
を得ない状況化でも排気が効率的に行なわれる点で大き
なメリットがある。特に、高排気抵抗部の向うに取付け
た低温活性型ゲッタは、排気中、内蔵ミニポンプとして
作動するので管内真空度が良くなってカソード等への悪
影響が軽減されることが確められた。
As described above, according to the present invention, a low-temperature active type getter which has a small amount of hydrogen absorption in an exhaust process is provided on the opposite side of a slow-wave circuit portion or a cavity portion having a large exhaust resistance. The high-temperature active type getters are mounted on the front side of the section, respectively, so that the exhaust efficiency is improved even in the situation where the exhaust resistance has to be several times larger than that of the conventional microwave band electron tube like the millimeter wave band electron tube There is a great merit in that it is performed in a dynamic way. In particular, it has been confirmed that the low-temperature active type getter mounted opposite the high exhaust resistance portion operates as a built-in mini-pump during exhaust, so that the degree of vacuum in the tube is improved and adverse effects on the cathode and the like are reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の進行波管の構造を示す
縦断面図である。
FIG. 1 is a longitudinal sectional view showing a structure of a traveling wave tube according to a first embodiment of the present invention.

【図2】本発明の第2の実施例のクライストロンの構造
を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing a structure of a klystron according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,11 電子銃部 2 遅波回路部 12 空胴部 3,13 コレクタ部 4a,15a 低温活性型ゲッタ 4b,15b 高温活性型ゲッタ 5,14 排気管 6a,6b 引出し電極 1,11 electron gun section 2 slow wave circuit section 12 cavity section 3,13 collector section 4a, 15a low temperature activation type getter 4b, 15b high temperature activation type getter 5,14 exhaust pipe 6a, 6b extraction electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電子銃部とコレクタ部の間に遅波回路部
又は空胴部を備えると共にこれらが一体の気密容器に収
容され、該気密容器の電子銃部又はコレクタ部のいずれ
か一方に排気管が取り付けられたマイクロ波管におい
て、前記排気管から見て前記遅波回路部又は空胴部の手
前側に活性化温度が700℃以上の非蒸発型ゲッタを配
置するとともに、前記遅波回路部又は空胴部のむこう側
に活性化温度が600℃以下の非蒸発型ゲッタを配置し
たことを特徴とするマイクロ波管。
1. A These provided with a slow wave circuit portion or the cavity portion between the electron gun portion and the collector portion is accommodated in an airtight container integral to either one of the electron gun unit or collector portion of said airtight container in a microwave tube the exhaust pipe is attached, together with the activation temperature in front of the viewed from the exhaust pipe the slow wave circuit portion or the cavity portion is disposed a non-evaporable getter above 700 ° C., the slow wave A microwave tube having a non-evaporable getter having an activation temperature of 600 ° C. or lower disposed on the other side of the circuit or cavity .
JP7972692A 1992-04-01 1992-04-01 Microwave tube Expired - Lifetime JP2827678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7972692A JP2827678B2 (en) 1992-04-01 1992-04-01 Microwave tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7972692A JP2827678B2 (en) 1992-04-01 1992-04-01 Microwave tube

Publications (2)

Publication Number Publication Date
JPH05347127A JPH05347127A (en) 1993-12-27
JP2827678B2 true JP2827678B2 (en) 1998-11-25

Family

ID=13698211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7972692A Expired - Lifetime JP2827678B2 (en) 1992-04-01 1992-04-01 Microwave tube

Country Status (1)

Country Link
JP (1) JP2827678B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034469A (en) * 1995-06-09 2000-03-07 Kabushiki Kaisha Toshiba Impregnated type cathode assembly, cathode substrate for use in the assembly, electron gun using the assembly, and electron tube using the cathode assembly
JP4751635B2 (en) * 2005-04-13 2011-08-17 株式会社日立ハイテクノロジーズ Magnetic field superposition type electron gun

Also Published As

Publication number Publication date
JPH05347127A (en) 1993-12-27

Similar Documents

Publication Publication Date Title
US20160260573A1 (en) X-ray tube having non-evaporable getter
JPS6356461B2 (en)
JP2827678B2 (en) Microwave tube
CN102044392B (en) Assembly process for slow wave system of helical line travelling wave tube
CN215138368U (en) Self-vacuum composite getter convenient to use
CN101890328A (en) Non-evaporable air-absorbing agent and application thereof
US2447973A (en) Coated anode for electron discharge devices
JP2982760B2 (en) Traveling wave tube collector
CN114300324B (en) Collector for traveling wave tube and preparation method thereof
US20020013115A1 (en) Process for producing flat panel display containing getter material
JP2002025454A (en) Microwave electron tube
US3102633A (en) Getter structure
Ferrario et al. Distributed pumping by non-evaporable getters in particle accelerators
JP2821051B2 (en) Low pressure mercury lamp
CN118248508A (en) X-ray tube
JPH01317413A (en) Vacuum heat insulating double vessel and manufacture
JPS6015234Y2 (en) electron tube
JPS5842141A (en) Pierce type electron gun
JPS635164Y2 (en)
KR100318390B1 (en) Field Emission Display
US3221201A (en) Getter assembly for electron tubes
CA1241365A (en) Unsaturated vapor high pressure sodium lamp arc tube fabrication process
JP2001266865A (en) Manufacturing method of hydrogen storage alloy electrode
JPH04328224A (en) Manufacture of magnetron
CN201815313U (en) Non-evaporable getter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980818