JP2827079B2 - Thermal protector - Google Patents

Thermal protector

Info

Publication number
JP2827079B2
JP2827079B2 JP6030966A JP3096694A JP2827079B2 JP 2827079 B2 JP2827079 B2 JP 2827079B2 JP 6030966 A JP6030966 A JP 6030966A JP 3096694 A JP3096694 A JP 3096694A JP 2827079 B2 JP2827079 B2 JP 2827079B2
Authority
JP
Japan
Prior art keywords
plate
fixed
support
heat
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6030966A
Other languages
Japanese (ja)
Other versions
JPH07220595A (en
Inventor
靖和 水谷
秀樹 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ubukata Industries Co Ltd
Original Assignee
Ubukata Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ubukata Industries Co Ltd filed Critical Ubukata Industries Co Ltd
Priority to JP6030966A priority Critical patent/JP2827079B2/en
Priority to CN95101452A priority patent/CN1039515C/en
Publication of JPH07220595A publication Critical patent/JPH07220595A/en
Application granted granted Critical
Publication of JP2827079B2 publication Critical patent/JP2827079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H2037/5463Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting the bimetallic snap element forming part of switched circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5427Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting encapsulated in sealed miniaturised housing

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明はバイメタルやトリメタ
ルなどの温度変化によって変形する熱応動板を浅い皿状
に成形しスナップ動作するようにし、このスナップ動作
を接点の開閉に応用したサーマルプロテクタに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal protector in which a thermally responsive plate, which is deformed by a temperature change of a bimetal or a trimetal, is formed into a shallow dish to perform a snap operation, and the snap operation is applied to opening and closing of contacts. It is.

【0002】[0002]

【従来の技術】この様なスイッチとしては例えば特開昭
62−88232号公報において図5に示す如き熱応動
スナップスイッチが開示されている。図5の熱応動スナ
ップスイッチ101は、スイッチ基体102並びにそれ
とガラス等の絶縁材料103により電気的に絶縁して固
定された導電金具104を有している。スイッチ基体1
02には支持体105が固着され、導電金具104には
固定接点106が固定接点支持体107を介して固着さ
れている。支持体105の固定端部近傍には弾性板10
8の一端が固着され、この弾性板108の他端には急跳
反転するための浅い皿状の湾曲部を有するバイメタルの
如き熱変形板109の一端が接続片110を介して固着
されている。熱変形板109の他端には可動接点111
が固着され前記固定接点106と対向するように構成さ
れている。また支持体105の中央部には第一支承部た
る動作温度較正用の螺子112が備えられている。
2. Description of the Related Art As such a switch, for example, a thermally responsive snap switch as shown in FIG. 5 is disclosed in Japanese Patent Application Laid-Open No. 62-88232. The heat-responsive snap switch 101 shown in FIG. 5 has a switch base 102 and a conductive bracket 104 which is electrically insulated and fixed by an insulating material 103 such as glass. Switch base 1
A support 105 is fixed to 02, and a fixed contact 106 is fixed to the conductive fitting 104 via a fixed contact support 107. The elastic plate 10 is located near the fixed end of the support 105.
One end of an elastic plate 108 is fixed, and one end of a heat deformable plate 109 such as a bimetal having a shallow dish-shaped curved portion for jumping and reversing is fixed to the other end of the elastic plate 108 via a connecting piece 110. . A movable contact 111 is connected to the other end of the heat deformable plate 109.
Are fixed to face the fixed contact 106. A screw 112 for operating temperature calibration, which is a first support, is provided at the center of the support 105.

【0003】熱変形板109はその一端を弾性板108
により支持体105の先端に設けられた第二支承部10
5Aに押し付けられて回動可能に支承される。また熱変
形板109の温度が所定の温度に達していない時はその
湾曲部の凸側の面が第一支承部たる前記螺子112によ
り押圧支持され、またこの押圧力により熱変形板の可動
端は可動接点を前記固定接点に所定の圧力で押し付けら
れると共に前記弾性板と固着された側の端部を第二支承
部に押し付けて支承される。この熱変形板109の温度
が所定の温度に達すると熱変形板109はスナップ動作
により膨出方向を反転し可動接点111と固定接点10
6とを開離する。その為所定の温度において確実に制御
対象機器への通電を遮断することができる。
One end of the heat-deformable plate 109 has an elastic plate 108.
The second bearing 10 provided at the tip of the support 105 by the
It is pressed against 5A and rotatably supported. When the temperature of the heat-deformable plate 109 has not reached the predetermined temperature, the convex surface of the curved portion is pressed and supported by the screw 112 as the first support portion. Is supported by pressing the movable contact against the fixed contact with a predetermined pressure, and pressing the end fixed to the elastic plate against the second support. When the temperature of the heat deformable plate 109 reaches a predetermined temperature, the heat deformable plate 109 reverses the bulging direction by a snap operation, and the movable contact 111 and the fixed contact 10
And 6. Therefore, it is possible to reliably cut off the power supply to the control target device at a predetermined temperature.

【0004】[0004]

【発明が解決しようとする課題】しかし前述の熱応動ス
ナップスイッチにおいては熱変形板と支持体とが第一支
承部及び第二支承部において電気的に絶縁されることな
く接触しているため、その間をバイパス電流が流れ弾性
板を流れる電流が減少してしまう。またバイパス電流の
大きさは前記各支承部の接触抵抗に依存しているためば
らつきが大きい。そのため弾性体及び熱応動板の抵抗値
を低く設定して事実上周囲の温度変化のみを検知して動
作する単なる温度スイッチとしたものについては問題は
ないが、弾性体及び熱変形板の抵抗値を所定の値に設定
し周囲温度と電流値の大きさとを関連づけて動作させる
様にしたものについては発熱量が不充分であったり製品
毎のばらつきが大きくなり安定した製品特性が得られな
いという問題があった。
However, in the above-mentioned heat-responsive snap switch, the heat-deformable plate and the support are in contact with each other without being electrically insulated at the first and second support portions. During that time, a bypass current flows and the current flowing through the elastic plate decreases. Further, the magnitude of the bypass current varies greatly because it depends on the contact resistance of each of the support portions. Therefore, there is no problem with a simple temperature switch that operates by detecting only the ambient temperature change by setting the resistance of the elastic body and the heat responsive plate low, but there is no problem. Is set to a predetermined value and the operation is performed in association with the ambient temperature and the magnitude of the current value, the amount of heat generation is insufficient or the variation among products is large, and stable product characteristics cannot be obtained. There was a problem.

【0005】[0005]

【課題を解決するための手段】そこで本出願のサーマル
プロテクタは、概ね円形の金属板に導電端子を絶縁固定
した蓋板を有し、この蓋板の金属板には熱応動板支持体
が固着され、導電端子には固定接点支持体が固着され、
固定接点支持体には固定接点が固着され、熱応動板支持
体のほぼ中央には第1支承部が設けられるとともに先端
には第2支承部が設けられ、熱応動板支持体の前記金属
板との固定端近傍には所定の抵抗値を有し通電時に熱応
動板の発熱を補助する弾性板の一端が固着され、弾性板
は支持体に沿って延在しておりその他端には急跳反転す
るための浅い皿状の湾曲部を有する熱応動板の一端が固
着され、この熱応動板の一端は前記第2支承部へ弾性板
によって押し付けられることにより回動可能に支承さ
れ、熱応動板の他端即ち可動端には可動接点が固着され
ておりその可動接点は前記固定接点と対面するように配
置され、熱応動板の温度が所定の温度に達していない時
はその湾曲部の膨出した側は前記熱応動板支持体に設け
られた第1支承部に押圧支持され、またこの押圧力によ
り熱応動板の可動端は可動接点を前記固定接点に所定の
圧力で押し付けられると共に前記弾性板と固着された端
部を第2支承部に押し付けて支承され、この第1支承部
には熱応動板への押圧力を調整することにより動作温度
を構成するための動作温度較正機構が設けられており、
熱応動板は所定の動作温度に到達して急跳反転すると可
動接点の固着された可動端が固定接点から開離する状態
となるよう弾性板によってその固着端部に予め偏倚力を
受けている如く構成され、熱応動板の第1支承部及び第
2支承部との接触は熱応動板の動作温度よりも高い耐熱
性を有し充分な可撓性のある薄板状の絶縁部材を介して
行われることにより熱応動板支持体を介してバイパス電
流が流れる事を防ぎ、通電時の弾性板及び熱応動板の発
熱量のばらつきを防いだ事を特徴とする。
Accordingly, the thermal protector of the present application has a cover plate in which conductive terminals are insulated and fixed to a substantially circular metal plate, and a thermally responsive plate support is fixed to the metal plate of the cover plate. The fixed contact support is fixed to the conductive terminal,
A fixed contact is fixed to the fixed contact support, and a first support portion is provided substantially at the center of the thermally responsive plate support and a second support portion is provided at a tip thereof, and the metal plate of the thermally responsive plate support is provided. One end of an elastic plate having a predetermined resistance value and assisting heat generation of the thermally responsive plate during energization is fixed near the fixed end of the elastic plate, and the elastic plate extends along the support and has a sharp end at the other end. One end of a thermally responsive plate having a shallow dish-shaped curved portion for reversing a jump is fixed, and one end of the thermally responsive plate is rotatably supported by being pressed against the second support portion by an elastic plate. A movable contact is fixed to the other end of the response plate, that is, a movable end, and the movable contact is arranged so as to face the fixed contact. When the temperature of the thermal response plate has not reached a predetermined temperature, the curved portion is provided. The swelled side of the first support portion provided on the heat responsive plate support The movable end of the thermally responsive plate is supported by pressing the movable contact against the fixed contact with a predetermined pressure, and the end fixed to the elastic plate is pressed against the second support portion and supported by the pressing force. The first bearing is provided with an operating temperature calibration mechanism for configuring the operating temperature by adjusting the pressing force on the heat responsive plate,
When the thermal responsive plate reaches a predetermined operating temperature and jumps and reverses, the movable end to which the movable contact is fixed is preliminarily biased to the fixed end by the elastic plate so that the movable end is separated from the fixed contact. The heat responsive plate is in contact with the first and second support portions via a thin and flexible insulating member having heat resistance higher than the operating temperature of the heat responsive plate and having sufficient flexibility. By doing so, it is characterized in that a bypass current is prevented from flowing through the thermally responsive plate support, thereby preventing variations in the amount of heat generated by the elastic plate and the thermally responsive plate during energization.

【0006】[0006]

【実施例】以下、図面に従って本発明の実施例について
説明する。図1は本発明のサーマルプロテクタ1であ
る。このサーマルプロテクタ1は概ね円形の金属板2に
穿たれた貫通穴2Aに導電端子3をガラスやセラミック
の如き電気絶縁性の封止材4により気密に貫通固定した
蓋板5を有している。蓋板5の金属板2には熱応動板支
持体6が固着され、また導電端子3には固定接点支持体
7を介して固定接点8が固着されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a thermal protector 1 according to the present invention. The thermal protector 1 has a cover plate 5 in which a conductive terminal 3 is hermetically sealed through a through hole 2A formed in a substantially circular metal plate 2 with an electrically insulating sealing material 4 such as glass or ceramic. . A thermally responsive plate support 6 is fixed to the metal plate 2 of the cover plate 5, and a fixed contact 8 is fixed to the conductive terminal 3 via a fixed contact support 7.

【0007】熱応動板支持体6の金属板2との固定端近
傍には弾性板9の一端が固着されている。この弾性板9
は熱応動板支持体6と概ね平行に沿う様に配設されてい
る。弾性板9の他端には急跳反転するために浅い皿状に
成形されたバイメタルの如き熱応動板10の一端が接続
片11を介して固着されている。この接続片11は必ず
しも必要なものではなく熱応動板10と弾性板とを直接
固着してもよい。熱応動板10の他端には可動接点12
が前述の固定接点8と対向接触するように固着されてい
る。熱応動板支持体6の中央付近には第1支承部である
螺子13が装着されており、また熱応動板支持体6の先
端には弾性板9と熱応動板10との固着部を保持する第
2支承部6Aが設けられている。
One end of an elastic plate 9 is fixed near the fixed end of the thermally responsive plate support 6 to the metal plate 2. This elastic plate 9
Are disposed substantially parallel to the heat responsive plate support 6. To the other end of the elastic plate 9, one end of a thermally responsive plate 10 such as a bimetal formed into a shallow dish shape for quick reversal is fixed via a connection piece 11. The connection piece 11 is not always necessary, and the heat responsive plate 10 and the elastic plate may be directly fixed. A movable contact 12 is provided at the other end of the thermally responsive plate 10.
Are fixed so as to face the fixed contact 8 described above. A screw 13 as a first support is mounted near the center of the thermally responsive plate support 6, and a fixed portion between the elastic plate 9 and the thermally responsive plate 10 is held at the tip of the thermally responsive plate support 6. A second supporting portion 6A is provided.

【0008】弾性板9には予め熱応動板10と弾性板9
との固着部分である接続片11を第2支承部6Aに押し
付け且つ熱応動板10の可動接点12を固定接点から引
き離す方向の偏倚力が付与されている。また第1支承部
である螺子13は弾性板9の中央付近に穿たれた図示し
ない貫通穴を弾性板に接触しないように挿通され熱応動
板10の常温時に膨出している面に当接する。ここで第
1支承部及び第2支承部は直接熱応動板10や接続片1
1と接触をしないように薄板状の絶縁部材14を介して
行われる。この絶縁部材14としては熱応動板の動作温
度よりも高い耐熱性を有した素材が使用される。例えば
較正後の熱応動板の動作温度が150℃だとすると20
0℃以上の耐熱温度を有するアラミド紙等の耐熱素材を
使用する事が好ましい。
The elastic plate 9 has a thermally responsive plate 10 and an elastic plate 9 in advance.
A biasing force is applied in a direction of pressing the connecting piece 11 which is a fixed portion to the second support portion 6A and separating the movable contact 12 of the thermally responsive plate 10 from the fixed contact. The screw 13 serving as the first bearing is inserted through a through hole (not shown) formed near the center of the elastic plate 9 so as not to contact the elastic plate, and abuts on the surface of the thermally responsive plate 10 which is swelled at normal temperature. Here, the first support and the second support are directly connected to the heat responsive plate 10 and the connection piece 1.
This is performed via a thin insulating member 14 so as not to make contact with 1. As the insulating member 14, a material having heat resistance higher than the operating temperature of the thermally responsive plate is used. For example, if the operating temperature of the thermally responsive plate after calibration is 150 ° C., 20
It is preferable to use a heat-resistant material such as aramid paper having a heat-resistant temperature of 0 ° C. or higher.

【0009】このサーマルプロテクタ1の動作温度較正
について説明すると、このスイッチの温度較正機構は図
2に示す如く熱応動板支持体6にプレスの打抜き加工な
どにより穿たれた孔6Bとこの孔に螺合される螺子13
により構成される。孔6Bは中央に螺子13を受入れる
螺合部分6Cを有する長孔であり、この孔6Bに沿って
両側に側孔6D,6Eが穿たれ細長の帯状部6F,6G
が構成されている。また螺合部分6Cの内径は螺子13
の外径よりも小さくされている。
The operation temperature calibration of the thermal protector 1 will be described. The temperature calibration mechanism of the switch has a hole 6B formed in the heat responsive plate support 6 by punching of a press as shown in FIG. Screw 13 to be combined
It consists of. The hole 6B is a long hole having a threaded portion 6C for receiving the screw 13 at the center. Side holes 6D and 6E are formed on both sides along the hole 6B, and the elongated strips 6F and 6G are formed.
Is configured. The inner diameter of the threaded portion 6C is the screw 13
Is smaller than the outer diameter of

【0010】そのため温度較正時には螺合部分6Cに螺
子13をねじ込むことにより孔6Bが外側へ拡張される
と共に螺合部分6Cの内面に螺旋溝が形成される。この
とき孔6Bの拡張に伴う帯状部6F,6Gの反力により
螺子13は締めつけ挾持されるため、螺子のあそびは全
く生ずる事がなく較正した時の螺子の位置の戻りは発生
しない。さらに螺子13をねじ込むと螺子の先端が絶縁
部材14を介して熱応動板10の常温時に膨出している
面に当接し押圧支持する。この押圧力により熱応動板1
0の可動端は可動接点12を固定接点8に押し付けられ
ると共に弾性板9と固着された側の端部を第2支承部に
押し付けて支承される。螺子13のねじ込み量を調整す
ることにより熱応動板10に付与される応力を精密に調
整することができ、前述した如く螺子13の弛みによる
較正直後の戻りがないのでスイッチの動作反転温度を正
確に希望値に設定することができる。
Therefore, at the time of temperature calibration, the screw 6 is screwed into the threaded portion 6C to expand the hole 6B outward and form a spiral groove on the inner surface of the threaded portion 6C. At this time, since the screw 13 is clamped and held by the reaction force of the strips 6F and 6G accompanying the expansion of the hole 6B, no play of the screw occurs at all, and the screw position does not return when calibrated. When the screw 13 is further screwed in, the tip of the screw comes into contact with the surface of the thermally responsive plate 10 that swells at normal temperature via the insulating member 14 to support the screw. With this pressing force, the heat responsive plate 1
The movable end of 0 is supported by pressing the movable contact 12 against the fixed contact 8 and pressing the end fixed to the elastic plate 9 against the second support portion. By adjusting the screwing amount of the screw 13, the stress applied to the thermally responsive plate 10 can be precisely adjusted. As described above, since there is no return immediately after the calibration due to the loosening of the screw 13, the operation reversal temperature of the switch can be accurately determined. Can be set to a desired value.

【0011】上述の様な方法で動作温度較正が較正され
た後、有底筒形の金属製のハウジング15の開口部を蓋
板5の金属板2にリングプロジェクション溶接等の方法
で気密に固定することにより、サーマルプロテクタを気
密構造とすることができる。またこのとき内部空間の気
体をアルゴンやヘリウムなどの不活性ガスや、窒素等の
汚損防止ガスに置換しておくことにより各部品の錆等の
腐食を防止することができる。また少なくとも封入ガス
中にヘリウムを含ませることによりハウジングの気密試
験においてヘリウムリークディテクタを使用することが
でき高精度での気密性確認ができるようになる。
After the operating temperature calibration is calibrated by the above-described method, the opening of the bottomed cylindrical metal housing 15 is air-tightly fixed to the metal plate 2 of the cover plate 5 by a method such as ring projection welding. By doing so, the thermal protector can have an airtight structure. Further, at this time, by replacing the gas in the internal space with an inert gas such as argon or helium, or a pollution preventing gas such as nitrogen, corrosion of each component such as rust can be prevented. Further, by including at least helium in the sealed gas, a helium leak detector can be used in an airtightness test of the housing, and the airtightness can be confirmed with high accuracy.

【0012】熱応動板支持体6と熱応動板10とを電気
的に接続する弾性板9は、その平面に沿った方向の力に
対しては高い剛性を有するが平面と直角な方向には熱応
動板10に対して充分にしなやかであるから、温度較正
時に熱応動板10に無理な曲げ応力などを加えることが
ない。例えば熱応動板10の湾曲形状には製造上のばら
つきによる違いがあるため、弾性板9を使用せず熱応動
板10の一端を固定する構造とした時には、熱応動板1
0の湾曲が大きいと温度較正以前に可動接点12と固定
接点8との接点圧力が大きくなり熱応動板10の固定端
近傍に大きな曲げ応力がかかる。また逆に熱応動板の湾
曲が小さいと、可動接点12と固定接点8との接点圧力
を得るために温度較正機構により正常なものよりも大き
な応力を与えることになり、そのため固定端部近傍には
大きな曲げ応力がかかる。
The elastic plate 9 for electrically connecting the thermally responsive plate support 6 and the thermally responsive plate 10 has high rigidity against a force in a direction along the plane, but has a high rigidity in a direction perpendicular to the plane. Since the heat responsive plate 10 is sufficiently flexible, no excessive bending stress is applied to the heat responsive plate 10 during temperature calibration. For example, since the curved shape of the heat responsive plate 10 has a difference due to manufacturing variations, when the elastic plate 9 is not used and one end of the heat responsive plate 10 is fixed, the heat responsive plate 1
If the curvature of 0 is large, the contact pressure between the movable contact 12 and the fixed contact 8 increases before the temperature calibration, and a large bending stress is applied near the fixed end of the thermally responsive plate 10. On the other hand, if the curvature of the thermally responsive plate is small, a stress larger than a normal one is applied by the temperature calibration mechanism in order to obtain a contact pressure between the movable contact 12 and the fixed contact 8, so that the vicinity of the fixed end is increased. Has a large bending stress.

【0013】しかし弾性板9を用いることにより熱応動
板10の弾性板9との固定端部はその平面と直角な方向
に動作可能とされており、また熱応動板10は第二支承
部により前記固定端部を中心として平面と直角な方向へ
の回動可能に支承されている。そのため前述の様な大き
な応力がかかる条件においても、弾性板が撓み前記固定
端部が回動することにより曲げ応力のほとんどを弾性板
で吸収するので、熱応動板の固定端近傍に曲げ応力が集
中することはなく熱応動板の永久変形による動作特性の
変化や応力集中による耐久性能の低下を避ける事ができ
る。
However, by using the elastic plate 9, the fixed end of the thermally responsive plate 10 with the elastic plate 9 can be operated in a direction perpendicular to the plane of the thermally responsive plate 10, and the thermally responsive plate 10 is fixed by the second support. It is supported so as to be rotatable about the fixed end in a direction perpendicular to the plane. Therefore, even under the condition where a large stress is applied as described above, since the elastic plate bends and the fixed end rotates, most of the bending stress is absorbed by the elastic plate. Therefore, the bending stress is close to the fixed end of the thermally responsive plate. It is possible to avoid a change in operating characteristics due to permanent deformation of the thermally responsive plate and a decrease in durability due to stress concentration without concentration.

【0014】本発明のサーマルプロテクタは単純に熱に
より接点を開閉するのみでなく、過電流が流れた時にも
電流を遮断できるように電流による構成部品の発熱量と
動作特性とが関連づけられている。つまり熱応動板10
並びに弾性体9の抵抗値が所定の値に設定されており、
例えば周囲温度がスイッチの動作温度以下であってもス
イッチに流れる電流によって各部品が発熱するようにさ
れており、過電流等所定の値以上の電流が流れた時には
熱応動板10の温度が較正された動作温度以上になり急
跳反転動作する事により接点間を開放するようにされて
いる。
In the thermal protector according to the present invention, not only the contacts are simply opened and closed by heat, but also the amount of heat generated by the components due to the current and the operating characteristics are linked so that the current can be cut off even when an overcurrent flows. . That is, the thermally responsive plate 10
In addition, the resistance value of the elastic body 9 is set to a predetermined value,
For example, even when the ambient temperature is lower than the operating temperature of the switch, each component generates heat by the current flowing through the switch, and when a current exceeding a predetermined value such as an overcurrent flows, the temperature of the thermally responsive plate 10 is calibrated. When the operating temperature becomes higher than the set operating temperature and a jump reversal operation is performed, the gap between the contacts is opened.

【0015】例えば図1のサーマルプロテクタ1は導電
端子3−固定接点支持体7−固定接点8−可動接点12
−熱応動板10−接続片11−弾性板9−熱応動板支持
体6−金属板2−ハウジング15の経路で通電される。
ここで仮に絶縁部材14がないと第1支承部である螺子
13が熱応動板10に直接接触し、また第2支承部6A
が接続片11に直接接触する。そのため弾性板9を通ら
ず熱応動板支持体6と熱応動板10との間を直接流れる
バイパス電流が発生する。そのため弾性板9を通る電流
が減少し発熱量が下がり所期の性能が得られなくなる。
またこのバイパス電流の値は第1支承部及び第2支承部
と熱応動板との間の接触抵抗に依存するため製品毎の個
体差が大きく、従って製品毎に特性が大きくばらついて
しまいバイパス抵抗を見込んでの製品設計は不可能であ
る。
For example, the thermal protector 1 shown in FIG. 1 includes a conductive terminal 3, a fixed contact support 7, a fixed contact 8, and a movable contact 12.
Power is supplied through the path of the heat responsive plate 10, the connecting piece 11, the elastic plate 9, the heat responsive plate support 6, the metal plate 2 and the housing 15.
Here, if the insulating member 14 is not provided, the screw 13 as the first support directly contacts the thermally responsive plate 10 and the second support 6A.
Directly contact the connection piece 11. Therefore, a bypass current is generated that directly flows between the thermally responsive plate support 6 and the thermally responsive plate 10 without passing through the elastic plate 9. As a result, the current passing through the elastic plate 9 decreases, the amount of heat generation decreases, and the desired performance cannot be obtained.
Also, the value of this bypass current depends on the contact resistance between the first and second support portions and the heat responsive plate, and therefore, there is a large individual difference for each product. It is impossible to design products in anticipation.

【0016】しかし本発明のサーマルプロテクタ1にお
いては第1支承部及び第2支承部に絶縁部材14を配置
し、熱応動板支持体6と熱応動板10との間を直接流れ
るバイパス電流を排除している。
However, in the thermal protector 1 of the present invention, the insulating member 14 is disposed on the first and second support portions, and the bypass current flowing directly between the thermally responsive plate support 6 and the thermally responsive plate 10 is eliminated. doing.

【0017】絶縁部材14は図3に示す如き薄板状をし
ており組付の為の貫通孔14Aが穿たれている。この絶
縁部材14は図4に矢印Aで示す如く熱応動板10また
は接続片11を前記貫通孔14Aに挿通し折り曲げた状
態で熱応動板10と弾性体9とを固着することにより保
持される。この状態で弾性板9を熱応動板支持体6に固
着することにより、絶縁部材14の長片側14Bは熱応
動板10と第1支承部との接触点を、また短片側14C
は第2支承部との接触点を覆い、それぞれの支承部と熱
応動板10との間を絶縁する。
The insulating member 14 has a thin plate shape as shown in FIG. 3, and has a through hole 14A for assembling. The insulating member 14 is held by fixing the thermally responsive plate 10 and the elastic body 9 in a state where the thermally responsive plate 10 or the connecting piece 11 is bent through the through hole 14A as shown by an arrow A in FIG. . In this state, the elastic plate 9 is fixed to the thermally responsive plate support 6, so that the long side 14B of the insulating member 14 is in contact with the contact point between the thermally responsive plate 10 and the first support and the short side 14C.
Cover the contact points with the second bearings and insulate between the respective bearings and the thermally responsive plate 10.

【0018】そのため弾性体9及び熱応動板10に流れ
る電流が製品毎にばらつくことはなく、また通電電流に
対して所期の発熱量が得られるため過電流に対しても確
実に電路を遮断することができる。
As a result, the current flowing through the elastic body 9 and the thermally responsive plate 10 does not vary from product to product, and the desired heat generation with respect to the supplied current is obtained, so that the electric circuit is reliably cut off even with overcurrent. can do.

【0019】ここで絶縁部材14にはアラミド紙やポリ
イミド、ポリフェニレンサルファイドフィルム等の充分
な可撓性と靱性がある薄板状のものを使用する事によ
り、その加工及び取付けが容易になる。例えば絶縁部材
として碍子を使用した場合には、本実施例の如く第1支
承部及び第2支承部を一つの部材で絶縁するためには碍
子を複雑な形状にしなければならず加工が難しくなる。
また可撓性が乏しい為に薄板状にする事が難しくさらに
強靭性がなく耐久性がない。
Here, by using a thin plate having sufficient flexibility and toughness, such as aramid paper, polyimide, polyphenylene sulfide film, etc., the insulating member 14 can be easily processed and mounted. For example, when an insulator is used as an insulating member, the insulator must be formed into a complicated shape in order to insulate the first support and the second support with one member as in the present embodiment, and processing becomes difficult. .
In addition, it is difficult to form a thin plate due to poor flexibility, and there is no toughness and no durability.

【0020】しかし本願発明の如く絶縁部材14として
充分な可撓性及び靱性が充分にある薄板状のものを使用
する事により、絶縁部材の加工や取付けが容易になり、
また薄板状とする事で熱応動板10と弾性板9との距離
を最小限とする事ができ弾性板からの熱はすばやく熱応
動板に伝えられる。さらに絶縁部材14は充分な可撓性
を有しているので、熱応動板10や弾性板9の動作に影
響を与える事はない。
However, by using a thin plate having sufficient flexibility and toughness as the insulating member 14 as in the present invention, processing and mounting of the insulating member become easy,
In addition, the thin plate shape minimizes the distance between the thermally responsive plate 10 and the elastic plate 9, and the heat from the elastic plate is quickly transmitted to the thermally responsive plate. Further, since the insulating member 14 has sufficient flexibility, the operation of the thermally responsive plate 10 and the elastic plate 9 is not affected.

【0021】[0021]

【発明の効果】本発明のサーマルプロテクタによれば、
熱応動板と熱応動板支持体の第1支承部及び第2支承部
との接触を絶縁部材を介して行なうようにしたため、熱
応動板支持体と熱応動板との間を直接流れるバイパス電
流がなくなり、弾性体及び熱応動板に流れる電流が製品
毎にばらつくことはなく、また通電電流に対して所期の
発熱量が得られるため過電流に対しても確実に電路を遮
断することができる。
According to the thermal protector of the present invention,
Since the contact between the heat responsive plate and the first support portion and the second support portion of the heat responsive plate support is made via the insulating member, the bypass current flowing directly between the heat responsive plate support and the heat responsive plate. The current flowing through the elastic body and the heat responsive plate does not vary from product to product, and the desired amount of heat generated for the supplied current is obtained. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のサーマルプロテクタの一実施例の横断
面図。
FIG. 1 is a cross-sectional view of one embodiment of the thermal protector of the present invention.

【図2】図1のサーマルプロテクタの縦断面図。FIG. 2 is a longitudinal sectional view of the thermal protector of FIG.

【図3】本発明のサーマルプロテクタに使用する絶縁部
材の一実施例。
FIG. 3 is an embodiment of an insulating member used in the thermal protector of the present invention.

【図4】図3の絶縁部材の組付けを説明するための図。FIG. 4 is a view for explaining assembly of the insulating member of FIG. 3;

【図5】従来の熱応動スナップスイッチの例の横断面
図。
FIG. 5 is a cross-sectional view of an example of a conventional heat-responsive snap switch.

【符号の説明】[Explanation of symbols]

1:サーマルプロテクタ 2:金属板 3:導電端子 4:封止材 5:蓋板 6:熱応動板支持体 6A:第2支承部 7:固定接点支持体 8:固定接点 9:弾性板 10:熱応動板 11:接続片 12:可動接点 13:螺子(第1支承部) 14:絶縁部材 15:ハウジング 1: thermal protector 2: metal plate 3: conductive terminal 4: sealing material 5: lid plate 6: thermally responsive plate support 6A: second support 7: fixed contact support 8: fixed contact 9: elastic plate 10: Thermal response plate 11: Connection piece 12: Movable contact 13: Screw (first support) 14: Insulating member 15: Housing

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01H 37/00 - 37/56──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01H 37/00-37/56

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 概ね円形の金属板に導電端子を絶縁固定
した蓋板、この蓋板の金属板には熱応動板支持体が固着
され、導電端子には固定接点支持体が固着され、固定接
点支持体には固定接点が固着され、熱応動板支持体のほ
ぼ中央には第1支承部が設けられるとともに先端には第
2支承部が設けられ、熱応動板支持体の前記金属板との
固定端近傍には所定の抵抗値を有し通電時に熱応動板の
発熱を補助する弾性板の一端が固着され、弾性板は支持
体に沿って延在しておりその他端には急跳反転するため
の浅い皿状の湾曲部を有する熱応動板の一端が固着さ
れ、この熱応動板の一端は前記第2支承部へ弾性板によ
って押し付けられることにより回動可能に支承され、熱
応動板の他端即ち可動端には可動接点が固着されており
その可動接点は前記固定接点と対面するように配置さ
れ、熱応動板の温度が所定の温度に達していない時はそ
の湾曲部の膨出した側は前記熱応動板支持体に設けられ
た第1支承部に押圧支持され、またこの押圧力により熱
応動板の可動端は可動接点を前記固定接点に所定の圧力
で押し付けられると共に前記弾性板と固着された端部を
第2支承部に押し付けて支承され、この第1支承部には
熱応動板への押圧力を調整することにより動作温度を構
成するための動作温度較正機構が設けられており、熱応
動板は所定の動作温度に到達して急跳反転すると可動接
点の固着された可動端が固定接点から開離する状態とな
るよう弾性板によってその固着端部に予め偏倚力を受け
ている如く構成され、熱応動板の第1支承部及び第2支
承部との接触は熱応動板の動作温度よりも高い耐熱性を
有し充分な可撓性のある薄板状の絶縁部材を介して行わ
れることにより熱応動板支持体を介してバイパス電流が
流れる事を防ぎ、通電時の弾性板及び熱応動板の発熱量
のばらつきを防いだ事を特徴とするサーマルプロテク
タ。
A cover plate in which conductive terminals are insulated and fixed to a substantially circular metal plate, a thermally responsive plate support is fixed to the metal plate of the cover plate, and a fixed contact support is fixed to the conductive terminals. A fixed contact is fixed to the contact support, a first support portion is provided at substantially the center of the thermally responsive plate support, and a second support portion is provided at the tip, and the metal plate of the thermally responsive plate support is provided. One end of an elastic plate having a predetermined resistance value and assisting heat generation of the thermally responsive plate when energized is fixed near the fixed end of the elastic plate. The elastic plate extends along the support and jumps to the other end. One end of a thermally responsive plate having a shallow dish-shaped curved portion for inversion is fixed, and one end of the thermally responsive plate is rotatably supported by being pressed against the second support portion by an elastic plate. A movable contact is fixed to the other end of the plate, that is, the movable end. When the temperature of the heat responsive plate does not reach a predetermined temperature, the bulged side of the curved portion is pressed against a first support provided on the heat responsive plate support when the temperature of the heat responsive plate does not reach a predetermined temperature. With this pressing force, the movable end of the thermally responsive plate is supported by pressing the movable contact against the fixed contact with a predetermined pressure and pressing the end fixed to the elastic plate against the second support portion. The first support is provided with an operating temperature calibrating mechanism for adjusting the pressing force to the thermal responsive plate to configure the operating temperature, and the thermal responsive plate reaches a predetermined operating temperature and rapidly jumps over. Then, the movable end to which the movable contact is fixed is configured to receive a biasing force in advance by the elastic plate so that the movable end to which the movable contact is fixed is separated from the fixed contact. The contact with the bearing is higher than the operating temperature of the thermo-responsive plate. By using a heat-resistant and sufficiently flexible thin plate-shaped insulating member, bypass current is prevented from flowing through the heat-responsive plate support. Thermal protector characterized by preventing variations in the amount of heat generated.
JP6030966A 1994-02-01 1994-02-01 Thermal protector Expired - Fee Related JP2827079B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6030966A JP2827079B2 (en) 1994-02-01 1994-02-01 Thermal protector
CN95101452A CN1039515C (en) 1994-02-01 1995-01-28 Thermal protector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6030966A JP2827079B2 (en) 1994-02-01 1994-02-01 Thermal protector

Publications (2)

Publication Number Publication Date
JPH07220595A JPH07220595A (en) 1995-08-18
JP2827079B2 true JP2827079B2 (en) 1998-11-18

Family

ID=12318418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6030966A Expired - Fee Related JP2827079B2 (en) 1994-02-01 1994-02-01 Thermal protector

Country Status (2)

Country Link
JP (1) JP2827079B2 (en)
CN (1) CN1039515C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099578A (en) * 1995-06-14 1997-01-10 Sanyo Electric Co Ltd Thermal protector and manufacture thereof
DE19909059C2 (en) * 1999-03-02 2003-10-16 Marcel Hofsaes Switch with welding protection
JP5294092B2 (en) * 2008-11-05 2013-09-18 株式会社生方製作所 Three-phase motor protection device
JP5422310B2 (en) * 2009-09-04 2014-02-19 東芝キヤリア株式会社 Reactor and air conditioner outdoor unit equipped with reactor
CN102412095B (en) * 2011-07-28 2014-03-12 匡法荣 Three-phase current temperature overheat protector
CN106847616B (en) * 2017-03-31 2019-07-05 扬州德宝电器科技有限公司 A kind of self-locking power-off delay protection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677425B2 (en) * 1985-10-14 1994-09-28 生方 眞哉 Thermo-responsive snap switch

Also Published As

Publication number Publication date
JPH07220595A (en) 1995-08-18
CN1114782A (en) 1996-01-10
CN1039515C (en) 1998-08-12

Similar Documents

Publication Publication Date Title
KR900002617B1 (en) Snab-switch
US4843363A (en) Three-phase thermal protector
JP2827079B2 (en) Thermal protector
JP2519549B2 (en) Heat-actuated switch
JP2599797B2 (en) Sealed three-phase protection device
JPH11120880A (en) Thermally-sensitive switch
US6091316A (en) Switch having a temperature-dependent switching mechanism
US4231010A (en) Thermostatic switch employing a stud member for calibration of the switch
US7301434B1 (en) Thermally responsive electrical switch
US4262273A (en) Thermostatic electrical switch
US4914414A (en) Thermally responsive switch
US3361883A (en) Calibrated thermostatic switch and method for calibrating the same including welded lug and recess means
US4754253A (en) Adjustable temperature thermostat
JP2860517B2 (en) Thermal responsive switch and manufacturing method thereof
US3416116A (en) Thermostatic switches
JP3257680B2 (en) Thermal response switch and method of manufacturing the same
JP3046767B2 (en) Thermal protector
US3224075A (en) Method of manufacturing a thermally responsive switch
JP2002352685A (en) Thermal protector
JP2001052580A (en) Thermally-actuated switch
JP4203870B2 (en) Thermally responsive switch
KR920006261Y1 (en) Thermally responsive switch
JPH10125190A (en) Thermal protector
KR930000089Y1 (en) Thermally resonsive switch
US3134002A (en) Thermally responsive switch having a calibrated switch contact motion

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees