JP2825535B2 - Furnace pressure control method for continuous annealing furnace - Google Patents

Furnace pressure control method for continuous annealing furnace

Info

Publication number
JP2825535B2
JP2825535B2 JP18244489A JP18244489A JP2825535B2 JP 2825535 B2 JP2825535 B2 JP 2825535B2 JP 18244489 A JP18244489 A JP 18244489A JP 18244489 A JP18244489 A JP 18244489A JP 2825535 B2 JP2825535 B2 JP 2825535B2
Authority
JP
Japan
Prior art keywords
furnace
pressure control
cooling zone
pressure
furnace pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18244489A
Other languages
Japanese (ja)
Other versions
JPH0347924A (en
Inventor
善範 穴吹
均 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18244489A priority Critical patent/JP2825535B2/en
Publication of JPH0347924A publication Critical patent/JPH0347924A/en
Application granted granted Critical
Publication of JP2825535B2 publication Critical patent/JP2825535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、非酸化性の炉内雰囲気を有するストリップ
の連続焼鈍炉の炉内圧制御方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a furnace pressure control method for a continuous annealing furnace for strip having a non-oxidizing furnace atmosphere.

<従来の技術> 炉内圧の低下に伴う外気吸入を防止するために雰囲気
ガスを急速に供給する方法として、特公昭57−49105号
公報,実開昭62−166252号公報が公知である。しかし、
これらはいずれも炉内圧をモニタして雰囲気ガスを供給
する方式であるため、急激な減圧に対応しきれない場合
がある。以下詳しく説明する。
<Prior Art> Japanese Patent Publication No. 57-49105 and Japanese Utility Model Publication No. Sho 62-166252 disclose a method of rapidly supplying an atmospheric gas in order to prevent the intake of outside air due to a decrease in furnace pressure. But,
Since these methods are all methods of monitoring the internal pressure of the furnace and supplying the atmospheric gas, they may not be able to cope with rapid pressure reduction. This will be described in detail below.

例えば、炉内雰囲気としてH2とN2の混合ガスを使用す
る連続焼鈍設備における従来の炉内制御方法を第2図に
示す。この設備においては、定常運転中は、炉内のH2
度が所定の値となるよう加熱帯3、均熱帯4、冷却帯5
のそれぞれに、流量調節弁10でH2とN2の流量をコントロ
ールしながら注入している。また、焼鈍炉全体の炉圧
は、加熱帯入側に設けられた圧力調節弁19を用いて、炉
内測定器18により測定された炉圧が目標炉圧(例えば、
+2〜3mm H2O,max20mm H2O)となるよう炉圧制御装置
7でフィードバック制御を行っている。
For example, FIG. 2 shows a conventional furnace control method in a continuous annealing facility using a mixed gas of H 2 and N 2 as a furnace atmosphere. In this facility, during steady operation, the heating zone 3 so that concentration of H 2 in the furnace reaches a predetermined value, a soaking zone 4, the cooling zone 5
Are injected while controlling the flow rates of H 2 and N 2 with the flow control valve 10. Further, the furnace pressure of the entire annealing furnace is the target furnace pressure (for example, the furnace pressure measured by the in-furnace measuring device 18 using the pressure control valve 19 provided on the heating inlet side).
+ 2~3mm H 2 O, feedback control is performed in max20mm H 2 O) and so as furnace pressure control device 7.

また、焼鈍炉の入口と出口にはそれぞれ前部シール室
2と後部シール室6が設置され、この部分の圧力を常時
正圧にすることにより外気(空気)の炉内への侵入を防
止している。
A front seal chamber 2 and a rear seal chamber 6 are installed at the inlet and the outlet of the annealing furnace, respectively, and the pressure in these parts is always kept at a positive pressure to prevent outside air (air) from entering the furnace. ing.

後部シール室6の圧力制御方法は、以下のとおりであ
る(前部シール室2も全く同様)。
The pressure control method of the rear seal chamber 6 is as follows (the same applies to the front seal chamber 2).

(1) 常時、遮断弁11を開にして、N2を注入し通常運
転中はシール室の圧力がわずかに正圧となるようにす
る。
(1) at all times, and a shut-off valve 11 to open, during normal operation by injecting the N 2 pressure of the seal chamber to be slightly becomes a positive pressure.

(2) 熱負荷(板厚×板幅×ライン速度)の変化等に
よりシール室の圧力が変化した時は、第3図に示すよう
に、炉圧制御装置7は、 a. 後部シール室炉圧測定器14により測定された炉圧が
Lになった時炉圧制御弁(1)12を開にし、炉圧がL+
ΔLに復帰した時点で閉にする。
(2) When the pressure in the sealing chamber changes due to a change in heat load (sheet thickness × board width × line speed) or the like, as shown in FIG. 3, the furnace pressure control device 7: a. When the furnace pressure measured by the pressure measuring device 14 becomes L, the furnace pressure control valve (1) 12 is opened and the furnace pressure becomes L +
Close when returning to ΔL.

あるいは、 b. 炉圧がLL(<L)にまで減少した時は、さらに炉圧
制御弁(2)13を開にし、炉圧がLL+ΔLLに復帰した時
点で閉にする。
Or, b. When the furnace pressure decreases to LL (<L), the furnace pressure control valve (2) 13 is further opened and closed when the furnace pressure returns to LL + ΔLL.

このように通常運転時の熱負荷変動による外乱に対し
ては、この制御方法で全く問題なく圧力制御が可能であ
った。
Thus, with respect to disturbance due to heat load fluctuation during normal operation, pressure control was possible without any problem by this control method.

ところが、通常運転時に何らかの原因、例えばストリ
ップの蛇行等でライン停止が発生すると、冷却帯の熱バ
ランスがくずれ、冷却帯5の雰囲気ガスが急激に収縮
し、冷却帯5の炉圧が負圧になる。従来の制御方法で
は、後部シール室6の炉圧のみに注目して圧力制御を行
うため、N2注入のタイミングが遅く、かつ量的にも少な
いので、後部シール室6の炉圧も負圧となっていた。こ
の様子を第4図に示す。なお、第4図は後述の非常停止
の状況に対応する。
However, if the line stops due to some cause during the normal operation, for example, meandering of the strip, the heat balance of the cooling zone is disrupted, the atmosphere gas in the cooling zone 5 rapidly shrinks, and the furnace pressure in the cooling zone 5 becomes negative pressure. Become. In the conventional control method, since the pressure control is performed by paying attention only to the furnace pressure in the rear seal chamber 6, the timing of N 2 injection is slow and the quantity is small, so the furnace pressure in the rear seal chamber 6 is also negative pressure. Had become. This is shown in FIG. FIG. 4 corresponds to an emergency stop situation described later.

冷却帯5および後部シール室6の炉圧が負圧になれ
ば、外気(空気)が炉内に侵入し、H2を含む雰囲気はO2
と炉内のH2が反応することにより、炉内で爆発が発生す
る可能性がある。特に冷却帯5では、雰囲気ガス温度が
700℃以下なので、爆発の危険性が大である。また、爆
発が発生せずとも、冷却帯5内の微量のO2によりストリ
ップが酸化して、ブルーイングやテンパーカラーが発生
する可能性があり、製品品質上好ましくない。
When the furnace pressure in the cooling zone 5 and the rear seal chamber 6 becomes a negative pressure, outside air (air) enters the furnace, and the atmosphere containing H 2 becomes O 2.
And by of H 2 in the furnace reacts, there is a possibility that an explosion in the furnace occurs. In particular, in the cooling zone 5, the ambient gas temperature
Since it is below 700 ° C, there is a great risk of explosion. Even if no explosion occurs, a small amount of O 2 in the cooling zone 5 may oxidize the strip and cause bluing or temper color, which is not preferable in terms of product quality.

<発明が解決しようとする課題> 本発明の目的は、炉内雰囲気として非酸化性ガスを使
用する連続焼鈍設備において、通常運転時に何らかの原
因によりライン停止が発生した場合に、冷却帯の雰囲気
ガスが急激に収縮し、冷却帯および後部シール室の炉内
が負圧になることを防止した、連続焼鈍炉の炉内圧制御
方法を提案するものである。
<Problems to be Solved by the Invention> An object of the present invention is to provide a continuous annealing facility using a non-oxidizing gas as a furnace atmosphere, when a line stop occurs for some reason during a normal operation, an atmosphere gas in a cooling zone. The present invention proposes a method for controlling the furnace pressure of a continuous annealing furnace, which prevents the inside of the furnace in the cooling zone and the rear seal chamber from being negatively compressed due to rapid contraction.

また本発明の他の目的は、冷却帯への供給ガス量を最
適にした連続焼鈍炉の炉内圧制御方法を提案するもので
ある。
Another object of the present invention is to propose a furnace pressure control method for a continuous annealing furnace that optimizes an amount of gas supplied to a cooling zone.

<課題を解決するための手段> 本発明は、非酸化性雰囲気を有する加熱帯,均熱帯及
び冷却帯からなるストリップの連続焼鈍炉において、ス
トリップの板厚,板幅,ライン速度及び均熱帯炉温よ
り、冷却帯における雰囲気ガスの熱収縮量を常時予測
し、該ライン速度の急激な減少に対応して、その時点で
予測されている雰囲気ガスの熱収縮量を補償する量の非
酸化性ガスを該冷却帯に直接注入することを特徴とする
連続焼鈍炉の炉内圧制御方法である。
<Means for Solving the Problems> The present invention provides a continuous annealing furnace for strip comprising a heating zone, a soaking zone, and a cooling zone having a non-oxidizing atmosphere. From the temperature, the amount of heat shrinkage of the atmosphere gas in the cooling zone is always predicted, and the amount of non-oxidation that compensates for the amount of heat shrinkage of the atmosphere gas predicted at that time in response to the rapid decrease in the line speed is A method for controlling the internal pressure of a continuous annealing furnace, wherein a gas is directly injected into the cooling zone.

<作 用> まず本発明を実施する際のフローの一例を第1図に示
す。
<Operation> First, FIG. 1 shows an example of a flow when the present invention is carried out.

1は連続焼鈍炉であり、加熱帯3,均熱帯4及び冷却帯
5からなり、さらに加熱帯3の前には前部シール室2
が、また冷却帯5の後には後部シール室6を有してい
る。この例では炉内にN2配管8及びH2配管9より流量調
節弁10を介して所定量のN2及びH2ガスが導入されてい
る。なお本発明においてはH2ガスを含まない非酸化性ガ
ス雰囲気の場合もその対象とするが、この場合には当然
H2ガス配管9及びその流量調節弁10は必要としない。
Reference numeral 1 denotes a continuous annealing furnace, which comprises a heating zone 3, a soaking zone 4 and a cooling zone 5, and a front sealing chamber 2 in front of the heating zone 3.
However, after the cooling zone 5, a rear seal chamber 6 is provided. In this example, predetermined amounts of N 2 and H 2 gas are introduced into the furnace from the N 2 pipe 8 and the H 2 pipe 9 via the flow control valve 10. In the present invention, the case of a non-oxidizing gas atmosphere containing no H 2 gas is also covered, but in this case,
H 2 gas pipe 9 and the flow control valve 10 is not required.

この設備において、定常運転中は、従来の場合と同様
に、炉内のH2濃度が所定の値となるように加熱帯3,均熱
帯4,冷却帯5のそれぞれに、流量調節弁10でH2とN2の流
量をコントロールしながら注入している。また、焼鈍炉
全体の炉圧は、加熱帯3入側に設けられた圧力調節弁19
を用いて、炉内測定器18により測定された炉圧が目標炉
圧となるように炉圧制御装置7でフィードバック制御を
行っている。また、焼鈍炉の入口と出口にはそれぞれ前
部シール室2と後部シール室6が設置され、この部分の
圧力を常時正圧にすることで大気の炉内への侵入を防止
している。17,14はそれぞれ前部シール室2及び後部シ
ール室6の炉圧測定器で、測定された炉圧はそれぞれ炉
圧制御装置7にインプットされ、前部シール室2及び後
部シール室6の炉圧を所定の正圧に保つためフィードバ
ックされ前部シール室2の炉圧制御弁(1)15,(2)1
6及び後部シール室6の炉圧制御弁(1)12,(2)13を
開閉する。
In this facility, during steady operation, as in the case of conventional heating zone 3 as concentration of H 2 in the furnace reaches a predetermined value, a soaking zone 4, each of the cooling zone 5, a flow rate regulating valve 10 The injection is performed while controlling the flow rates of H 2 and N 2 . The furnace pressure of the entire annealing furnace is controlled by a pressure control valve 19 provided on the inlet side of the heating zone 3.
The feedback control is performed by the furnace pressure control device 7 so that the furnace pressure measured by the in-furnace measuring device 18 becomes the target furnace pressure. A front seal chamber 2 and a rear seal chamber 6 are provided at the inlet and the outlet of the annealing furnace, respectively, and the pressure in this part is always kept at a positive pressure to prevent the intrusion of the atmosphere into the furnace. Reference numerals 17 and 14 denote furnace pressure measuring devices for the front seal chamber 2 and the rear seal chamber 6, respectively. The measured furnace pressures are input to the furnace pressure control device 7, respectively, and the furnace pressures of the front seal chamber 2 and the rear seal chamber 6 are measured. The pressure is fed back to maintain the pressure at a predetermined positive pressure, and the furnace pressure control valves (1) 15, (2) 1 of the front seal chamber 2 are fed back.
6 and the furnace pressure control valves (1) 12 and (2) 13 of the rear seal chamber 6 are opened and closed.

本発明では、さらにライン運転制御装置21より、現在
通板中のストリップの板厚(D),板幅(W),ライン
速度(LS)に関する信号を炉圧制御装置7にインプット
している。なおストリップの板厚(D),板幅(W)に
関する信号は上位計算機22よりコイル毎にライン運転制
御装置21に与えられる。また均熱帯4の炉温(TSS)は
炉圧制御装置7自身が常時モニタリングしている。
In the present invention, the line operation control device 21 further inputs signals relating to the thickness (D), the width (W), and the line speed (LS) of the strip currently being passed to the furnace pressure control device 7. Signals relating to the strip thickness (D) and strip width (W) of the strip are supplied from the host computer 22 to the line operation control device 21 for each coil. The furnace temperature (T SS ) of the solitary zone 4 is constantly monitored by the furnace pressure control device 7 itself.

これらの信号を受けて炉圧制御装置7において、常時
定周期、例えば0.5sec毎に冷却帯5の雰囲気ガスの収縮
量f(D,W,LS,Tss)を計算している。そしてストリップ
のライン速度が急激に減少したとき直ちに、冷却帯への
非酸化性ガスの注入弁20が開かれる。ここで注入弁20を
流れる単位時間当たりの非酸化性ガスの流量をQとする
とき、注入弁20は少なくともf/Q時間(tで表す)開と
し、冷却帯5の雰囲気ガスの熱収縮量を補償する。
In response to these signals, the furnace pressure control device 7 calculates the shrinkage amount f (D, W, LS, T ss ) of the atmospheric gas in the cooling zone 5 at regular intervals, for example, every 0.5 seconds. As soon as the line speed of the strip suddenly decreases, the injection valve 20 for the non-oxidizing gas into the cooling zone is opened. Here, assuming that the flow rate of the non-oxidizing gas per unit time flowing through the injection valve 20 is Q, the injection valve 20 is opened at least for f / Q time (represented by t), and the thermal contraction amount of the atmospheric gas in the cooling zone 5 To compensate.

本発明はこのように構成されているので、事故等によ
りラインが急激に停止しても、炉内への外気の吸い込み
が防止され、爆発事故やストリップの酸化が防止され
る。
Since the present invention is configured as described above, even if the line suddenly stops due to an accident or the like, the inhalation of outside air into the furnace is prevented, and the explosion accident and oxidation of the strip are prevented.

さらに、本発明ではライン停止時の状況に応じて、炉
圧制御方法を以下のようにいくつかに分けて行うことも
できる。
Further, according to the present invention, the furnace pressure control method can be divided into several types as follows according to the situation at the time of line stop.

Step1; 通常運転中に、炉圧制御装置7は、以下の値を常時定
周期(例えば0.5sec周期)で計算する。
Step 1; During normal operation, the furnace pressure control device 7 always calculates the following values at a constant cycle (for example, 0.5 sec cycle).

tn=fn(D,W,LS,Tss)/Q (1) tq=fq(D,W,LS,Tss)/Q (2) te=fe(D,W,LS,Tss)/Q (3) ここでDは現在通板中のストリップの板厚、Wは板
幅、LSはライン速度、Tssは均熱帯炉温、Qは注入弁20
を流れる単位時間あたりの流量である。また、fn,fq,fe
は、それぞれライン通常停止(normal stop)、急停止
(quick stop)、非常停止(emergency stop)時の冷却
帯雰囲気ガスの熱収縮量の予測式である。よってtn,tq,
teはそれぞれライン通常停止、急停止、非常停止が発生
した場合に、冷却帯雰囲気ガス熱収縮量を相殺するN2
スを注入するために、注入弁20を開にすべき時間であ
る。なお、D,Wは上位計算機22からコイル毎に、またLS
はライン運転制御装置21からダイナミック(例えば50ms
ec毎)に炉圧制御装置7に設定される。またTSSは炉圧
制御装置7自身が常時モニタリングしている。
t n = f n (D, W, LS, T ss ) / Q (1) t q = f q (D, W, LS, T ss ) / Q (2) t e = f e (D, W, LS, T ss ) / Q (3) where D is the thickness of the strip currently being passed, W is the plate width, LS is the line speed, T ss is the soaking zone furnace temperature, and Q is the injection valve 20.
Is the flow rate per unit time flowing through. F n , f q , f e
Is a formula for predicting the amount of thermal contraction of the atmosphere gas in the cooling zone at the time of a normal stop, a quick stop, and an emergency stop of the line, respectively. Therefore, t n , t q ,
t e is the time during which the injection valve 20 should be opened in order to inject N 2 gas that offsets the heat shrinkage of the atmosphere gas in the cooling zone when a normal stop, a sudden stop, and an emergency stop of the line occur. D and W are obtained from the host computer 22 for each coil, and LS
Is dynamic from the line operation control device 21 (for example, 50 ms
(every ec) is set in the furnace pressure control device 7. The T SS furnace pressure control device 7 itself is constantly monitored.

Step21; ライン停止が発生した場合には、そのタイミングでラ
イン運転制御装置21から炉圧制御装置7に対し、発生し
た停止の種類毎に接点信号を(約1sec間)出力する。
Step 21; When a line stop occurs, a contact signal is output (for about 1 second) from the line operation control device 21 to the furnace pressure control device 7 for each type of stop generated at that timing.

Step3; 炉圧制御装置7は、この接点信号がONしたタイミング
で、注入弁20を開にし、接点信号の種類により(1)〜
(3)式から算出された時間の間のみ注入弁20を開にす
る。これにより冷却帯5の雰囲気ガス収縮を相殺する非
酸化性ガス、例えばN2ガスが注入され、冷却帯5の炉圧
は正圧に保たれる。
Step3; The furnace pressure control device 7 opens the injection valve 20 at the timing when the contact signal is turned ON, and (1) to (4) according to the type of the contact signal.
The injection valve 20 is opened only during the time calculated from the equation (3). As a result, a non-oxidizing gas, such as N 2 gas, for canceling the contraction of the atmosphere gas in the cooling zone 5 is injected, and the furnace pressure in the cooling zone 5 is maintained at a positive pressure.

また減圧を補償するために必要とされる供給流量がラ
イン通常停止、急停止、非常停止で大幅に異なる場合
は、異なる供給手段を設けて切り換えることも可能であ
る。
Further, when the supply flow rate required for compensating the pressure reduction is significantly different between the normal stop, the sudden stop, and the emergency stop of the line, it is possible to switch by providing different supply means.

<実施例> 第11図のフロー図において、本発明を実施したときの
冷却帯5での炉内圧力変化を第5図に示す。これはライ
ン速度LS215mpmで運転中、非常停止が発生し、ラインス
トップした時の冷却帯5及び後部シール室6の炉圧変動
の様子である。ライン停止と同時に、冷却帯5にN2が注
入され、冷却帯5・後部シール室6の炉圧はともに正圧
を保っていることがわかる。
<Example> In the flowchart of FIG. 11, a change in the furnace pressure in the cooling zone 5 when the present invention is implemented is shown in FIG. This is the state of the furnace pressure fluctuation in the cooling zone 5 and the rear seal chamber 6 when an emergency stop occurs during the operation at the line speed LS215mpm and the line stops. Simultaneously with the stop of the line, N 2 was injected into the cooling zone 5, and it can be seen that the furnace pressure in the cooling zone 5 and the rear seal chamber 6 both maintained a positive pressure.

<発明の効果> 本発明により、非酸化性の炉内雰囲気ガスを使用する
連続焼鈍設備において、ライン急停止時においても冷却
帯の炉圧を正圧に保てることにより、炉内へのO2流入を
防止し、炉の爆発あるいはストリップの酸化を防止でき
るようになった。
<Effects of the Invention> According to the present invention, in a continuous annealing facility using a non-oxidizing furnace atmosphere gas, even when the line is suddenly stopped, the furnace pressure in the cooling zone can be maintained at a positive pressure, so that O 2 It prevents inflow and prevents furnace explosion or strip oxidation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による炉圧制御方法を示すフロー図、第
2図は従来の炉圧制御方法を示すフロー図、第3図は従
来法による後部シール室圧力制御方法と炉圧変化を示す
グラフ、第4図は従来法によるライン非常急停止時の炉
圧変化を示すグラフ、第5図は本発明によるライン非常
急停止時の炉圧変化を示すグラフである。 1……連続焼鈍炉、2……前部シール室、 3……加熱帯、4……均熱帯、 5……冷却帯、6……後部シール室、 7……炉圧制御装置、8……N2配管、 9……H2配管、10……流量調節弁、 11……遮断弁、 12,15……炉圧制御弁(1)、 13,16……炉圧制御弁(2)、 14,17,18……炉圧測定器、 19……圧力調節弁、 20……注入弁、 21……ライン運転制御装置、 22……上位計算機。
FIG. 1 is a flow chart showing a furnace pressure control method according to the present invention, FIG. 2 is a flow chart showing a conventional furnace pressure control method, and FIG. 3 shows a rear seal chamber pressure control method and a furnace pressure change according to a conventional method. FIG. 4 is a graph showing a furnace pressure change at the time of a line emergency stop according to the conventional method, and FIG. 5 is a graph showing a furnace pressure change at the time of a line emergency stop according to the present invention. 1 ... continuous annealing furnace, 2 ... front sealing chamber, 3 ... heating zone, 4 ... uniform tropical zone, 5 ... cooling zone, 6 ... rear sealing chamber, 7 ... furnace pressure control device, 8 ... … N 2 pipe, 9… H 2 pipe, 10… Flow control valve, 11… Shutoff valve, 12, 15… Furnace pressure control valve (1), 13, 16… Furnace pressure control valve (2) , 14,17,18… Furnace pressure measuring device, 19… Pressure control valve, 20… Injection valve, 21… Line operation control device, 22… Host computer.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C21D 1/74,9/52 - 9/56,11/00 F27D 7/06──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C21D 1 / 74,9 / 52-9 / 56,11 / 00 F27D 7/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非酸化性雰囲気を有する加熱帯,均熱帯及
び冷却帯からなるストリップの連続焼鈍炉において、ス
トリップの板厚,板幅,ライン速度及び均熱帯炉温よ
り、冷却帯における雰囲気ガスの熱収縮量を常時予測
し、該ライン速度の急激な減少に対応して、その時点で
予測されている雰囲気ガスの熱収縮量を補償する量の非
酸化性ガスを該冷却帯に直接注入することを特徴とする
連続焼鈍炉の炉内圧制御方法。
In a continuous annealing furnace for a strip comprising a heating zone, a soaking zone and a cooling zone having a non-oxidizing atmosphere, the atmosphere gas in the cooling zone is determined based on the strip thickness, strip width, line speed and soaking zone temperature. The amount of non-oxidizing gas is constantly injected into the cooling zone to compensate for the expected amount of thermal contraction of the ambient gas in response to the rapid decrease in the line speed. Furnace internal pressure control method for a continuous annealing furnace.
JP18244489A 1989-07-17 1989-07-17 Furnace pressure control method for continuous annealing furnace Expired - Lifetime JP2825535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18244489A JP2825535B2 (en) 1989-07-17 1989-07-17 Furnace pressure control method for continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18244489A JP2825535B2 (en) 1989-07-17 1989-07-17 Furnace pressure control method for continuous annealing furnace

Publications (2)

Publication Number Publication Date
JPH0347924A JPH0347924A (en) 1991-02-28
JP2825535B2 true JP2825535B2 (en) 1998-11-18

Family

ID=16118375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18244489A Expired - Lifetime JP2825535B2 (en) 1989-07-17 1989-07-17 Furnace pressure control method for continuous annealing furnace

Country Status (1)

Country Link
JP (1) JP2825535B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802230B (en) * 2007-07-19 2012-10-17 塔塔钢铁艾默伊登有限责任公司 A strip of steel having a variable thickness in length direction

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2650503B2 (en) * 1991-03-19 1997-09-03 日本鋼管株式会社 Furnace pressure control method and apparatus for open flame heating furnace and preheating furnace
KR100530329B1 (en) * 2001-11-29 2005-11-22 주식회사 포스코 Control system for obtaining stable inner gas pressure of annealing furnace
JP5586008B2 (en) 2007-02-23 2014-09-10 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ Thermomechanical molding method of final product with very high strength and product produced by the method
EP2171104B9 (en) 2007-07-19 2018-08-29 Muhr und Bender KG Method for annealing a strip of steel having a variable thickness in length direction
CN104073624B (en) * 2014-07-15 2016-06-29 中冶南方工程技术有限公司 A kind of vertical continuous annealing furnace hearth pressure control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802230B (en) * 2007-07-19 2012-10-17 塔塔钢铁艾默伊登有限责任公司 A strip of steel having a variable thickness in length direction

Also Published As

Publication number Publication date
JPH0347924A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
US7722728B2 (en) Heat treatment method and heat treatment apparatus
JP2825535B2 (en) Furnace pressure control method for continuous annealing furnace
JP2003129125A (en) Continuous heat treatment furnace for strip
US4724014A (en) Method for cooling a steel strip in a continuous annealing furnace
JPS60125331A (en) Cooling method of steel strip in continuous annealing
JP4876291B2 (en) Heat treatment method and heat treatment apparatus
EP0128734A2 (en) Method for cooling a steel strip in a continuous-annealing furnace
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JP2907311B2 (en) Method and apparatus for controlling temperature of alloying furnace
JPS59133330A (en) Method and device for sealing in continuous heat- treating installation for steel strip
JP3309809B2 (en) Metal surface level control method in continuous casting machine
JPH06108161A (en) Method for continuously annealing metal strip
JP3099990B2 (en) Operating method of hot dip galvanizing alloying furnace
JPH0192323A (en) Method for controlling sheet temperature in continuous annealing furnace
CN112090969B (en) Through water cooling control method and system for long material rolling
JP2593027B2 (en) Plating weight control method
JPH04314835A (en) Melt temperature controlling device for aluminum melting furnace
JP3046467B2 (en) Heating furnace heating control method
JP2650503B2 (en) Furnace pressure control method and apparatus for open flame heating furnace and preheating furnace
JP2795569B2 (en) Operating method of hot dip galvanizing alloying furnace
JP2972028B2 (en) Vertical alloying furnace for hot dip galvanizing and its operation method
JPH028331A (en) Direct-fired strip heating device
JPH06287643A (en) Device for controlling strip temperature of continuous steel strip heat treatment line
JPS6027405B2 (en) temperature control device
JPH04325632A (en) Method and device for maintaining inner pressure in continuous annealing furnace