JP2823371B2 - Power optimization management device - Google Patents

Power optimization management device

Info

Publication number
JP2823371B2
JP2823371B2 JP3054000A JP5400091A JP2823371B2 JP 2823371 B2 JP2823371 B2 JP 2823371B2 JP 3054000 A JP3054000 A JP 3054000A JP 5400091 A JP5400091 A JP 5400091A JP 2823371 B2 JP2823371 B2 JP 2823371B2
Authority
JP
Japan
Prior art keywords
power
steam
turbine
power generation
managing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3054000A
Other languages
Japanese (ja)
Other versions
JPH04272407A (en
Inventor
良男 竹ノ内
稔 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3054000A priority Critical patent/JP2823371B2/en
Publication of JPH04272407A publication Critical patent/JPH04272407A/en
Application granted granted Critical
Publication of JP2823371B2 publication Critical patent/JP2823371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

[発明の目的] [Object of the invention]

【0001】[0001]

【産業上の利用分野】本発明は自家発電設備等の電力設
備に於ける電力最適化管理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power optimizing management apparatus for a power facility such as a private power generating facility.

【0002】[0002]

【従来の技術】従来、自家発電設備に於ける電力、蒸気
の最適負荷配分管理に関し、主に線形特性であるタービ
ンの蒸気消費量特性を活用した線形計画法による電力、
蒸気量の最適負荷配分解を得る方法か、主に非線形特性
であるタービンのバルブポイント特性を生かし、経済化
をねらった非線形計画法による最適解を得る方法のどち
らかを利用していた。そして、線形計画法によれば、最
適解算出上、収束性がよく電力、蒸気負荷量が確保され
るが、バルブポイント特性を活用していないため、発電
効率の向上性は無視されている。また、非線形計画法で
は、発電効率の向上性が得られ、発電設備運用上効率は
良くなるが手法上、最適解収束性が悪く、ソフトウェア
設計、製作に於ける工数を必要とし、バルブポイント特
性変化に対応したソフトウェア保守も、非線形計画法を
用いているため、構造上複雑となり、また、十数台のタ
ービン台数を有する大規模自家発電設備の場合の様に、
飽くまでも発電効率を追求する設備では非線形計画法に
よりプラント経済運用向上を目的とする事は意味がある
が、数台のタービン台数を有する小規模自家発電設備の
場合では、設備運用パターンも限られるため、非線形計
画法の有効活用度合も低く管理上問題があった。
2. Description of the Related Art Conventionally, regarding optimal load distribution management of electric power and steam in a private power generation facility, electric power based on a linear programming method utilizing a steam consumption characteristic of a turbine, which is a linear characteristic, has been mainly used.
Either a method of obtaining the optimum load distribution of the steam amount or a method of obtaining an optimal solution by a non-linear programming method aiming at economical utilization mainly utilizing the valve point characteristics of the turbine, which is a non-linear characteristic. According to the linear programming, the power and the steam load are secured with good convergence in calculating the optimum solution, but the improvement of the power generation efficiency is ignored because the valve point characteristics are not used. In addition, the nonlinear programming method can improve power generation efficiency and improve the efficiency of power generation equipment operation.However, the method has poor optimal solution convergence, requires man-hours in software design and production, and requires valve point characteristics. Software maintenance that responds to changes is also structurally complex due to the use of non-linear programming, and as in the case of large-scale in-house power generation equipment with more than ten turbines,
It is meaningful to improve plant economic operation by nonlinear programming in a facility that pursues power generation efficiency even if it gets tired, but in the case of a small-scale private power generation facility with several turbines, the facility operation pattern is limited. However, the degree of effective use of nonlinear programming was low and there was a management problem.

【0003】[0003]

【発明が解決しようとする課題】以上の様に、従来では
自家発電設備に於ける電力、蒸気負荷配分の最適解を得
るにあたり、非線形計画法の有効活用度合も低く、か
つ、タービンの蒸気消費量特性による線形計画法を用い
た手法では発電効率が追求されておらず、発電設備管理
上の問題があった。
As described above, conventionally, in order to obtain an optimal solution of the power and steam load distribution in the private power generation facility, the degree of effective use of the nonlinear programming method is low and the steam consumption of the turbine is low. In the method using the linear programming based on the quantity characteristic, power generation efficiency was not pursued, and there was a problem in power generation equipment management.

【0004】本発明の目的は、電力、蒸気負荷配分最適
解を得るための手法を簡潔化する事に機能有効活用度合
を向上させ、かつ、発電運用効率も向上させることを可
能とした電力最適化管理装置を提供することにある。
[0004] It is an object of the present invention to provide a power optimization system capable of improving the degree of effective use of functions and improving the power generation operation efficiency by simplifying a technique for obtaining an optimal solution of power and steam load distribution. Another object of the present invention is to provide an activation management device.

【0005】[発明の構成][Configuration of the Invention]

【0006】[0006]

【課題を解決するための手段】本発明は電力データ及び
蒸気流量データの入出力を管理するプロセスデータ入出
力管理手段と、このプロセスデータ入出力管理手段によ
って管理されたプロセスデータに基づいて自家発電設備
の発電電力及び発生蒸気を最適に負荷配分する電力最適
化機能実行手段と、該当するタービンの蒸気消費量特性
を管理する蒸気消費量特性管理手段と、タービンのバル
ブポイント特性を管理するバルブポイント特性管理手段
とを具備してなる電力最適化管理装置である。
SUMMARY OF THE INVENTION The present invention provides a process data input / output management means for managing the input / output of power data and steam flow rate data, and a private power generation system based on the process data managed by the process data input / output management means. Power optimizing function executing means for optimally distributing generated power and generated steam of equipment, steam consumption characteristic managing means for managing steam consumption characteristics of a corresponding turbine, and valve point for managing valve point characteristics of a turbine The power optimization management device includes a characteristic management unit.

【0007】[0007]

【作用】本発明の電力最適化管理装置に於いては、蒸気
消費量特性及びバルブポイント特性を管理し、電力、蒸
気負荷量の確保と発電効率の向上を図り、有効な発電設
備運用を行なう。
In the power optimization management device of the present invention, the steam consumption characteristics and the valve point characteristics are managed, the power and the steam load are secured, the power generation efficiency is improved, and the power generation equipment is operated effectively. .

【0008】[0008]

【実施例】次に本発明の一実施例を説明する。図1は電
力データ及び蒸気流量データの入出力を管理するプロセ
スデータ入出力管理手段1と、このプロセスデータ入出
力管理手段によって管理されたプロセスデータに基づい
て自家発電設備の発電電力及び発生蒸気を最適に負荷配
分する電力最適化機能実行手段2と、該当するタービン
の蒸気消費量特性を管理する蒸気消費量特性管理手段3
と、タービンのバルブポイント特性を管理するバルブポ
イント特性管理手段4とを具備してなる電力最適化管理
装置を示している。即ち、自家発電設備を有する電力及
び蒸気設備の電力、蒸気負荷配分を管理する装置に於い
て、電力及び蒸気流量等のプロセスデータの入出力管理
を行なうプロセスデータ入出力管理手段1とプロセスデ
ータ入出力管理手段1にて管理されたデータに基づき、
発電設備の電力及び蒸気流量等の最適負荷配分機能を実
行する電力最適化機能を実行手段2と、電力最適化機能
実行手段2が最適化問題を解くために、該当するタービ
ンの特性である蒸気消費量特性を管理する蒸気消費量特
性管理手段3と、同じくタービンの特性であるバルブポ
イント特性を管理するバルブポイント特性管理手段4
と、電力最適化機能実行手段2のデータ表示を行なうデ
ータ表示手段5と、プロセスデータ入出力管理手段1に
て得られたデータ及び電力最適化機能実行手段2にて処
理されたデータを保存するデータ保存手段6とを備えて
成ることを特徴とする電力最適化管理装置を示してい
る。
Next, an embodiment of the present invention will be described. FIG. 1 shows a process data input / output management means 1 for managing input / output of electric power data and steam flow rate data, and the generated power and generated steam of a private power generation facility based on the process data managed by the process data input / output management means. Power optimizing function executing means 2 for optimal load distribution, and steam consumption characteristic managing means 3 for managing steam consumption characteristics of a corresponding turbine.
And a power optimization management device comprising a valve point characteristic management means 4 for managing valve point characteristics of the turbine. That is, in a device for managing the distribution of electric power and steam load of electric power having a private power generation facility and steam equipment, a process data input / output management means 1 for performing input / output management of process data such as electric power and steam flow rate, and a process data input / output management means. Based on the data managed by the output management means 1,
A power optimizing function executing means 2 for executing an optimal load distribution function such as power and steam flow rate of the power generation equipment, and a steam, which is a characteristic of a corresponding turbine, for the power optimizing function executing means 2 to solve an optimization problem. Steam consumption characteristic management means 3 for managing the consumption characteristic, and valve point characteristic management means 4 for managing the valve point characteristic which is also the characteristic of the turbine.
And a data display means 5 for displaying data of the power optimization function execution means 2, and data obtained by the process data input / output management means 1 and data processed by the power optimization function execution means 2 are stored. A power optimization management device comprising a data storage means 6 is shown.

【0009】次に図2は、発電設備系統図を示す。Next, FIG. 2 shows a power generation equipment system diagram.

【0010】タービンに蒸気を発生させるボイラーとし
て1号ボイラ11と2号ボイラ12と、ボイラより発生
した蒸気を取込む1号タービン13と2号タービン14
と、1号タービン13より発電される1号発電機15と
2号タービン14にり発電される2号発電機16とから
成る発電系統より構成される。
The first boiler 11 and the second boiler 12 as boilers for generating steam in the turbine, the first turbine 13 and the second turbine 14 for taking in the steam generated from the boiler
And a power generator system including a first generator 15 generated by the first turbine 13 and a second generator 16 generated by the second turbine 14.

【0011】第3図は機能フロー図を示す。FIG. 3 shows a functional flow diagram.

【0012】まず、発電系統のプロセスデータ、電力バ
ランス、蒸気マスバランス、1号タービン13と、2号
タービン14との蒸気消費量特性等を参照し、線形計画
法21にて最適解を求める。これは、最終的な最適解で
ないため、これを一次最適解22として位置づけ、1号
タービン13の最適解23と2号タービン14の最適解
24を得る。ここで、2号タービン14を発電効率を追
求する設備と位置づけ、1号タービン13を電力、蒸気
負荷量を確保する設備と位置づけた場合、2号タービン
14のバルブポイント特性より2号タービン14の発電
効率が向上する最適解25を得て、この最適解25よ
り、負荷が必要な電力、蒸気量が満たされるべく1号タ
ービン13の最適解26を得る。ここで発電系統設備の
電力バランス、蒸気マスバランス等が満足される事を確
認し、電力、蒸気最適負荷配分実行27がなされる。
First, an optimal solution is obtained by the linear programming 21 with reference to the process data of the power generation system, the power balance, the steam mass balance, the steam consumption characteristics of the first turbine 13 and the second turbine 14, and the like. Since this is not the final optimal solution, it is positioned as the primary optimal solution 22, and the optimal solution 23 of the first turbine 13 and the optimal solution 24 of the second turbine 14 are obtained. Here, when the No. 2 turbine 14 is positioned as a facility for pursuing power generation efficiency and the No. 1 turbine 13 is positioned as a facility for securing electric power and steam load, the No. 2 turbine 14 has a valve point characteristic based on the valve point characteristics of the No. 2 turbine 14. An optimum solution 25 for improving the power generation efficiency is obtained, and an optimum solution 26 for the first turbine 13 is obtained from the optimum solution 25 so that the electric power and the steam amount required for the load are satisfied. Here, it is confirmed that the power balance of the power generation system equipment, the steam mass balance, and the like are satisfied, and the power and steam optimal load distribution execution 27 is performed.

【0013】第4図は、1号タービン13と2号タービ
ン14の蒸気消費量特性を示す。一次最適解22で得ら
れた1T最適解23である1号発電機15の発電機出力
1Pと1号タービン13の主蒸気流量1Sとし、2T最
適解24である2号発電機16の発電出力2Pと2号タ
ービン14の主蒸気流量25とし、また、1号タービン
13の低圧抽気蒸気流量LB1と中圧抽気蒸気流量MB
1とし、2号タービン14の低圧抽気蒸気流量LB2と
中圧抽気蒸気流量MB2として蒸気消費量特性を示すも
のとする。
FIG. 4 shows the steam consumption characteristics of the first turbine 13 and the second turbine 14. The generator output 1P of the 1st generator 15 which is the 1T optimal solution 23 obtained by the primary optimal solution 22 and the main steam flow rate 1S of the 1st turbine 13 are defined as the power output of the 2nd generator 16 which is the 2T optimal solution 24. 2P and the main steam flow rate 25 of the No. 2 turbine 14, and the low pressure bleed steam flow rate LB1 and the medium pressure bleed steam flow MB of the No. 1 turbine 13
The steam consumption characteristic is assumed to be 1 as the low-pressure extracted steam flow rate LB2 and the medium-pressure extracted steam flow rate MB2 of the No. 2 turbine 14.

【0014】第5図は1号タービン13と2号タービン
14のバルブポイント特性を示す。2号発電出力2Pに
基づき、2号タービン14のバルブポイント特性よる2
T最適解25よりバルブポイントにある2号発電機出力
3Pと2号タービン主蒸気流量3542とし、これに基
づき、設備の電力、蒸気負荷量を補うための変化分より
得られた1T最適解26より1号発電機出力OPと1号
タービン主蒸気流量OSとしてのバルブポイント特性を
示す。
FIG. 5 shows valve point characteristics of the first turbine 13 and the second turbine 14. 2 based on the valve point characteristics of the No. 2 turbine 14 based on the No. 2 power output 2P
The 2T generator output 3P at the valve point and the 2nd turbine main steam flow rate 3542 at the valve point from the T optimal solution 25, and based on this, the 1T optimal solution 26 obtained from the change for compensating the power and steam load of the equipment Further, valve point characteristics as the first generator output OP and the first turbine main steam flow rate OS are shown.

【0015】[0015]

【発明の効果】本発明により電力、蒸気負荷配分最適解
を得るための手法が簡潔化され、発電運用効率を向上さ
せることを可能とした電力最適化管理装置を提供するこ
とができる。
According to the present invention, it is possible to provide a power optimizing management apparatus which simplifies a method for obtaining an optimal power and steam load distribution solution, and which can improve power generation operation efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す電力最適化管理装置の
構成図である。
FIG. 1 is a configuration diagram of a power optimization management device according to an embodiment of the present invention.

【図2】発電設備の系統説明図である。FIG. 2 is a system explanatory diagram of a power generation facility.

【図3】電力最適化管理装置の機能フロー説明図であ
る。
FIG. 3 is an explanatory diagram of a function flow of the power optimization management device.

【図4】蒸気消費量特性の説明図である。FIG. 4 is an explanatory diagram of a steam consumption characteristic.

【図5】バルブポイント特性の説明図である。FIG. 5 is an explanatory diagram of valve point characteristics.

【符号の説明】[Explanation of symbols]

1…プロセスデータ入出力管理手段 2…電力最適化機能実行手段 3…蒸気消費量特性管理手段 4…バルブポイント特性管理手段 1: Process data input / output management means 2: Power optimization function execution means 3: Steam consumption characteristic management means 4: Valve point characteristic management means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F01K 13/02 F01D 17/24──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) F01K 13/02 F01D 17/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】自家発電設備における電力および蒸気負荷
配分の最適解を得るにあたり、電力データ及び蒸気流量
データの入出力を管理するプロセスデー夕入出力管理手
段と、このプロセスデータ入出力管理手段によって管理
されたプロセスデータに基づいて自家発電設備の発電電
力及び発生蒸気を最適に負荷配分する電力最適化機能実
行手段と、該当するタービンの蒸気消費量特性を管理す
る蒸気消費量特性管理手段と、前記タービンのバルブポ
イント特性を管理するバルブポイント特性管理手段とを
具備してなる電力最適化管理装置。
1. Electric power and steam load in private power generation equipment
In order to obtain an optimal solution for the allocation, process data input / output management means for managing the input / output of power data and steam flow rate data, and power generation of the private power generation facility based on the process data managed by the process data input / output management means Power optimizing function executing means for optimally distributing power and generated steam, steam consumption characteristic managing means for managing steam consumption characteristics of a corresponding turbine, and valve point characteristic management for managing valve point characteristics of the turbine And a power optimization management device.
JP3054000A 1991-02-26 1991-02-26 Power optimization management device Expired - Lifetime JP2823371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3054000A JP2823371B2 (en) 1991-02-26 1991-02-26 Power optimization management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3054000A JP2823371B2 (en) 1991-02-26 1991-02-26 Power optimization management device

Publications (2)

Publication Number Publication Date
JPH04272407A JPH04272407A (en) 1992-09-29
JP2823371B2 true JP2823371B2 (en) 1998-11-11

Family

ID=12958336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3054000A Expired - Lifetime JP2823371B2 (en) 1991-02-26 1991-02-26 Power optimization management device

Country Status (1)

Country Link
JP (1) JP2823371B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69520934T2 (en) * 1994-09-26 2001-10-04 Toshiba Kawasaki Kk METHOD AND SYSTEM TO OPTIMIZE THE USE OF A PLANT
JP3758862B2 (en) * 1998-08-31 2006-03-22 三菱化学株式会社 Optimal operation control method and optimum operation control apparatus for power plant
JP3761337B2 (en) * 1998-08-31 2006-03-29 三菱化学株式会社 Power plant optimization control method and optimization control apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153908A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Method of controlling distribution of load
JPS5979012A (en) * 1982-10-28 1984-05-08 Toshiba Corp Turbine control device
JPS60211269A (en) * 1984-04-06 1985-10-23 株式会社日立製作所 Control system of refrigerator system

Also Published As

Publication number Publication date
JPH04272407A (en) 1992-09-29

Similar Documents

Publication Publication Date Title
US6591225B1 (en) System for evaluating performance of a combined-cycle power plant
Rovira et al. Thermoeconomic optimisation of heat recovery steam generators of combined cycle gas turbine power plants considering off-design operation
Popov An option for solar thermal repowering of fossil fuel fired power plants
US3762162A (en) Method of operating and control system for combined cycle plants
CN109472401B (en) Method, device, equipment and storage medium for determining distributed energy supply operation strategy
Kim et al. An efficient operation of a micro grid using heuristic optimization techniques: Harmony search algorithm, PSO, and GA
Duan et al. A comparison of micro gas turbine operation modes for optimal efficiency based on a nonlinear model
JP2823371B2 (en) Power optimization management device
Iora et al. Exergy loss based allocation method for hybrid renewable-fossil power plants applied to an integrated solar combined cycle
Rusovs et al. Blockchain mining of cryptocurrencies as challenge and opportunity for renewable energy
Zhang et al. Consideration of ancillary services in Screening Curve Method
CN116499022A (en) Heat supply cluster control method, device and system and storage medium
CN104537204B (en) The appraisal procedure of cogeneration power network apoplexy power consumption digestion capability
Soria et al. The role of CSP in Brazil: A multi-model analysis
CN106875049A (en) A kind of Electrical Power System Dynamic economic load dispatching method of meter and valve point effect
CN108613247B (en) Heat load distribution method of steam-water dual-purpose gas boiler group
CN115882510A (en) Frequency control method and device based on model reinforcement learning
Witzani et al. Modeling of (cogeneration) power plants on time-dependent power demands of the consumer
Makwana Energy Retrofit Debottlenecking of Total Sites
JP2002233058A (en) Generator operation control method and system
Zhou et al. Simulation and optimization on power plant operation using SEGA's EOP program
Andryushin et al. Method of the Optimal Distribution of Heat and Electrical Loads
Roy-Aikins An investigation of the factors that determine the attractiveness of cogeneration
Strouvalis et al. Conceptual optimisation of utility networks using hardware and comprehensive hardware composites
Yang et al. Improving Grid Power Balance Flexibility with Operation Optimization of the Cogeneration Units in Power Plant