JP2819625B2 - Display device - Google Patents

Display device

Info

Publication number
JP2819625B2
JP2819625B2 JP1154011A JP15401189A JP2819625B2 JP 2819625 B2 JP2819625 B2 JP 2819625B2 JP 1154011 A JP1154011 A JP 1154011A JP 15401189 A JP15401189 A JP 15401189A JP 2819625 B2 JP2819625 B2 JP 2819625B2
Authority
JP
Japan
Prior art keywords
light
polarization
component
polarized
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1154011A
Other languages
Japanese (ja)
Other versions
JPH0318825A (en
Inventor
穣児 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1154011A priority Critical patent/JP2819625B2/en
Publication of JPH0318825A publication Critical patent/JPH0318825A/en
Application granted granted Critical
Publication of JP2819625B2 publication Critical patent/JP2819625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶ライトバルプを用いた液晶表示装置に関
する。
Description: TECHNICAL FIELD The present invention relates to a liquid crystal display device using a liquid crystal light valve.

[従来の技術] 第10図は、従来の液晶表示装置の光学系を示す構成図
である。従来、光源1を出射した光は直接光分離手段29
に入射し、光分離手段29によって赤,緑,青の3原色に
分離され、3原色に対応する液晶ライトバルブ12R,12G,
12Bによって光変調され、光合成手段30によって合成さ
れた後投写レンズ31によって前方のスクリーン17に拡大
投写される液晶表示装置が知られていた。液晶ライトバ
ルブ12R,12G,12Bは、それぞれその前後に偏光板18及び1
9を有し、光は入射偏光板18によってP偏光成分或はS
偏光成分が選択透過され、不要偏光成分は入射側偏光板
18に吸収される。選択透過した偏光成分は液晶ライトバ
ルブ12R,12G,12B透過後に出射側偏光板19によって再び
選択透過されて画像表示を可能にしている。
[Prior Art] FIG. 10 is a configuration diagram showing an optical system of a conventional liquid crystal display device. Conventionally, the light emitted from the light source 1 is directly separated by the light separating means 29.
And is separated into three primary colors of red, green and blue by the light separating means 29, and the liquid crystal light valves 12R, 12G,
There has been known a liquid crystal display device in which light is modulated by 12B and synthesized by a light synthesizing unit 30, and then enlarged and projected on a front screen 17 by a projection lens 31. The liquid crystal light valves 12R, 12G, and 12B have polarizing plates 18 and 1 before and after, respectively.
9 and the light is polarized by the incident polarizer 18 to the P-polarized component or S
Polarized light components are selectively transmitted, and unnecessary polarized light components are incident-side polarizers
Absorbed by 18. The selectively transmitted polarized light component is selectively transmitted again by the output side polarizing plate 19 after passing through the liquid crystal light valves 12R, 12G, and 12B, thereby enabling image display.

[発明が解決しようとする課題] しかし、従来の技術では、光源1からの出射光を光分
離手段29に取り込み、液晶ライトバルブ12R,12G,12Bの
入射側偏光板18によって不要偏光成分を吸収し所望偏光
成分を選択透過するため、光分離手段29への入射光のう
ちの50%が自動的に失われてしまい、高輝度光源を用い
ても所望の明るさが得られないという欠点を有してい
た。又、入射側偏光板18は熱吸収による温度上昇が著し
く、熱吸収した入射側偏光板18を第10図のごとく液晶ラ
イトバルブ12R,12G,12Bの直前に設けているため液晶ラ
イトバルブ12R,12G,12Bへの熱伝導も著しいゆえ、広い
環境温度条件下で信頼性を保償するためには冷却能力の
高い高回転型の冷却ファン32を第10図のごとく偏光板18
及び19、液晶ライトバルブ12R,12G,12Bの直近に設ける
必要があり、高回転型の冷却ファン32は回転数に相当す
る騒音を伴う。一方、光源1はその寿命及び色特性を満
足するためにやはりその直近に冷却ファン33を設ける必
要があり、これと高回転型の冷却ファン32との相乗作用
により一層騒音が大きくなるため、今日のAV志向の液晶
表示装置としては不適当である。
[Problems to be Solved by the Invention] However, in the conventional technique, the emitted light from the light source 1 is taken into the light separating means 29, and unnecessary polarization components are absorbed by the incident side polarizing plates 18 of the liquid crystal light valves 12R, 12G, and 12B. However, since the desired polarization component is selectively transmitted, 50% of the light incident on the light separating means 29 is automatically lost, and the desired brightness cannot be obtained even with a high-intensity light source. Had. In addition, the temperature of the incident-side polarizing plate 18 significantly increases due to heat absorption, and the incident-side polarizing plate 18 that has absorbed the heat is provided immediately before the liquid crystal light valves 12R, 12G, and 12B as shown in FIG. Since heat conduction to 12G and 12B is also remarkable, in order to guarantee reliability under a wide range of environmental temperature conditions, a high-rotation type cooling fan 32 having a high cooling capacity is used as shown in FIG.
And 19, it is necessary to provide the liquid crystal light valves 12R, 12G, 12B in the immediate vicinity, and the high rotation type cooling fan 32 involves noise corresponding to the number of rotations. On the other hand, in order to satisfy the life and color characteristics of the light source 1, it is necessary to provide a cooling fan 33 in the immediate vicinity, and the synergy between the cooling fan 33 and the high-speed cooling fan 32 further increases the noise. It is not suitable as an AV-oriented liquid crystal display device.

本発明の液晶表示装置は以上の課題を解決するもの
で、その目的とするところは、光源からの出射光束を最
大限活用した高輝度画像を実現し、広い環境温度条件下
における信頼性が高く、低騒音で今日のAV志向に適合し
うる低価格の液晶表示装置を提供することにある。
The liquid crystal display device of the present invention solves the above problems, and aims at realizing a high-brightness image utilizing the luminous flux emitted from the light source to the maximum, and having high reliability under a wide range of environmental temperature conditions. Another object of the present invention is to provide a low-cost liquid crystal display device which is low noise and can be adapted to today's AV-oriented.

[課題を解決するための手段] 上記課題を解決するために、本発明は、光源と、光を
変調するライトバルブと、前記ライトバルブにより変調
された光を投写する投写手段とを有する表示装置であっ
て、前記光源からの光をP偏光成分の光とS偏光成分の
光とに分離する偏光分離手段と、前記偏光分離手段によ
り分離された一方の前記偏光成分の光を他方の前記偏光
成分の光の偏光方向に変換する偏光方向変換手段とを有
し、前記偏光方向変換手段は偏光回転素子と反射手段と
からなり、かつ前記偏光分離手段の光出射側に配置さ
れ、前記偏光分離手段により分離された前記一方の偏光
成分の光は前記偏光回転素子を通過して前記反射手段に
入射され、前記反射手段により反射された後前記偏光回
転素子を再び通過することにより前記他方の偏光成分の
光の偏光方向に変換され、前記偏光分離手段により分離
された前記他方の偏光成分の光と、前記偏光方向変換手
段によって偏光方向を変換された前記一方の偏光成分の
光とが、前記ライトバルブに入射されてなることを特徴
とする。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a display device including a light source, a light valve for modulating light, and a projection unit for projecting the light modulated by the light valve. And a polarization separation unit that separates light from the light source into light of a P polarization component and light of an S polarization component, and converts the light of one polarization component separated by the polarization separation unit into the other polarization light. A polarization direction conversion unit for converting the component light into a polarization direction, the polarization direction conversion unit comprising a polarization rotation element and a reflection unit, and being disposed on the light exit side of the polarization separation unit, The light of the one polarization component separated by the means passes through the polarization rotation element and is incident on the reflection means. After being reflected by the reflection means and passing through the polarization rotation element again, the other polarization component is emitted. The polarization direction of the light component light is converted, the light of the other polarization component separated by the polarization separation means, the light of the one polarization component whose polarization direction is converted by the polarization direction conversion means, The light is incident on the light valve.

[作用] 上記のように構成された液晶表示装置において、光源
を出射した光は偏光ビームスプリッターによってP偏光
成分とS偏光成分に分離され、所望の偏光成分は直進或
は反射手段によって進路を変換され、又、不所望の偏光
成分は偏光回転素子を通過することによって所望の偏光
成分に変換された後直進或は反射手段によって進路を変
換されて光分離手段に入射する。従って、偏光ビームス
プリッターに入射した光はすべて所望の光として液晶ラ
イトバルブに入射することになる。
[Operation] In the liquid crystal display device configured as described above, the light emitted from the light source is separated into a P-polarized light component and an S-polarized light component by a polarizing beam splitter, and a desired polarized light component is straightened or its path is changed by a reflecting means. The undesired polarized light component is converted into a desired polarized light component by passing through a polarization rotating element, and then its path is changed by a straight traveling or reflecting means and is incident on a light separating means. Therefore, all light incident on the polarizing beam splitter is incident on the liquid crystal light valve as desired light.

[実施例] 以下に本発明の実施例を図面に基づいて説明する。第
1図は、本発明の実施例における光学系の構成図であ
る。第1図において、光源1を出射した光は偏光ビーム
スプリッター2に入射し、偏光ビームスプリッター2の
反射面においてP(S)偏光成分は透過しS(P)偏光
成分は反射される。偏光ビームスプリッター2を透過し
たP(S)偏光成分は偏光回転素子であるλ/4板3を透
過することにより直線偏光が円偏光化され、前方の反射
手段4で反射されることによって円偏光化された射出光
線の伝播方向が逆転された後、再度λ/4板3を透過する
ことによって再び直線偏光化されλ/4板3に入射する前
の直線偏光に対して直行するS(P)偏光成分に変換さ
れて偏光ビームスプリッター2に戻る。偏光ビームスプ
リッター2に戻ったS(P)偏光成分は偏光ビームスプ
リッター2の反射面にて90゜方向転換され、反射手段5,
6,7によって方向転換を繰り返された後光源1の光軸に
対して平行な光となって光分離手段8に入射する。一
方、最初に偏光ビームスプリッター2の反射面にて反射
されたS(P)偏光成分は前述のS(P)偏光成分と光
源1の光軸に対して鏡面状態の反射を反射手段5,6,7に
よって繰り返し、やはり光源1の光軸に対して平行な光
となって光分離手段8に入射する。共に入射したS
(P)偏光成分は、青色反射ダイクロイックミラー9に
より青色光(約500nm以下の光)が反射され、その他の
光(黄色光)が透過される。反射された青色光は反射ミ
ラー10により方向を変え、青色用液晶ライトバルブ12b
に入射する。青色反射ダイクロイックミラー9を透過し
た光は、赤色透過ダイクロイックミラー11に入射し緑色
光(約500nmから約600nmの間の光)を反射し、その他の
光である赤色光(約600nm以上の光)を透過する。反射
した緑色光は緑色用液晶ライトバルブ12Gに入射し、透
過した赤色光は赤色用液晶ライトバルブ12Rに入射す
る。入射した各色光は、液晶ライトバルブ12R,12G,12B
によって各色に対応した光変調を受けた後光合成手段13
に入射し、青色光は青色透過ダイクロイックミラー14を
透過後赤色透過ダイクロイックミラー15で反射され、緑
色光は青色透過ダイクロイックミラー14及び赤色透過ダ
イクロイックミラー15で反射され、赤色光は反射ミラー
10で反射された後赤色透過ダイクロイックミラー15を透
過する。上記のようにして色合成された光は、投写レン
ズ16に入射し前方のスクリーン17上に拡大投写される。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an optical system according to an embodiment of the present invention. In FIG. 1, light emitted from a light source 1 is incident on a polarization beam splitter 2, and a P (S) polarization component is transmitted and an S (P) polarization component is reflected on a reflection surface of the polarization beam splitter 2. The P (S) -polarized light component transmitted through the polarization beam splitter 2 is transmitted through the λ / 4 plate 3 as a polarization rotating element, so that linearly polarized light is circularly polarized. After the propagation direction of the converted outgoing light beam is reversed, it is again linearly polarized by transmitting through the λ / 4 plate 3 again, and is orthogonal to the linearly polarized light before entering the λ / 4 plate 3 S (P ) The light is converted into a polarized light component and returns to the polarization beam splitter 2. The S (P) polarization component returned to the polarization beam splitter 2 is turned by 90 ° at the reflection surface of the polarization beam splitter 2, and
After the direction change is repeated by 6 and 7, the light becomes parallel to the optical axis of the light source 1 and enters the light separating means 8. On the other hand, the S (P) polarized light component first reflected by the reflecting surface of the polarizing beam splitter 2 is reflected by the reflection means 5 and 6 by reflecting the above-mentioned S (P) polarized light component and the reflection in a mirror state with respect to the optical axis of the light source 1 , 7 again, the light also becomes parallel to the optical axis of the light source 1 and enters the light separating means 8. S incident on both
As for the (P) polarized light component, blue light (light of about 500 nm or less) is reflected by the blue reflecting dichroic mirror 9 and other light (yellow light) is transmitted. The reflected blue light is redirected by the reflecting mirror 10 and the blue liquid crystal light valve 12b.
Incident on. The light transmitted through the blue reflecting dichroic mirror 9 is incident on the red transmitting dichroic mirror 11, reflects green light (light between about 500 nm to about 600 nm), and red light (light of about 600 nm or more) as other light. Through. The reflected green light enters the green liquid crystal light valve 12G, and the transmitted red light enters the red liquid crystal light valve 12R. Each incident color light is a liquid crystal light valve 12R, 12G, 12B
After light modulation corresponding to each color by the light combining means 13
, The blue light is transmitted through the blue transmission dichroic mirror 14 and then reflected by the red transmission dichroic mirror 15, the green light is reflected by the blue transmission dichroic mirror 14 and the red transmission dichroic mirror 15, and the red light is reflected by the reflection mirror.
After being reflected at 10, it passes through a red transmission dichroic mirror 15. The light synthesized as described above enters the projection lens 16 and is enlarged and projected on the screen 17 in front.

液晶ライトバルブ12R,12G,12Bはそれぞれその前後の
偏光板18,19において偏光成分の選択を受けることによ
って画像表示を可能にするが、偏光板18は偏光ビームス
プリッター2の補助偏光板として用いるため、偏光ビー
ムスプリッター2の偏光度が100%に近い場合は不要で
ある。
The liquid crystal light valves 12R, 12G, and 12B enable image display by receiving a selection of a polarization component in the polarizing plates 18 and 19 before and after the liquid crystal light valves. However, the polarizing plate 18 is used as an auxiliary polarizing plate of the polarizing beam splitter 2. This is unnecessary when the polarization degree of the polarization beam splitter 2 is close to 100%.

第2図は、前述のλ/4板3の原理を示すもので、入射
光線の直線偏光面22とλ/4板3の結晶の光軸方向21とが
なす角度θが45゜である場合に、直線偏光の入射光線を
円偏光に(或はその逆に)変換できることを示す図であ
る。
FIG. 2 shows the principle of the λ / 4 plate 3 described above, in which the angle θ formed between the linear polarization plane 22 of the incident light beam and the optical axis direction 21 of the crystal of the λ / 4 plate 3 is 45 °. FIG. 2 shows that linearly polarized incident light can be converted into circularly polarized light (or vice versa).

第3図は、光源1からの光を単一偏光化する別の参考
例を示すもので、光源1から出射した光は偏光ビームス
プリッター2の反射面においてP(S)偏光成分は透過
しS(P)偏光成分は反射される。透過したP(S)偏
光成分は前方の偏光回転素子であるλ/2板23を透過する
ことによって偏光面が90゜回転し、S(P)偏光成分と
なって光分離手段8に入射する。一方、反射したS
(P)偏光成分は反射手段5によって光源1の光軸に対
して平行な方向に一回進路を変更されて、やはり光分離
手段8に入射する。従って、この場合も偏光ビームスプ
リッター2に入射した光は全てS(P)偏光成分となる
ことがわかる。なお、この時のλ/2板23の原理を示すの
が第4図であり、入射光線の直線偏光面22とλ/2板23の
結晶の光軸方向21とがなす角度θが45゜である場合に、
入射した直線偏光の偏光面が90゜回転するためP(S)
偏光成分がS(P)偏光成分に変換されるのである。
FIG. 3 shows another reference example in which the light from the light source 1 is monopolarized. In the light emitted from the light source 1, the P (S) polarized component is transmitted through the reflection surface of the polarizing beam splitter 2 and S (P) The polarization component is reflected. The transmitted P (S) polarized light component is rotated by 90 ° by passing through the λ / 2 plate 23, which is a front polarization rotating element, to become an S (P) polarized light component, and is incident on the light separating means 8. . On the other hand, the reflected S
(P) The polarization component has its course changed once in a direction parallel to the optical axis of the light source 1 by the reflection means 5 and again enters the light separation means 8. Therefore, in this case as well, it can be seen that all the light incident on the polarization beam splitter 2 becomes the S (P) polarization component. FIG. 4 shows the principle of the λ / 2 plate 23 at this time, and the angle θ between the linear polarization plane 22 of the incident light beam and the optical axis direction 21 of the crystal of the λ / 2 plate 23 is 45 °. If
P (S) because the plane of polarization of the incident linearly polarized light rotates 90 °
The polarization component is converted to an S (P) polarization component.

以上のように、光分手段8には不所望偏光成分が殆ど
入射しないため液晶ライトバルブ12R,12G,12Bの温度上
昇は極小になり、環境温度条件を考慮に入れたとしても
液晶ライトバルブ12R,12G,12B専用の冷却ファンは不要
となり、装置としての冷却は第1図に示すように光源1
と液晶ライトバルブ12R,12G,12Bと偏光板18,19とを同時
に冷却する冷却ファン20を単独で用いれば十分である。
As described above, since the undesired polarized light component hardly enters the light separating means 8, the temperature rise of the liquid crystal light valves 12R, 12G, and 12B is minimized, and even if environmental temperature conditions are taken into consideration, the liquid crystal light valve 12R is not affected. , 12G, and 12B dedicated cooling fans are not required, and cooling as a device is achieved by the light source 1 as shown in FIG.
It is sufficient to use a single cooling fan 20 for simultaneously cooling the liquid crystal light valves 12R, 12G, 12B and the polarizing plates 18, 19.

第5図は第3図の偏光ビームスプリッター2としてガ
ラス板26を用いた場合の参考例、第6図は第1図の偏光
ビームスプリッター2としてガラス板26を用いた場合の
実施例である。偏光ビームスプリッター2としては、上
述のように一対の直角プリズムの斜面同士を接着したキ
ューブ状のものが一般的であり、この場合98%程度の偏
光度が達成できるため偏光板18は不要になるが高価格に
なってしまう。第5図,第6図に示す偏光ビームスプリ
ッターは低価格を実現するものでその原理を第7図にお
いて説明する。第7図において、ガラス板26の屈折率を
nとし光の入射角をζとし、 ζ=tan-1n なる関係にガラス板26を設けるとき、P偏光成分27は10
0%透過しS偏光成分28の約15%は反射する。(このと
きのζがブリュースター角である。)従って、このガラ
ス板26を複数枚平行に重ね第5図,第6図のような構成
にすると理想的には最終的にP偏光成分27が100%透過
し、S偏光成分28が100%反射する。実測では、横軸に
ガラス板26の枚数をとり縦軸に偏光度をとると第8図の
ような関係になり、ガラス板26を8枚〜10枚用いると約
80%の偏光度が達成できる。以上述べたように、ガラス
板26を8枚〜10枚平行にして重ね光の入射角がブリュー
スター角になるように設置することによって偏光度約80
%が達成できるため、第1図における入射側偏光板18に
よるS偏光成分の吸収は30%足らずですみ、偏光板18の
温度上昇を極小にできる。従って、この偏光板18を液晶
ライトバルブ12R,12G,12Bの直前に設けても偏光板18の
温度上昇による液晶ライトバルブ12R,12G,12Bへの影響
は極めて小さく、やはり環境温度条件を考慮に入れたと
しても液晶ライトバルブ12R,12G,12B専用の冷却ファン
は不要となり、装置としての冷却は第1図に示すように
光源1と液晶ライトバルブ12R,12G,12Bと偏光板18,19と
を同時に冷却する冷却ファン20を単独で用いれば十分で
ある。なお、第5図,第6図において光源と偏光ビーム
スプリッターと偏光回転素子と反射手段と光分離手段と
の関係は、上述の第1図〜第4図による説明と全く同様
である。
FIG. 5 shows a reference example in which a glass plate 26 is used as the polarization beam splitter 2 in FIG. 3, and FIG. 6 shows an embodiment in which a glass plate 26 is used as the polarization beam splitter 2 in FIG. As described above, the polarizing beam splitter 2 generally has a cube shape in which the slopes of a pair of right-angle prisms are bonded to each other as described above. In this case, a polarization degree of about 98% can be achieved, so that the polarizing plate 18 becomes unnecessary. Will be expensive. The principle of the polarization beam splitter shown in FIGS. 5 and 6 is realized at low cost, and its principle will be described with reference to FIG. In FIG. 7, when the refractive index of the glass plate 26 is n, the incident angle of light is ζ, and the glass plate 26 is provided in a relation of ζ = tan −1 n, the P-polarized component 27 becomes 10
0% is transmitted and about 15% of the S-polarized component 28 is reflected. (In this case, ζ is the Brewster's angle.) Therefore, when a plurality of glass plates 26 are stacked in parallel to form a structure as shown in FIGS. 5 and 6, ideally the P-polarized light component 27 finally becomes 100% is transmitted, and the S-polarized component 28 is reflected 100%. In the actual measurement, when the number of glass plates 26 is plotted on the horizontal axis and the degree of polarization is plotted on the vertical axis, the relationship shown in FIG. 8 is obtained.
A degree of polarization of 80% can be achieved. As described above, by setting eight to ten glass plates 26 in parallel so that the incident angle of the superposed light becomes the Brewster angle, the degree of polarization is about 80.
%, The absorption of the S-polarized light component by the incident-side polarizing plate 18 in FIG. 1 is less than 30%, and the temperature rise of the polarizing plate 18 can be minimized. Therefore, even if the polarizing plate 18 is provided immediately before the liquid crystal light valves 12R, 12G, and 12B, the influence of the temperature rise of the polarizing plate 18 on the liquid crystal light valves 12R, 12G, and 12B is extremely small, and the environmental temperature condition is also taken into consideration. Even if it is inserted, a cooling fan dedicated to the liquid crystal light valves 12R, 12G, 12B becomes unnecessary, and cooling as a device is performed by the light source 1, the liquid crystal light valves 12R, 12G, 12B, the polarizing plates 18, 19 as shown in FIG. It is sufficient to use the cooling fan 20 that cools the air at the same time. In FIGS. 5 and 6, the relationship among the light source, the polarization beam splitter, the polarization rotation element, the reflection means, and the light separation means is exactly the same as that described above with reference to FIGS.

第9図は、第3図において光分離手段8の前に凸レン
ズ24と凹レンズ25を組み合わせて設けた参考例で、この
構成による光分離手段8への入射光の断面積を小さくす
ることができるため、より大きな光源とより小さな光分
離手段との組合せが可能となり、上記の構成は明るさに
対して更に有効なものとなる。又、これは第1図,第5
図,第6図における場合においても全く同様である。
FIG. 9 is a reference example in which a convex lens 24 and a concave lens 25 are provided in combination in front of the light separating means 8 in FIG. 3, and the cross-sectional area of light incident on the light separating means 8 can be reduced by this configuration. Therefore, a combination of a larger light source and a smaller light separating means becomes possible, and the above configuration is more effective for brightness. This is shown in FIG.
The same is true in the case of FIG. 6 and FIG.

[発明の効果] 以上説明したように、本発明の表示装置は、光源と、
光を変調するライトバルブと、前記ライトバルブにより
変調された光を投写する投写手段とを有する表示装置で
あって、前記光源からの光をP偏光成分の光とS偏光成
分の光とに分離する偏光分離手段と、前記偏光分離手段
により分離された一方の前記偏光成分の光を他方の前記
偏光成分の光の偏光方向に変換する偏光方向変換手段と
を有し、前記偏光方向変換手段は偏光回転素子と反射手
段とからなり、かつ前記偏光分離手段の光出射側に配置
され、前記偏光分離手段により分離された前記一方の偏
光成分の光は前記偏光回転素子を通過して前記反射手段
に入射され、前記反射手段により反射された後前記偏光
回転素子を再び通過することにより前記他方の偏光成分
の光の偏光方向に変換され、前記偏光分離手段により分
離された前記他方の偏光成分の光と、前記偏光方向変換
手段によって偏光方向を変換された前記一方の偏光成分
の光とが、前記ライトバルブに入射されてなることによ
り、光源からの出射光束を最大限活用した高輝度表示を
実現できる。
[Effects of the Invention] As described above, the display device of the present invention includes a light source,
A display device comprising: a light valve that modulates light; and a projection unit that projects light modulated by the light valve, wherein the light from the light source is separated into light of a P-polarized component and light of an S-polarized component. And a polarization direction conversion unit that converts light of one of the polarization components separated by the polarization separation unit into a polarization direction of light of the other polarization component. The one polarization component light, which comprises a polarization rotation element and a reflection means, is disposed on the light emission side of the polarization separation means, and is separated by the polarization separation means, passes through the polarization rotation element and passes through the reflection means. After being reflected by the reflection means, passes through the polarization rotation element again, thereby being converted into the polarization direction of the light of the other polarization component, and separated by the polarization separation means. The light of the polarized light component and the light of the one polarized light component whose polarization direction has been converted by the polarization direction converting means are incident on the light valve, so that the light flux emitted from the light source is maximized. Brightness display can be realized.

また、上記の構成により偏光板及び液晶ライトバルブ
の温度上昇を極小にできるために広い環境温度条件下に
おける信頼性を確保でき、光源と液晶ライトバルブの冷
却を共通の冷却ファンでまかなえるため、低騒音で今日
のAV志向に適合しうる液晶表示装置を実現できる。
In addition, the above configuration can minimize the temperature rise of the polarizing plate and the liquid crystal light valve, thereby ensuring reliability under a wide range of environmental temperature conditions, and cooling the light source and the liquid crystal light valve with a common cooling fan. It is possible to realize a liquid crystal display device that can be adapted to today's AV orientation with noise.

更に、上記偏光ビームスプリッターとして複数枚のガ
ラス板を平行にして入射角がブリュースター角になるよ
うに設けると、上述の効果を満足しつつ低価格の液晶表
示装置を実現できる。
Furthermore, when a plurality of glass plates are provided in parallel as the polarizing beam splitter so that the incident angle becomes the Brewster angle, a low-cost liquid crystal display device can be realized while satisfying the above-mentioned effects.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の液晶表示装置の光学系の構成図、第
2図は、本発明に用いるλ/4板の原理図、第3図は、本
発明の偏光手段に関わる参考例の構成図、第4図は、本
発明の参考例に用いるλ/2板の原理図、第5図は、本発
明の別の参考例の構成図、第6図は、本発明の別の偏光
ビームスプリッターによるλ/4板を用いた場合の構成
図、第7図は、本発明の偏光ビームスプリッターの原理
図、第8図は、本発明の偏光ビームスプリッターによる
ガラス板の枚数と偏光度の関係図、第9図は、本発明の
偏光手段に関わる別の参考例の構成図、第10図は、従来
の液晶表示装置の光学系の構成図である。 1……光源 2……偏光ビームスプリッター 3……λ/4板(偏光回転素子) 4,5,6,7……反射手段 8……光分離手段 12……液晶ライトバルブ 13……光合成手段 16……投写レンズ 17……スクリーン 18,19……偏光板 20……冷却ファン 21……結晶の光軸方向 22……入射光線の直線偏光面 23……λ/2板(偏光回転素子) 24……凸レンズ 25……凹レンズ 26……ガラス板 27……P偏光成分 28……S偏光成分
FIG. 1 is a configuration diagram of an optical system of a liquid crystal display device of the present invention, FIG. 2 is a principle diagram of a λ / 4 plate used in the present invention, and FIG. 3 is a reference example relating to a polarizing means of the present invention. FIG. 4 is a diagram showing the principle of a λ / 2 plate used in a reference example of the present invention, FIG. 5 is a diagram showing the configuration of another reference example of the present invention, and FIG. FIG. 7 is a diagram showing the principle of the polarizing beam splitter of the present invention, and FIG. 8 is a diagram showing the number of glass plates and the degree of polarization of the polarizing beam splitter of the present invention. FIG. 9 is a configuration diagram of another reference example relating to the polarizing means of the present invention, and FIG. 10 is a configuration diagram of an optical system of a conventional liquid crystal display device. DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Polarization beam splitter 3 ... λ / 4 plate (polarization rotation element) 4, 5, 6, 7 ... Reflecting means 8 ... Light separating means 12 ... Liquid crystal light valve 13 ... Photosynthesis means 16 Projection lens 17 Screen 18, 19 Polarizing plate 20 Cooling fan 21 Crystal optical axis direction 22 Linear polarization plane of incident light 23 λ / 2 plate (polarization rotating element) 24 Convex lens 25 Concave lens 26 Glass plate 27 P-polarized component 28 S-polarized component

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02F 1/13 - 1/141 G02B 27/18 G03B 21/00 G09F 9/00 - 9/30Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G02F 1/13-1/141 G02B 27/18 G03B 21/00 G09F 9/00-9/30

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源と、光を変調するライトバルブと、前
記ライトバルブにより変調された光を投写する投写手段
とを有する表示装置であって、 前記光源からの光をP偏光成分の光とS偏光成分の光と
に分離する偏光分離手段と、 前記偏光分離手段により分離された一方の前記偏光成分
の光を他方の前記偏光成分の光の偏光方向に変換する偏
光方向変換手段とを有し、 前記偏光方向変換手段は偏光回転素子と反射手段とから
なり、かつ前記偏光分離手段の光出射側に配置され、 前記偏光分離手段により分離された前記一方の偏光成分
の光は前記偏光回転素子を通過して前記反射手段に入射
され、前記反射手段により反射された後前記偏光回転素
子を再び通過することにより前記他方の偏光成分の光の
偏光方向に変換され、 前記偏光分離手段により分離された前記他方の偏光成分
の光と、前記偏光方向変換手段によって偏光方向を変換
された前記一方の偏光成分の光とが、前記ライトバルブ
に入射されてなることを特徴とする表示装置。
1. A display device comprising: a light source; a light valve for modulating light; and projection means for projecting the light modulated by the light valve, wherein the light from the light source is converted to a P-polarized component light. Polarized light separating means for separating light of the S polarized light component into light of the S polarized light component; and polarization direction converting means for converting the light of the one polarized light component separated by the polarized light separating means into the polarization direction of the light of the other polarized light component. The polarization direction conversion unit includes a polarization rotation element and a reflection unit, and is disposed on the light emission side of the polarization separation unit. The light of the one polarization component separated by the polarization separation unit is the polarization rotation unit. After passing through the element, the light is incident on the reflection means, is reflected by the reflection means, and then passes through the polarization rotation element again to be converted into the polarization direction of the light of the other polarization component. The display device, wherein the light of the other polarization component separated more and the light of the one polarization component whose polarization direction has been converted by the polarization direction conversion means are incident on the light valve. .
【請求項2】前記偏光方向変換手段は、前記偏光分離手
段に近接して配置されてなることを特徴とする請求項1
記載の表示装置。
2. The apparatus according to claim 1, wherein said polarization direction changing means is arranged close to said polarization separation means.
The display device according to the above.
【請求項3】前記反射手段は、平板状の反射手段である
ことを特徴とする請求項1記載の表示装置。
3. The display device according to claim 1, wherein said reflecting means is a flat reflecting means.
JP1154011A 1989-06-16 1989-06-16 Display device Expired - Fee Related JP2819625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1154011A JP2819625B2 (en) 1989-06-16 1989-06-16 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1154011A JP2819625B2 (en) 1989-06-16 1989-06-16 Display device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP00424098A Division JP3170239B2 (en) 1998-01-12 1998-01-12 Display device
JP10004239A Division JPH10177157A (en) 1998-01-12 1998-01-12 Display device

Publications (2)

Publication Number Publication Date
JPH0318825A JPH0318825A (en) 1991-01-28
JP2819625B2 true JP2819625B2 (en) 1998-10-30

Family

ID=15574956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1154011A Expired - Fee Related JP2819625B2 (en) 1989-06-16 1989-06-16 Display device

Country Status (1)

Country Link
JP (1) JP2819625B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138766A (en) * 1986-11-29 1988-06-10 Nec Kansai Ltd Semiconductor element

Also Published As

Publication number Publication date
JPH0318825A (en) 1991-01-28

Similar Documents

Publication Publication Date Title
US6508557B1 (en) Reflective LCD projector
US6910777B2 (en) Projector
US7364302B2 (en) Projection display system using multiple light sources and polarizing element for using with same
JPH03122631A (en) Projection type liquid crystal display device
US5812223A (en) Color LCD projector with three color separating polarizing beam splitters
JPH0738050B2 (en) Polarization beam splitter device and light valve optical device using the device
JPH08271855A (en) Device for display of image on screen
JPS63182987A (en) Light polarizing element for liquid crystal display projector
WO2002042807A1 (en) Color separating/synthesizing element and liquid crystal projector using it
JPH02106792A (en) Picture projection device
US6042236A (en) Projection type video image display device
KR100423176B1 (en) A projection type display device
JP3951897B2 (en) Polarization conversion unit and projector using the same
JPH0239084A (en) Image projector
US6992833B2 (en) Color combining optical system, projection-type display optical system, projection-type image display apparatus, and image display system
JP2000330196A (en) Color synthesizing optical system and projection type display device equipped with the system
JP2819625B2 (en) Display device
JP3170243B2 (en) Liquid crystal display
JP3170239B2 (en) Display device
JP2925696B2 (en) Projection display device
CN100445863C (en) Image display apparatus
JP3207408B2 (en) Reflective display
JPH0458242A (en) Projection type liquid crystal display device
JPH10177157A (en) Display device
KR0120405Y1 (en) Image projection apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees