JP2817936B2 - Traveling wave type deflection electrode - Google Patents

Traveling wave type deflection electrode

Info

Publication number
JP2817936B2
JP2817936B2 JP5167989A JP5167989A JP2817936B2 JP 2817936 B2 JP2817936 B2 JP 2817936B2 JP 5167989 A JP5167989 A JP 5167989A JP 5167989 A JP5167989 A JP 5167989A JP 2817936 B2 JP2817936 B2 JP 2817936B2
Authority
JP
Japan
Prior art keywords
electrode
plate
deflection
traveling
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5167989A
Other languages
Japanese (ja)
Other versions
JPH02230638A (en
Inventor
勝之 木下
本比呂 須山
宏典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP5167989A priority Critical patent/JP2817936B2/en
Publication of JPH02230638A publication Critical patent/JPH02230638A/en
Application granted granted Critical
Publication of JP2817936B2 publication Critical patent/JP2817936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Microwave Tubes (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】 本発明は、真空中で荷電粒子ビームを進行波電界によ
り偏向するための進行波型偏向電極に係り、特に、ビー
ム走行方向及び偏向方向と直交する幅方向に分布を持た
ない偏向電圧を、荷電粒子の走行速度に合わせて印加す
ることが可能な信号波型偏向電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a traveling wave type deflection electrode for deflecting a charged particle beam by a traveling wave electric field in a vacuum, and more particularly, to a distribution in a beam traveling direction and a width direction orthogonal to the deflection direction. The present invention relates to a signal-wave-type deflection electrode capable of applying a deflection voltage that is not provided in accordance with the traveling speed of charged particles.

【従来の技術】[Prior art]

真空装置、例えばストリーク管やオシロスコープ等の
電子管において、荷電粒子を電界で偏向する方式には種
々のものがある。 最も簡単な構成は、単純な平板状の導電性電極(偏向
板)を2枚対面させたものである。ところが、高周波
(高速)電気信号で荷電粒子を偏向する場合、偏向系の
周波数特性は、偏向板を電子が通過する時間(電子走行
時間)で決まる帯域で制限される。この電子走行時間効
果を小さくするためには、偏向板を短くするか、加速電
圧を上げて電子走行速度を大にすればよいが、これでは
偏向感度及び有効偏向域が大幅に低下し、実用的でな
い。 これら偏向感度及び有効偏向域を低下させることなく
周波数帯域を広げるためには、電子の速度より速い偏向
電圧の進行速度を、偏向板に何らかの遅延構造をとらせ
ることにより遅らせて、偏向板を通過する電子走行速度
にほぼ等しい進行波偏向電界を得る必要がある。 この進行波偏向電界を得る偏向電極の1つに、テレビ
ジヨン第18巻第6号第46頁〜第51頁に示されている如
く、偏向板をビーム走行方向に小さく分割し、それら分
割偏向板を小さなインダクタンスで接続することによ
り、L、C集中定数による平衡の定K型定域ろ波器回路
からなる遅延構造を持たせた、分割型偏向板による集中
定数型偏向電極がある。 又、ビーム走行方向及び偏向方向と直交する幅方向に
ジグザグ状とした遅延線路により、偏向電圧のビーム走
行方向における進行速度(成分)を遅延させとものとし
ては、例えば特公昭37−13684に開示されている如く、
櫛状の電極線を位相をずらして組合わせたものや、角柱
状の線状電極をビーム走行方向及び偏向方向と直交する
幅方向にジグザグ状に屈曲させた、いわゆるミアンダ型
の進行波偏向系や、これを改良したトラフ型の信号波偏
向系が考案されている。更に、前記ミアンダ型進行波偏
向系やトラフ型信号波偏向系の、ジグザグ状に屈曲され
た線状電極の片側(非電子ビーム側)に誘電体を装架し
たものも考案されている。 又、螺旋状の遅延線路を用いて偏向電圧のビーム走行
方向における進行速度(成分)を遅らせたものが、特公
昭44−16697、特公昭53−26475、特公昭56−27984に開
示されている。 一方、荷電粒子の偏向電極と出力面を有する、ストリ
ーク管やオシロスコープ等の真空装置においては、荷電
粒子は、真空装置内のフオーカス系によつて出力面の1
点に集束するようにされている。従つて、時間的に変化
する電圧を偏向電極に印加して、荷電粒子ビームを偏向
するとき、偏向電極に同時に入射した荷電粒子は、出力
面上の同じ位置に偏向されなければならない。
In a vacuum device, for example, an electron tube such as a streak tube or an oscilloscope, there are various methods for deflecting charged particles by an electric field. In the simplest configuration, two simple flat conductive electrodes (deflecting plates) face each other. However, when a charged particle is deflected by a high-frequency (high-speed) electric signal, the frequency characteristic of the deflection system is limited by a band determined by a time during which electrons pass through the deflection plate (electron transit time). In order to reduce the electron transit time effect, the deflection plate may be shortened or the acceleration voltage may be increased to increase the electron transit speed. Not a target. In order to widen the frequency band without lowering the deflection sensitivity and effective deflection range, the traveling speed of the deflection voltage, which is higher than the speed of the electrons, is delayed by causing the deflection plate to have a certain delay structure, and passes through the deflection plate. It is necessary to obtain a traveling wave deflection electric field which is almost equal to the electron traveling speed. As shown in Television, Vol. 18, No. 6, pp. 46 to 51, a deflecting plate is divided into small portions in the beam traveling direction and one of the deflecting electrodes for obtaining the traveling wave deflecting electric field is used. There is a lumped-constant-type deflecting electrode with a split-type deflecting plate having a delay structure composed of a constant K-type constant-pass filter circuit balanced by L and C lumped constants by connecting the plates with a small inductance. A delay line having a zigzag shape in the width direction orthogonal to the beam traveling direction and the deflection direction delays the traveling speed (component) of the deflection voltage in the beam traveling direction. As has been done,
A so-called meander type traveling wave deflection system in which comb-shaped electrode wires are combined with their phases shifted, or a prismatic linear electrode is bent in a zigzag shape in the width direction orthogonal to the beam traveling direction and deflection direction. Also, a trough-type signal wave deflecting system that is an improvement of this is devised. Further, there has been proposed a meander type traveling wave deflection system or trough type signal wave deflection system in which a dielectric is mounted on one side (non-electron beam side) of a zigzag bent linear electrode. Japanese Patent Publication No. Sho 44-16697, Japanese Patent Publication No. Sho 53-26475, and Japanese Patent Publication No. Sho 56-27984 disclose the use of a spiral delay line to delay the traveling speed (component) of the deflection voltage in the beam traveling direction. . On the other hand, in a vacuum device such as a streak tube or an oscilloscope having a charged particle deflecting electrode and an output surface, the charged particles are discharged from the output surface by a focus system in the vacuum device.
It is made to focus on a point. Therefore, when a time-varying voltage is applied to the deflection electrode to deflect the charged particle beam, the charged particles simultaneously incident on the deflection electrode must be deflected to the same position on the output surface.

【発明が達成しようとする課題】[Problems to be solved by the invention]

しかしながら、荷電粒子ビームは、個々の荷電粒子自
身の持つ異なる初速度により広がるため、偏向電極を通
過するときにも、必ず有限の幅方向広がりを持つてい
る。このような幅方向広がりを持つた荷電粒子ビームに
対して、第6図に示すストリーク管の如く、従来のミア
ンダ型偏向電極10(第6図の紙面と垂直な方向に2つ重
なつている)、トラフ型偏向電極、螺旋状偏向電極等
の、ビーム走行方向及び偏向方向と直交する幅方向に一
様でないものを、電子がZ方向に進行し、出力(掃引)
面20上でY方向(第6図の紙面と垂直な方向)に偏向す
るように配置した場合、1ピツチの線路10AはX方向を
向くこととなるため、偏向電極10に印加する電圧Vの時
間的変化を大きく(周波数を上げる)していくと、第8
図に示す如く、偏向電極10のX方向に電圧の分布ができ
てしまう。第6図において、12は光電面、14はメツシユ
加速電極、16はフオーカス電極、18はアノードである。 即ち、偏向電極10に、第9図に示す如く、2つの時間
的に変化するランプ状電圧V1、V2が印加された場合、電
子ビームは、第6図の紙面に垂直な方向に偏向される。
ここで、偏向電極10に印加する電圧の時間的変化を大き
くしていくと、偏向電極10のX方向に、第7図に示すよ
うな電圧の分布ができてしまうため、同時に偏向電極10
に入射したX方向に広がりを持つ電子a、b、cは、違
つた電圧を受けて偏向されることになり、偏向量が異な
るため、Y軸方向の違う位置に出力されて、出力面20上
でのボケを生ずることとなる。実際には第7図の次の線
路では、a、b、c各電子にかかる電圧の位相は、第7
図と逆位相となるので、そのボケ量は、かなり補正され
るが、ビームの集束される様子(第6図参照)からわか
るように、電子a、b、cの間隔は、出力面20に近付く
に従つて狭くなるので、完全には補正されないし、位相
のズレも実際には生じる。従つて、出力面20上で、a、
b、c各電子で偏向量の差が生じ、これがビームのボケ
となる。 このY軸方向のボケは、偏向電極10に高速の電圧を印
加することで生じるものであるが、例えばフエムト秒の
時間分解能を有するストリーク管では、実用域でも問題
になる。 なお、2枚の対向する偏向板のみからなる単純な偏向
系や、分割型偏向板では、もともと帯域が低いために、
高速の偏向電圧を印加することは不可能であつた。 本発明は、前記従来の問題点を解消するべくなされた
もので、ビーム走行方向及び偏向方向と直交する幅方向
に分布を持たない偏向電圧を、荷電粒子の速度に合わせ
てビーム走行方向に印加することが可能な進行波型偏向
電極を提供することを課題とする。
However, since the charged particle beam spreads due to the different initial velocities of the individual charged particles themselves, they always have a finite spread in the width direction even when passing through the deflection electrode. For a charged particle beam having such a spread in the width direction, as shown in a streak tube shown in FIG. 6, a conventional meandering deflection electrode 10 (two overlapping in a direction perpendicular to the paper surface of FIG. 6). ), Trough-type deflecting electrodes, spiral deflecting electrodes, etc., which are not uniform in the beam running direction and the width direction orthogonal to the deflecting direction, electrons travel in the Z direction, and output (sweep)
When arranged so as to be deflected in the Y direction (the direction perpendicular to the paper surface of FIG. 6) on the surface 20, the one-pitch line 10A is oriented in the X direction, so that the voltage V applied to the deflection electrode 10 is As time change is increased (frequency is increased),
As shown in the figure, a voltage distribution occurs in the X direction of the deflection electrode 10. In FIG. 6, 12 is a photocathode, 14 is a mesh acceleration electrode, 16 is a focus electrode, and 18 is an anode. That is, when two time-varying ramp voltages V 1 and V 2 are applied to the deflection electrode 10 as shown in FIG. 9, the electron beam is deflected in a direction perpendicular to the plane of FIG. Is done.
Here, if the temporal change of the voltage applied to the deflection electrode 10 is increased, a voltage distribution as shown in FIG. 7 is formed in the X direction of the deflection electrode 10, so that the deflection electrode 10
The electrons a, b, and c, which have spread in the X direction, are deflected by receiving different voltages, and have different amounts of deflection, so that they are output to different positions in the Y-axis direction and output to the output surface 20. The above will cause blurring. Actually, in the next line in FIG. 7, the phase of the voltage applied to each of the electrons a, b, and c is
Since the phase is opposite to that in the figure, the blur amount is considerably corrected. However, as can be seen from the manner in which the beam is focused (see FIG. 6), the distance between the electrons a, b, and c Since it becomes narrower as approaching, it is not completely corrected and a phase shift actually occurs. Therefore, on the output surface 20, a,
A difference in the amount of deflection occurs between each of the electrons b and c, which results in blurring of the beam. The blur in the Y-axis direction is caused by applying a high-speed voltage to the deflection electrode 10. However, for example, in a streak tube having a time resolution of femtosecond, it becomes a problem even in a practical range. In the case of a simple deflecting system including only two opposing deflecting plates or a split type deflecting plate, the band is originally low.
It was impossible to apply a high-speed deflection voltage. The present invention has been made to solve the above-mentioned conventional problems, and applies a deflection voltage having no distribution in the width direction orthogonal to the beam traveling direction and the deflection direction in the beam traveling direction according to the speed of the charged particles. It is an object of the present invention to provide a traveling wave type deflection electrode capable of performing the following.

【課題を達成するための手段】[Means for achieving the object]

本発明は、真空中で荷電粒子ビームを進行波電界によ
り変更するための進行波型偏向電極において、ビーム走
行方向及び偏向方向と直交する板状電極の幅方向に一様
な構成を有し、且つ、該板状電極の略全幅にわたつてビ
ームの走行方向に繋つて形成された、対向する1対の板
状電極を備え、該板状電極の少くとも一方が、誘電体
と、該誘電体を挾む2枚の電極板からなる三層構造とさ
れ、その外側電極板が接地されており、ビーム側電極板
のビーム走行方向端面に偏向電圧を印加するための接続
リードが備えられ、偏向電圧が、ビーム走行速度と略等
しい伝播速度で、前記板状電極のビーム走行方向入力側
端面から出力側端面に伝播するようにして、前記課題を
達成したものである。 又、前記板状電極の両方を前記三層構造とし、両者
に、互いに等振幅で逆符号の偏向電圧を印加するように
したものである。 又、前記板状電極と接続リードの接続部を、接続リー
ドの接続点を頂点とし、板状電極の端面を底辺とする略
2等辺3角形状としたものである。 又、前記板状電極を偏向方向にジグザグ状に屈曲した
ものである。
The present invention is a traveling wave type deflection electrode for changing a charged particle beam by a traveling wave electric field in a vacuum, and has a uniform configuration in a width direction of a plate-like electrode orthogonal to a beam traveling direction and a deflection direction, And a pair of opposing plate-shaped electrodes formed in the traveling direction of the beam over substantially the entire width of the plate-shaped electrodes, and at least one of the plate-shaped electrodes includes a dielectric material and the dielectric material. It has a three-layer structure consisting of two electrode plates sandwiching the body, its outer electrode plate is grounded, and a connection lead for applying a deflection voltage to the end surface of the beam side electrode plate in the beam traveling direction is provided. The object has been achieved in that the deflection voltage propagates from the input end face in the beam running direction of the plate-shaped electrode to the output end face at a propagation speed substantially equal to the beam running speed. Further, both of the plate-like electrodes have the three-layer structure, and a deflection voltage having the same amplitude and opposite signs is applied to both of them. Further, the connecting portion between the plate-shaped electrode and the connection lead has a substantially isosceles triangular shape with the connection point of the connection lead as the apex and the end surface of the plate-shaped electrode as the base. Further, the plate-like electrode is bent in a zigzag shape in a deflection direction.

【作用及び効果】[Action and effect]

本発明は、例えば第1図に示す第1実施例の如く、真
空中で荷電粒子30のビームを進行波電界により偏向する
ための進行波型偏向電極において、ビーム走行方向(Z
方向)及び偏向方向(Y方向)と直交する幅方向(紙面
と垂直なX方向)に一様な構成を有し、且つ、ビーム走
行方向に連続的に形成された、対向する1対の板状電極
32、34と、該板状電極の少なくとも一方(32)のビーム
走行方向端面に偏向電圧を印加するための接続リード3
6、38とを備え、例えば偏向電圧発生器40で発生した偏
向電圧が、ビーム走行速度と略等しい伝播速度で、前記
板状電極32のビーム走行方向入力側端面32Aから出力側
端面32Bに伝播するようにしたものである。このように
して、偏向電極のビーム走行方向及び偏向方向と直交す
る幅方向の電圧分布をなくすことができる。従つて、ビ
ームに幅広がりのある荷電粒子に対して、高速の偏向電
圧を印加した場合でも、同時に偏向電極に入射した荷電
粒子は全て出力面上の同じ位置に偏向することが可能と
なり、ビームのボケを防ぐことができる。又、偏向電圧
のビーム走行方向速度と荷電粒子の速度が略一致してい
るので、帯域を高くすることができる。
The present invention relates to a traveling wave type deflection electrode for deflecting a beam of charged particles 30 by a traveling wave electric field in a vacuum as in the first embodiment shown in FIG.
Direction) and a width direction (X direction perpendicular to the paper plane) orthogonal to the deflection direction (Y direction), and a pair of opposing plates formed continuously in the beam running direction. Electrode
32, 34 and connection leads 3 for applying a deflection voltage to at least one end surface (32) of the plate-like electrodes in the beam traveling direction.
6 and 38, for example, the deflection voltage generated by the deflection voltage generator 40 propagates from the beam traveling direction input side end face 32A of the plate-shaped electrode 32 to the output side end face 32B at a propagation velocity substantially equal to the beam traveling velocity. It is something to do. In this manner, the voltage distribution in the width direction orthogonal to the beam traveling direction and the deflection direction of the deflection electrode can be eliminated. Therefore, even when a high-speed deflection voltage is applied to charged particles having a wide beam, all the charged particles simultaneously incident on the deflection electrode can be deflected to the same position on the output surface. It can prevent blurring. Also, since the speed of the deflection voltage in the beam traveling direction and the speed of the charged particles substantially match, the band can be increased.

【実施例】【Example】

以下、図面を参照して、本発明の実施例を詳細に説明
する。 本発明の第1実施例は、第1図に示す如く、真空中で
Z方向に進行する荷電粒子30を進行波電界によりY方向
に偏向するための進行波型偏向電極において、板状電極
の一方として、誘電体50と、該誘電体50を挾む2枚の板
状の電極板52、54からなる三層構造の板状電極32を備
え、該板状電極32のビーム側電極板52に、荷電粒子30が
入射する方向より、偏向電圧発生器40から、伝送線路56
並びに接続リード36を介して偏向電圧を印加し、外側電
極板54を伝送線路56及び58のグランド線と接続し、三層
構造の板状電極32が、あたかも伝送線路の構造になるよ
うにしたものである。 前記誘電体50としては、例えばLiTaO3を用いることが
できる。又、前記電極板52、54としては、導電性の高い
ものが良く、例えば銅板を用いることができる。あるい
は、誘電体50に、高導電性の材料、例えばAlを直接、真
空蒸着したり、Crを下地としてAuを真空蒸着して、三層
構造としても良い。 他方の板状電極34は、通常の平板とされ、接地されて
いる。 図において、56は、偏向電圧発生器40で発生した偏向
電圧を、電圧波型を歪ませることなく、板状電極32に印
加するための、同軸ケーブル、ストリツプライン等から
なる伝送線路、58は、前記電極板52の出力側端面を終端
抵抗60を抗して接地するための伝送線路であり、該伝送
線路56、58のグランドが、前記外側電極板54と接続され
ている。 以下、第1実施例の作用を説明する。 Z方向に進行する荷電粒子30は、板状電極32の電極板
52に印加される電圧により、Y方向に偏向される。この
場合、偏向電圧が通る電極板52は、接地された電極板54
及び対向する板状電極34の間を通ることなり、全体とし
てストリツプライン構造の伝送線路となつている。ここ
で、電極板52は板状であるため、偏向電圧はX方向には
分布せず、時間と共にZ方向にのみ移動する。電界の移
動速度は、誘電体50の誘電率、電極板52と54の間隔、及
び電極板52と対向する板状電極34の間隔により、荷電粒
子30の移動速度に合わせることができる。 従つて、偏向電圧は、荷電粒子30と略同じ速度で進行
し、同時に偏向電極に入射した、X方向に広がりのある
荷電粒子30は、同じ偏向電圧で偏向されるため、出力面
上でのY方向広がりを発生することはない。しかも、荷
電粒子30の速度と電界の移動速度とが合致した進行波型
の偏向電極になつているので、偏向電極の帯域が広く、
高速の偏向電圧(高周波電圧)を偏向電極に印加するこ
とができる。 電極板52の出力端では、入力端と同様に伝送線路58に
結ばれ、最終的に電圧波の反射が起きないように終端抵
抗60で終端されている。 なお、終端抵抗60を省略して、終端を開放することも
可能である。 次に、本発明の第2実施例を詳細に説明する。 この第2実施例は、第2図に示す如く、前記第1実施
例と同様の三層構造の板状電極32を対向させ、偏向電圧
を発生する2つの偏向電圧発生器40A、40Bを、伝送線路
で結ぶ必要がないくらい、電極板52の近くに設置して、
互いに等振幅で逆符号の電圧を発生させている。又、終
端も電極板52の出力端の直ぐ後で行つている。 他の点については、前記第1実施例と同様であるので
説明は省略する。 以下、第2実施例の作用を説明する。 対向する2枚の板状電極32の電極板52に、互いに等振
幅で逆符号の偏向電圧を印加すると、2枚の偏向電極の
中間点が仮想的な接地電位と見做せる。このとき、偏向
電極の間隔をD、誘電体50の厚さをd、比誘電率をεr
とすると、仮想接地面と上の電極板54で挾まれた電極板
52の等価比誘電率εr′は、端効果を無視すると次式で
求められる。 εr′=(d+D・εr/2)/(d+D/2) ………(1) ここで、(1)式で与えられる等価比誘電率εr′
は、(信号)電極板52と仮想接地面、(接地)電極板54
より構成されるストリツプライン構造の伝送線路の比誘
電率と看做すことができる。 一般に伝送線路上の電界の進行速度Vは次式で与えら
れる。 従つて、偏向電極上の伝送線路では、μ=μ、ε=
ε・εr′と考えることができるので、次式が成立す
る。 ここで、Cは光速である。 実用的な値として、D=5mm、d=1mmとし、誘電体50
としてεr=43のLiTaO3を用いると、εr′=31とな
り、V=5.38×107(m/秒)となる。これは、電子を8.2
kVで加速した場合の速度に相当する。従つて、このよう
な偏向電極は、オシロスコープ、ストリーク管等の電子
管の実用的な加速電圧で有効に作用することがわかる。 この第2実施例のように、三層構造の板状電極32を対
向させ、互いに等振幅で逆符号の電圧を印加する場合に
は、負荷粒子30に同じ電界をかけるのに必要な電圧の振
幅が、第1実施例の半分で済むという利点を有する。 次に、三層構造の板状電極32の他の実施例を説明す
る。以下の実施例の板状電極32は、前記第1実施例のよ
うに通常の板状電極34と組合わせて用いたり、前記第2
実施例のように該三層構造の板状電極32を2枚対向して
用いることができる。 本発明の第3実施例に係る板状電極32は、第3図に示
す如く、前記電極板52の入出力端において、電極板52の
幅が例えば5〜20mmと広く、一方、偏向電圧発生器40と
電極板52を結ぶ伝送線路56の信号線の幅が例えば0.5〜1
mmと細い場合に、両者を円滑に結べるように、伝送線路
56側が0.5〜1mmで、電極板52側が5〜20mmのテーパが付
いた略2等辺3角形状の接続板62を用いたものである。 この第3実施例においては、電極板54を接続板62に近
接して延長した構造とし、該矩形状の延長板64の端部を
伝送線路56、58のグランドと接続することができる。こ
れにより、伝送線路56、58と電極板52との大きさの違い
による、偏向電圧の反射をなくすことができる。 次に、本発明の第4実施例を詳細に説明する。 この第4実施例は、第4図に示す如く、Z方向に走行
する荷電粒子をY方向に偏向する進行波型偏向電極にお
いて、2つの電極板52、54を偏向方向にジグザグ状に屈
曲させ、両者が、その間隔を例えば一定に保ちながら、
+Z→+Y→+Z→−Y→+Z→+Yといつた、Z方向
に対しての電圧波の遅波構造を有するようにしたもので
ある。 この第4実施例においては、誘電体50の誘電率と構造
によつて決まる電界の速度を、更に遅くすることが可能
である。 次に、本発明の第5実施例を詳細に説明する。 この第5実施例は、第5図に示す如く、第4実施例と
同様の屈曲構造の板状電極において、外側電極板54の凹
部のギヤツプを零として、その外側面を平面状としたも
のである。 本実施例においては、一方の電極板54が平面状である
ため、形状精度を出し易い。 なお、前記説明においては、いずれも、ストリーク管
を例にとつて本発明が説明されていたが、本発明の適用
範囲はこれに限定されず、オシロスコープ等の他の電子
管や、電子管以外の一般の真空装置であつて、荷電粒子
ビームを電界により偏向したい場合にも、同様に適用で
きることは明らかである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, a first embodiment of the present invention is a traveling wave type deflection electrode for deflecting a charged particle 30 traveling in a Z direction in a vacuum in a Y direction by a traveling wave electric field. On the other hand, a plate electrode 32 having a three-layer structure composed of a dielectric 50 and two plate electrode plates 52 and 54 sandwiching the dielectric 50 is provided, and a beam side electrode plate 52 of the plate electrode 32 is provided. From the deflection voltage generator 40 to the transmission line 56 from the direction in which the charged particles 30 are incident.
A deflection voltage is applied via the connection lead 36, and the outer electrode plate 54 is connected to the ground lines of the transmission lines 56 and 58, so that the three-layer plate electrode 32 has a transmission line structure. Things. As the dielectric 50, for example, LiTaO 3 can be used. The electrode plates 52 and 54 preferably have high conductivity, and for example, a copper plate can be used. Alternatively, a highly conductive material, for example, Al may be directly vacuum-deposited on the dielectric 50, or Au may be vacuum-deposited with Cr as a base to form a three-layer structure. The other plate electrode 34 is a normal flat plate and is grounded. In the figure, 56 is a transmission line composed of a coaxial cable, a strip line, etc., for applying the deflection voltage generated by the deflection voltage generator 40 to the plate-shaped electrode 32 without distorting the voltage waveform. Is a transmission line for grounding the output-side end face of the electrode plate 52 against the terminating resistor 60, and the grounds of the transmission lines 56 and 58 are connected to the outer electrode plate 54. Hereinafter, the operation of the first embodiment will be described. The charged particle 30 traveling in the Z direction is an electrode plate of the plate electrode 32.
It is deflected in the Y direction by the voltage applied to 52. In this case, the electrode plate 52 through which the deflection voltage passes is a grounded electrode plate 54.
In addition, it passes between the opposing plate-like electrodes 34 to form a strip line transmission line as a whole. Here, since the electrode plate 52 is plate-shaped, the deflection voltage does not distribute in the X direction, but moves only in the Z direction with time. The moving speed of the electric field can be adjusted to the moving speed of the charged particles 30 by the dielectric constant of the dielectric 50, the interval between the electrode plates 52 and 54, and the interval between the plate electrodes 34 facing the electrode plate 52. Accordingly, the deflection voltage travels at substantially the same speed as the charged particles 30, and simultaneously the charged particles 30 that have entered the deflection electrode and spread in the X direction are deflected by the same deflection voltage, so that the deflection voltage on the output surface is reduced. There is no spread in the Y direction. In addition, since the traveling wave type deflection electrode is matched with the speed of the charged particles 30 and the moving speed of the electric field, the bandwidth of the deflection electrode is wide,
A high-speed deflection voltage (high-frequency voltage) can be applied to the deflection electrode. The output end of the electrode plate 52 is connected to the transmission line 58 similarly to the input end, and is terminated by a terminating resistor 60 so that the reflection of the voltage wave does not finally occur. It is also possible to omit the terminating resistor 60 and open the terminating end. Next, a second embodiment of the present invention will be described in detail. In this second embodiment, as shown in FIG. 2, two deflection voltage generators 40A and 40B for generating deflection voltages by facing plate electrodes 32 having the same three-layer structure as in the first embodiment are provided. Installed near the electrode plate 52 so that there is no need to connect with a transmission line,
Voltages of equal amplitude and opposite signs are generated. Also, the terminal ends immediately after the output end of the electrode plate 52. The other points are the same as those in the first embodiment, and the description is omitted. Hereinafter, the operation of the second embodiment will be described. When deflection voltages having the same amplitude and opposite signs are applied to the electrode plates 52 of the two opposing plate electrodes 32, an intermediate point between the two deflection electrodes can be regarded as a virtual ground potential. At this time, the distance between the deflection electrodes is D, the thickness of the dielectric 50 is d, and the relative permittivity is εr.
Then, the electrode plate sandwiched between the virtual ground plane and the upper electrode plate 54
The equivalent relative permittivity εr ′ of 52 is obtained by the following equation, ignoring the end effect. εr ′ = (d + D · εr / 2) / (d + D / 2) (1) where the equivalent relative permittivity εr ′ given by equation (1)
Are the (signal) electrode plate 52 and the virtual ground plane, and the (ground) electrode plate 54
It can be regarded as the relative dielectric constant of the transmission line having the strip line structure constituted by the above. Generally, the traveling speed V of the electric field on the transmission line is given by the following equation. Therefore, in the transmission line on the deflection electrode, μ = μ 0 , ε =
Since it can be considered as ε 0 · εr ′, the following equation holds. Here, C is the speed of light. As practical values, D = 5 mm, d = 1 mm, and dielectric 50
If LiTaO 3 with εr = 43 is used, εr ′ = 31 and V = 5.38 × 10 7 (m / sec). This makes the electron 8.2
It corresponds to the speed when accelerating at kV. Therefore, it can be seen that such a deflection electrode works effectively with a practical acceleration voltage of an electron tube such as an oscilloscope or a streak tube. As in the second embodiment, when the plate-like electrodes 32 having a three-layer structure are opposed to each other and voltages having the same amplitude and opposite signs are applied to each other, the voltage required to apply the same electric field to the load particles 30 is reduced. This has the advantage that the amplitude is only half that of the first embodiment. Next, another embodiment of the plate electrode 32 having a three-layer structure will be described. The plate-like electrode 32 of the following embodiment may be used in combination with a normal plate-like electrode 34 as in the first embodiment, or may be used in the second embodiment.
As in the embodiment, two plate electrodes 32 having the three-layer structure can be used to face each other. As shown in FIG. 3, the plate electrode 32 according to the third embodiment of the present invention has a wide electrode plate 52 at the input / output end of the electrode plate 52, for example, having a width of 5 to 20 mm. The width of the signal line of the transmission line 56 connecting the electrode 40 and the electrode plate 52 is, for example, 0.5 to 1
When the transmission line is as thin as
An approximately isosceles triangular connection plate 62 having a taper of 0.5 to 1 mm on the 56 side and a taper of 5 to 20 mm on the electrode plate 52 side is used. In the third embodiment, the electrode plate 54 has a structure extended near the connection plate 62, and the end of the rectangular extension plate 64 can be connected to the ground of the transmission lines 56 and 58. Thereby, reflection of the deflection voltage due to a difference in size between the transmission lines 56 and 58 and the electrode plate 52 can be eliminated. Next, a fourth embodiment of the present invention will be described in detail. In the fourth embodiment, as shown in FIG. 4, in a traveling wave type deflection electrode for deflecting charged particles traveling in the Z direction in the Y direction, the two electrode plates 52 and 54 are bent in a zigzag manner in the deflection direction. , While keeping the interval constant, for example,
It has a slow wave structure of the voltage wave in the Z direction, such as + Z → + Y → + Z → −Y → + Z → + Y. In the fourth embodiment, the speed of the electric field determined by the dielectric constant and the structure of the dielectric 50 can be further reduced. Next, a fifth embodiment of the present invention will be described in detail. In the fifth embodiment, as shown in FIG. 5, a plate electrode having a bent structure similar to that of the fourth embodiment, wherein the gap of the concave portion of the outer electrode plate 54 is set to zero, and the outer surface thereof is made flat. It is. In the present embodiment, since one of the electrode plates 54 has a planar shape, the shape accuracy is easily obtained. In the above description, the present invention has been described using a streak tube as an example, but the scope of the present invention is not limited to this, and other electronic tubes such as an oscilloscope and general electronic tubes other than the electronic tube are used. It is apparent that the present invention can be similarly applied to the case where the charged particle beam is to be deflected by an electric field.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明に係る進行波型偏向電極の第1実施例
の構成を示す断面図、 第2図は、本発明の第2実施例の構成を示す断面図、 第3図は、本発明の第3実施例の構成を示す斜視図、 第4図は、本発明の第4実施例の構成を示す斜視図、 第5図は、本発明の第5実施例の構成を示す斜視図、 第6図は、従来技術の問題点を説明するための、ストリ
ーク管の縦断面図、 第7図は、第6図のVII−VII線に沿う横断面図、 第8図は、偏向電極に印加される電圧の例を示す線図で
ある。 30……荷電粒子、 32、34……板状電極、 32A……入力側端面、 32B……出力側端面、 36、38……接続リード、 40、40A、40B……偏向電圧発生器、 Z……ビーム走行方向、 Y……偏向方向、 X……幅方向、 50、50A、50B、50C……誘電体、 52、54……電極板、 56、58……伝送線路、 62……接続板。
FIG. 1 is a cross-sectional view showing a configuration of a first embodiment of a traveling wave type deflection electrode according to the present invention, FIG. 2 is a cross-sectional view showing a configuration of a second embodiment of the present invention, FIG. FIG. 4 is a perspective view showing a configuration of a third embodiment of the present invention. FIG. 4 is a perspective view showing a configuration of a fourth embodiment of the present invention. FIG. 5 is a perspective view showing a configuration of a fifth embodiment of the present invention. Fig. 6, Fig. 6 is a longitudinal sectional view of a streak tube for explaining the problems of the prior art, Fig. 7 is a transverse sectional view taken along the line VII-VII of Fig. 6, and Fig. FIG. 3 is a diagram illustrating an example of a voltage applied to an electrode. 30: charged particles, 32, 34: plate electrode, 32A: input end face, 32B: output end face, 36, 38: connection lead, 40, 40A, 40B ... deflection voltage generator, Z ... Beam running direction, Y ... Deflection direction, X ... Width direction, 50, 50A, 50B, 50C ... Dielectric, 52, 54 ... Electrode plate, 56, 58 ... Transmission line, 62 ... Connection Board.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−148247(JP,A) 特開 昭58−220341(JP,A) 特公 昭45−9569(JP,B1) (58)調査した分野(Int.Cl.6,DB名) H01J 31/50 H01J 29/74 H01J 23/26 - 23/34──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-59-148247 (JP, A) JP-A-58-220341 (JP, A) JP-B-45-9569 (JP, B1) (58) Field (Int.Cl. 6 , DB name) H01J 31/50 H01J 29/74 H01J 23/26-23/34

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空中で荷電粒子ビームを進行波電界によ
り偏向するための進行波型偏向電極において、 ビーム走行方向及び偏向方向と直交する板状電極の幅方
向に一様な構成を有し、且つ、該板状電極の略全幅にわ
たつてビームの走行方向に繋つて形成された、対向する
1対の板状電極を備え、 該板状電極の少くとも一方が、誘電体と、該誘電体を挾
む2枚の電極板からなる三層構造とされ、 その外側電極板が接地されており、 ビーム側電極板のビーム走行方向端面に偏向電圧を印加
するための接続リードが備えられ、 偏向電圧が、ビーム走行速度と略等しい伝播速度で、前
記板状電極のビーム走行方向入力側端面から出力側端面
に伝播するようにしたことを特徴とする進行波型偏向電
極。
1. A traveling-wave type deflection electrode for deflecting a charged particle beam in a vacuum by a traveling-wave electric field, wherein the traveling-wave-type deflection electrode has a uniform configuration in a width direction of a plate-like electrode orthogonal to a beam traveling direction and a deflection direction. And a pair of opposed plate-shaped electrodes formed in the traveling direction of the beam over substantially the entire width of the plate-shaped electrodes, and at least one of the plate-shaped electrodes includes a dielectric and It has a three-layer structure consisting of two electrode plates sandwiching a dielectric, its outer electrode plate is grounded, and a connection lead for applying a deflection voltage to the end surface of the beam side electrode plate in the beam running direction is provided. A traveling wave type deflection electrode wherein a deflection voltage propagates from an input end face to an output end face in a beam traveling direction of the plate-like electrode at a propagation velocity substantially equal to a beam traveling velocity.
【請求項2】請求項1に記載の進行波型偏向電極におい
て、前記板状電極の両方が前記三層構造とされ、両者
に、互いに等振幅で逆符号の偏向電圧が印加されている
ことを特徴とする進行波型偏向電極。
2. The traveling-wave deflection electrode according to claim 1, wherein both of said plate-like electrodes have said three-layer structure, and a deflection voltage of the same amplitude and opposite sign is applied to both. A traveling wave type deflection electrode characterized by the above-mentioned.
【請求項3】請求項1に記載の進行波型偏向電極におい
て、前記板状電極と接続リードの接続部が、接続リード
の接続点を頂点とし、板状電極の端面を底辺とする略2
等辺3角形状とされていることを特徴とする進行波型偏
向電極。
3. The traveling-wave deflection electrode according to claim 1, wherein the connecting portion between the plate-like electrode and the connection lead has a connection point of the connection lead as an apex and an end surface of the plate-like electrode as a bottom.
A traveling wave type deflection electrode having an equilateral triangular shape.
【請求項4】請求項1に記載の進行波型偏向電極におい
て、前記板状電極が偏向方向にジグザグ状に屈曲されて
いることを特徴とする進行波型偏向電極。
4. The traveling wave type deflection electrode according to claim 1, wherein said plate-like electrode is bent in a zigzag shape in a deflection direction.
JP5167989A 1989-03-03 1989-03-03 Traveling wave type deflection electrode Expired - Fee Related JP2817936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5167989A JP2817936B2 (en) 1989-03-03 1989-03-03 Traveling wave type deflection electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5167989A JP2817936B2 (en) 1989-03-03 1989-03-03 Traveling wave type deflection electrode

Publications (2)

Publication Number Publication Date
JPH02230638A JPH02230638A (en) 1990-09-13
JP2817936B2 true JP2817936B2 (en) 1998-10-30

Family

ID=12893571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5167989A Expired - Fee Related JP2817936B2 (en) 1989-03-03 1989-03-03 Traveling wave type deflection electrode

Country Status (1)

Country Link
JP (1) JP2817936B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065376A1 (en) * 2011-10-31 2013-05-10 浜松ホトニクス株式会社 Streak tube
CN105513927A (en) * 2015-12-30 2016-04-20 中国电子科技集团公司第十二研究所 Cosine gate loading folded waveguide slow wave structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065376A1 (en) * 2011-10-31 2013-05-10 浜松ホトニクス株式会社 Streak tube
US9368315B2 (en) 2011-10-31 2016-06-14 Hamamatsu Photonics K.K. Streak tube with connection lead to reduce voltage propagation differences
CN105513927A (en) * 2015-12-30 2016-04-20 中国电子科技集团公司第十二研究所 Cosine gate loading folded waveguide slow wave structure

Also Published As

Publication number Publication date
JPH02230638A (en) 1990-09-13

Similar Documents

Publication Publication Date Title
JP2000512771A (en) Integrated light modulator with segmented electrodes and tilted waveguide
US3504222A (en) Slow-wave circuit including meander line and shielding therefor
US2361998A (en) Electrical apparatus
JP2817936B2 (en) Traveling wave type deflection electrode
WO1997037278A1 (en) Linearized optic modulator with segmented electrodes
JPH11150055A (en) Blanking device for plotting by charged particle beam
US3174070A (en) Electron beam deflection structure with compensation for beam transit time
JP2000507717A (en) Integrated light modulator with electrode shape with small capacitance
US4423354A (en) Method and apparatus for controlling electrode voltage in electron beam tubes
US4227233A (en) Corona discharge device for electrographic apparatus
NL8303575A (en) RUNNING WAVE BALANCE ELECTRON BUNDLE DEFLECTION WITH STITCH COMPENSATION.
KR940002142B1 (en) Cathode-ray tube
WO1994016338A1 (en) High frequency scan converter
US4390807A (en) Surface acoustic wave device
SU1112433A1 (en) Deflection yoke
JPH02239554A (en) Streak tube
JP3409799B2 (en) Traveling wave deflector
EP0086004B1 (en) Display tube
JPH07104098A (en) Charged particle beam deflector
US4100406A (en) Photoelectric shutter tube with microduct wafer incorporated in a wave propagation line which is integrated in said shutter tube
US3639802A (en) Microwave signal delay apparatus
JP3358235B2 (en) Scanning voltage waveform shaping method of ion beam
US3937997A (en) Cathode-ray tube signal generator having resistance configurated electron receptor
NL192648C (en) Running wave deflection system for a cathode ray tube and cathode ray tube provided with a running wave deflection system.
US6184615B1 (en) Traveling wave deflection system having helical conductors coiled on insulating cores of a specifiable specific dielectric constant

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070821

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080821

LAPS Cancellation because of no payment of annual fees