JP2816439B2 - Manufacturing method of functionally graded material - Google Patents
Manufacturing method of functionally graded materialInfo
- Publication number
- JP2816439B2 JP2816439B2 JP1039583A JP3958389A JP2816439B2 JP 2816439 B2 JP2816439 B2 JP 2816439B2 JP 1039583 A JP1039583 A JP 1039583A JP 3958389 A JP3958389 A JP 3958389A JP 2816439 B2 JP2816439 B2 JP 2816439B2
- Authority
- JP
- Japan
- Prior art keywords
- functionally graded
- materials
- graded material
- joining
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B18/00—Layered products essentially comprising ceramics, e.g. refractory products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/345—Refractory metal oxides
- C04B2237/348—Zirconia, hafnia, zirconates or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/58—Forming a gradient in composition or in properties across the laminate or the joined articles
- C04B2237/582—Forming a gradient in composition or in properties across the laminate or the joined articles by joining layers or articles of the same composition but having different additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/84—Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Laminated Bodies (AREA)
- Ceramic Products (AREA)
Description
【発明の詳細な説明】 a.産業上の利用分野 本発明は傾斜機能材料(Functionally Gradient Mate
rial)の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION a. Industrial Application Field The present invention relates to a functionally gradient material (Functionally Gradient Mate).
rial).
b.従来の技術 近年、宇宙往還機、たとえばスペースシャトルによる
数次にわたる宇宙飛行がなされている。このような飛行
体には飛行中に光熱・高圧力に曝されるため耐熱性と機
械的強度との両機能を備えた材料が必要となる。現実に
は耐熱性材料のシリカタイルと機械的強度の高い金属材
料などの特定機能をそれぞれ備えた均質材料の併用によ
っているものと思われる。b. Prior Art In recent years, several space flights have been made by space shuttles, for example, space shuttles. Since such a flying object is exposed to light heat and high pressure during flight, a material having both functions of heat resistance and mechanical strength is required. In reality, it is thought that a combination of a heat-resistant material such as silica tile and a homogeneous material having specific functions such as a metal material having high mechanical strength is used in combination.
本発明はこのような均質材料とは異なり、二つの異な
った機能を備えた材料、すなわち一つの材料に異なる機
能を傾斜した状態で備えた、いわゆる傾斜機能材料に関
するものである。The present invention relates to a so-called functionally graded material, which is different from such a homogeneous material and has two different functions, that is, a material having different functions in an inclined state.
このような傾斜機能材料に関する従来技術として、気
相法(PVD,CVD),粒子配列法,プラズマ溶射積層法,
自己発熱反応法などによる製造方法がある。また、傾斜
機能材料の製造方法の近年の開発技術として特願昭60−
297042号,特願昭61−187370号がある。Conventional technologies relating to such functionally graded materials include a vapor phase method (PVD, CVD), a particle arrangement method, a plasma spray lamination method,
There is a production method by a self-heating reaction method or the like. In addition, as a recent development technology of a method for manufacturing a functionally graded material, Japanese Patent Application No.
No. 297042 and Japanese Patent Application No. 61-187370.
c.発明が解決しようとする課題 前記諸方法において、気相法による方法は、成膜速度
が1mm/h程度で極めて遅く、特にPVD法(物理的方法)は
単純な物質系の膜の合成のみに限定されてしまう。c. Problems to be Solved by the Invention Among the above methods, the vapor phase method is extremely slow at a film forming rate of about 1 mm / h, and in particular, the PVD method (physical method) is a method of synthesizing a simple substance-based film. It is limited to only.
また、粒子配列法では、組成を任意に変えて原料粉を
充填配列することが困難であるとともに、易焼結性のセ
ラミックス粉の開発や、新らしい焼結技術の開発が必要
である。In addition, in the particle arrangement method, it is difficult to arrange the raw material powder by arbitrarily changing the composition, and it is necessary to develop an easily sinterable ceramic powder and a new sintering technique.
プラズマ溶射積層法では異種材料を正確に同一位置に
溶射することが困難であり、形成された層の組成の変動
は避けられないという欠点がある。In the plasma spray lamination method, it is difficult to spray different materials at exactly the same position, and there is a disadvantage that the composition of the formed layer is inevitable.
さらに自己発熱反応法は、たとえば第3図に示すよう
に原料粉末を装置aに階段状b,c,d,e等々のように充填
してからp点で着火し、自己発熱反応をさせながら加圧
合成するものであり、このような方法では、緻密・複雑
なもの,大型形状のものは製作できない。Further, in the self-exothermic reaction method, for example, as shown in FIG. 3, a raw material powder is charged into an apparatus a in a stepwise manner like b, c, d, e, etc., and then ignited at a point p to cause a self-exothermic reaction. Pressure synthesis is performed, and it is not possible to manufacture a dense, complicated, or large-sized product by such a method.
本発明は前記のような従来技術に代り、超塑性接合を
利用することにより接合と成形を同時におこない、大
型,複雑形状のものも製造しうる傾斜機能材料の製造方
法を提供することを目的とする。An object of the present invention is to provide a method for producing a functionally graded material capable of producing a large-sized, complicated-shaped one by simultaneously performing joining and forming by utilizing superplastic joining instead of the conventional technique as described above. I do.
d.課題を解決するための手段 前記目的に添い、本発明は、微細結晶粒セラミックス
と微細結晶粒金属との混合組成を傾斜させた複数の材料
を焼結することにより、所定温度で超塑性を発現する焼
結体を複数作製し、これらの焼結体を混合組成の傾斜順
に重層させ、超塑性発現温度域に加熱して加圧し、一体
に接合・成形することによって前記課題を解決した。d. Means for Solving the Problems According to the above object, the present invention provides a method of superplasticizing at a predetermined temperature by sintering a plurality of materials having a mixed composition of fine-grained ceramic and fine-grained metal. The above-mentioned problem was solved by preparing a plurality of sintered bodies exhibiting the above-mentioned, stacking these sintered bodies in the order of the gradient of the mixed composition, heating and pressurizing to a superplastic expression temperature range, and joining and molding integrally. .
以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明は粒径が約1μm以下のセラミックス、あるい
は粒径が約10μm以下の金属の組成からなる微細結晶粒
二相混合組織をもつ材料を用いる。そして、これら組成
を連続的,不連続的に傾斜させてなる材料を設定し、こ
れらを中間層とし、あるいは傾斜順に重層せしめたあ
と、これらを超塑性温度で加圧して接合することによ
り、母材と同等の強度をもつ傾斜機能材料をうるもので
ある。The present invention uses a ceramic having a grain size of about 1 μm or less, or a material having a two-phase mixed structure of fine crystal grains composed of a metal having a grain size of about 10 μm or less. Then, materials having these compositions inclined continuously or discontinuously are set, and these are used as intermediate layers or layered in the order of inclination, and then pressurized at superplastic temperature and joined to form a matrix. A functionally graded material having the same strength as the material is obtained.
すなわち、所定温度で超塑性が現われる材料、たとえ
ばイットリアを3mol%固溶した部分安定化ジルコニアと
アルミナとを混合し、その組成割合を傾斜させたもの
を、このジルコニアとアルミナに対する中間層として、
あるいは多層に重ねて介設し、これを超塑性温度で加圧
接合し、両材料のもつ機能を備えた材料を製造するもの
である。That is, a material in which superplasticity appears at a predetermined temperature, for example, a partially stabilized zirconia obtained by dissolving 3 mol% of yttria and alumina, and a composition having a gradient thereof are used as an intermediate layer for the zirconia and alumina.
Alternatively, a material having the functions of both materials is manufactured by interposing a plurality of layers and pressing them at a superplastic temperature.
これによって一方の側から他方の側にかけて材料のも
つ機能が徐々に傾斜し、両側において互に異なる機能を
備えてなる一体の傾斜機能材料がえられる。As a result, the function of the material is gradually inclined from one side to the other side, and an integrated functionally graded material having different functions on both sides is obtained.
e.実施例 第1図に示すようにA〜Fの超塑性材料を図の順序で
重ねる。こゝで の各組成からなるものである。e. Example As shown in FIG. 1, superplastic materials A to F are stacked in the order shown in the drawing. Here Of each composition.
なお、材料A,B,C,D,Eは1500℃にて1時間、熱間静水
圧プレス(HIP)に焼結して製作する。また材料Fは130
0℃で1時間、常圧焼結したものである。これらは、い
ずれも粒径が1μm以下で、高温で100%以上の伸びを
示す超塑性材料である。The materials A, B, C, D and E are manufactured by sintering at 1500 ° C. for 1 hour in a hot isostatic press (HIP). Material F is 130
It was sintered at 0 ° C for 1 hour under normal pressure. These are superplastic materials each having a particle size of 1 μm or less and exhibiting an elongation of 100% or more at high temperatures.
これら材料A〜Fの互の接触面とダイヤモンドホイー
ルで表面粗さRmax2μm程度に研削し、第1図に示す順
序で層状に重ね、約1500℃,12.5MPaの接合条件にて加熱
し、加圧して一体の材料をえた。えられた材料は約50kg
/mm2の曲げ強度がえられた。These materials A to F are ground to a surface roughness Rmax of about 2 μm with a diamond wheel and the contact surfaces of the materials A to F, layered in the order shown in FIG. 1, and heated and pressed under joining conditions of about 1500 ° C. and 12.5 MPa. I got one piece of material. Approximately 50 kg of material obtained
/ mm 2 bending strength was obtained.
第2図は他の実施例で、同図(a)に示すように山状
に形成した前記組成の超塑性材料を多数個重ね合せ、前
記条件で加熱・加圧することによって同図(b)に示す
形状を備えた一体の製品がえられた。FIG. 2 shows another embodiment, in which a number of superplastic materials having the above-mentioned composition formed in a mountain shape are superimposed on each other as shown in FIG. An integrated product having the shape shown in FIG.
f.発明の効果 本発明に係る傾斜機能材料の製造方法を超塑性セラミ
ックス焼結体に適用することにより、従来は不可能であ
ったセラミックス焼結体同士の接合が可能になり、その
接合強度及び接合体自体の強度も非常に大きいものとな
る。また、セラミックス焼結体の接合面を研磨すれば、
各セラミックス焼結体の厚さが一定となり、その接合面
が平面となる。この状態で各セラミックス焼結体を重層
させて接合させれば、寸法精度の良好な傾斜機能材料を
得ることができる。さらに、セラミックス焼結体の加圧
と加熱とを同時に行っているため、工程の省略による処
理時間の短縮、及びコストダウンを図ることができる。
この超塑性接合により接合界面は母材と同等の強度をも
たせることができるので、構造部品としても利用可能で
ある。なお、本発明によれば、大型・複雑形状の傾斜機
能材料を製造することができ、製造コストも比較的かか
らず、耐熱性、耐摩耗性、耐腐食性が要求される機械分
野、耐放射性が要求される原子力分野、電気的光学的特
性が要求されるエレクトロニクスやオプトエレクトロニ
クス分野、生体適合性が要求される医学分野などに広く
利用できる。f. Effect of the Invention By applying the method for producing a functionally graded material according to the present invention to a superplastic ceramic sintered body, it becomes possible to join ceramic sintered bodies, which was not possible conventionally, and the joining strength Also, the strength of the joined body itself is very large. Also, if the joining surface of the ceramic sintered body is polished,
The thickness of each ceramic sintered body becomes constant, and the joining surface becomes flat. In this state, if the respective ceramic sintered bodies are layered and joined, a functionally graded material with good dimensional accuracy can be obtained. Further, since the pressing and heating of the ceramic sintered body are performed simultaneously, the processing time can be reduced by omitting the steps, and the cost can be reduced.
The superplastic joining allows the joining interface to have the same strength as that of the base material, so that it can be used as a structural part. According to the present invention, functionally graded materials having large and complex shapes can be manufactured, the manufacturing cost is relatively low, and heat resistance, abrasion resistance, and corrosion resistance are required in the mechanical field. It can be widely used in the nuclear field where radioactivity is required, the electronics and optoelectronic fields where electrical and optical properties are required, and the medical field where biocompatibility is required.
第1図は本発明に係る傾斜機能材料の製造方法の一実施
例を説明する図、第2図(a),(b)は同じく他の実
施例の説明図、第3図は従来法の一例を示す説明図であ
る。FIG. 1 is a view for explaining an embodiment of the method for producing a functionally gradient material according to the present invention, FIGS. 2 (a) and 2 (b) are explanatory views of another embodiment, and FIG. It is explanatory drawing which shows an example.
Claims (1)
との混合組成を傾斜させた複数の材料を焼結することに
より、所定温度で超塑性を発現する焼結体を複数作製
し、これらの焼結体を混合組成の傾斜順に重層させ、超
塑性発現温度域に加熱して加圧し、一体に接合・成形す
ることを特徴とする傾斜機能材料の製造方法。1. A plurality of sintered bodies exhibiting superplasticity at a predetermined temperature are produced by sintering a plurality of materials having a mixed composition of fine-grained ceramics and fine-grained metal incline. A method for producing a functionally graded material, comprising: laminating sintered bodies in the order of the gradient of the mixed composition, heating and pressing to a superplasticity temperature range, and joining and forming integrally.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1039583A JP2816439B2 (en) | 1989-02-20 | 1989-02-20 | Manufacturing method of functionally graded material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1039583A JP2816439B2 (en) | 1989-02-20 | 1989-02-20 | Manufacturing method of functionally graded material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02217246A JPH02217246A (en) | 1990-08-30 |
JP2816439B2 true JP2816439B2 (en) | 1998-10-27 |
Family
ID=12557115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1039583A Expired - Lifetime JP2816439B2 (en) | 1989-02-20 | 1989-02-20 | Manufacturing method of functionally graded material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2816439B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010094964A (en) * | 2008-10-16 | 2010-04-30 | Korea Electrotechnology Research Inst | Method of manufacturing functional material by slice-laminating pressing method, and functional material manufactured by the manufacturing method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04210448A (en) * | 1990-11-30 | 1992-07-31 | Agency Of Ind Science & Technol | Functionally gradient material using zn-22al superplastic powder and method for forming the same |
JP2575286B2 (en) * | 1994-02-04 | 1997-01-22 | 川崎重工業株式会社 | Heat shielding material |
US5455000A (en) * | 1994-07-01 | 1995-10-03 | Massachusetts Institute Of Technology | Method for preparation of a functionally gradient material |
JP4540221B2 (en) * | 2000-04-21 | 2010-09-08 | 日本碍子株式会社 | Laminate, corrosion resistant member and halogen gas plasma member |
DE102008046336A1 (en) * | 2008-09-09 | 2010-03-11 | Osram Gesellschaft mit beschränkter Haftung | LTCC layer stack |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6270041A (en) * | 1985-09-25 | 1987-03-31 | 三菱重工業株式会社 | Manufacture of compounded ceramics |
-
1989
- 1989-02-20 JP JP1039583A patent/JP2816439B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010094964A (en) * | 2008-10-16 | 2010-04-30 | Korea Electrotechnology Research Inst | Method of manufacturing functional material by slice-laminating pressing method, and functional material manufactured by the manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH02217246A (en) | 1990-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tokita | Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization | |
US5735985A (en) | Method for micromolding ceramic structures | |
Jamaludin et al. | A review on the fabrication techniques of functionally graded ceramic-metallic materials in advanced composites | |
CN107107187A (en) | The increasing material manufacturing of the product containing beryllium | |
CN100469737C (en) | Method for producing ceramic optical elements | |
CN104628393B (en) | A kind of preparation method of high-performance ceramic | |
US8298975B2 (en) | Sintered compact, process for production thereof, and optical element | |
US8444281B2 (en) | Optical device | |
JP2816439B2 (en) | Manufacturing method of functionally graded material | |
JP6148845B2 (en) | Method for manufacturing electrode-embedded ceramic sintered body | |
JP2013014471A (en) | Translucent ceramics joint, and method for manufacturing the same | |
JPH0328348A (en) | Ceramic/metal composite | |
Kakisawa et al. | Dense P/M component produced by solid freeform fabrication (SFF) | |
Liu et al. | Metal and ceramic components made via CAM-LEM technology | |
Zhang et al. | Manufacture of Φ1. 2m reaction bonded silicon carbide mirror blank | |
JP7116234B1 (en) | Manufacturing method of composite ceramics | |
JPH1179845A (en) | Production of silicon carbide having high toughness | |
JPH07310103A (en) | Production of functionally gradient material by powder metallurgy | |
JPH09143512A (en) | Production of multilayer sintered compact | |
JPS61186405A (en) | Production of composite material | |
JPH0891949A (en) | Production of ceramic laminate | |
Mistler | TAPE CASTING: AN ENABLING CERAMIC FABRICATION TECHNOLOGY | |
JPH03141168A (en) | Bonding of ceramics | |
JP2023518438A (en) | Multilayer composite ceramic plate and its manufacturing method | |
JPS6029674B2 (en) | Manufacturing method of high-density sintered body |