JP2812324B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2812324B2
JP2812324B2 JP9074164A JP7416497A JP2812324B2 JP 2812324 B2 JP2812324 B2 JP 2812324B2 JP 9074164 A JP9074164 A JP 9074164A JP 7416497 A JP7416497 A JP 7416497A JP 2812324 B2 JP2812324 B2 JP 2812324B2
Authority
JP
Japan
Prior art keywords
battery
carbonaceous material
charge
aqueous electrolyte
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9074164A
Other languages
Japanese (ja)
Other versions
JPH103948A (en
Inventor
美緒 西
秀人 東
篤雄 小丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9074164A priority Critical patent/JP2812324B2/en
Publication of JPH103948A publication Critical patent/JPH103948A/en
Application granted granted Critical
Publication of JP2812324B2 publication Critical patent/JP2812324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関するものであり、特にそのサイクル特性の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in its cycle characteristics.

【0002】[0002]

【従来の技術】電子機器の小型化に伴い、電池の高エネ
ルギー密度化が要求されており、かかる要求に応えるべ
く,いわゆるリチウム電池の如き種々の非水電解液電池
が提案されている。
2. Description of the Related Art Along with the miniaturization of electronic equipment, a higher energy density of a battery is required, and various non-aqueous electrolyte batteries such as a so-called lithium battery have been proposed to meet the demand.

【0003】しかしながら、例えば負極にリチウム金属
を使用した電池では、特に二次電池とする場合に次のよ
うな欠点を有している。すなわち、 充電に通常5〜10時間を必要とし、急速充電性に劣
ること、 サイクル寿命が短いこと、 等である。
[0003] However, for example, a battery using a lithium metal for the negative electrode has the following drawbacks, especially when a secondary battery is used. That is, charging usually requires 5 to 10 hours, which is inferior in quick chargeability, short in cycle life, and the like.

【0004】これらは、いずれもリチウム金属自身に起
因するもので、充放電の繰り返しに伴って起こるリチウ
ム形態の変化,デンドライト状リチウムの形成,リチウ
ムの非可逆的変化等がその原因とされている。
These are all caused by lithium metal itself, and are caused by changes in lithium form, formation of dendritic lithium, irreversible change of lithium, etc. which occur with repeated charge and discharge. .

【0005】そこで、これらの問題を解決する一手法と
して、負極に炭素質材料を用いることが提案されてい
る。これは、リチウムの炭素層間化合物が電気化学的に
容易に形成できることを利用したものであり、例えば、
炭素を負極として非水電解液中で充電を行うと、正極中
のリチウムは電気化学的に負極炭素の層間にドープされ
る。そして、リチウムをドープした炭素は、リチウム電
極として作用し、放電に伴ってリチウムは炭素層間から
脱ドープされ、正極中に戻る。
[0005] In order to solve these problems, it has been proposed to use a carbonaceous material for the negative electrode. This is based on the fact that the lithium carbon intercalation compound can be easily formed electrochemically, for example,
When charging is performed in a non-aqueous electrolyte using carbon as a negative electrode, lithium in the positive electrode is electrochemically doped between layers of the negative electrode carbon. Then, the lithium-doped carbon acts as a lithium electrode, and the lithium is undoped from the carbon layer upon discharge, and returns to the positive electrode.

【0006】[0006]

【発明が解決しようとする課題】ところで、この種の電
池の能力は、負極炭素質材料へのリチウムのドープ量等
によって決まり、従来の炭素質材料を用いた電池では、
自ずと限界があるのが実情である。
The performance of this type of battery is determined by the amount of lithium doped in the negative electrode carbonaceous material and the like.
The fact is that there is a limit.

【0007】そこで本発明は、前述の従来の実情に鑑み
て提案されたものであって、従来のものに比べサイクル
寿命特性に優れ、しかも放電容量も大きな非水電解液電
池を提供することを目的とする。
Accordingly, the present invention has been proposed in view of the above-mentioned conventional circumstances, and has as its object to provide a non-aqueous electrolyte battery having excellent cycle life characteristics and a large discharge capacity as compared with the conventional one. Aim.

【0008】[0008]

【課題を解決するための手段】本発明は、上述の目的を
達成せんものと長期に亘り研究を重ねた結果完成された
ものであって、炭素質材料よりなる負極と、Liを含ん
だ正極と、非水電解液とを有してなり、上記炭素質材料
は、(002)面の面間隔が3.70Å以上,真密度が
1.70g/cm3 未満であり、且つ示差熱分析で700
℃以上に発熱ピークを有しない炭素質材料であり、上記
正極は、負極炭素質材料1g当たり250mAH以上の
充放電容量相当分のLiを含み、充電量を350mAH
/gとし充放電を50サイクル繰り返した後の下記式で
示される利用率が95%以上であることを特徴とするも
のである。
SUMMARY OF THE INVENTION The present invention has been completed as a result of long-term studies to achieve the above-mentioned objects, and comprises a negative electrode made of a carbonaceous material and a positive electrode containing Li. And a non-aqueous electrolyte. The carbonaceous material has a (002) plane spacing of 3.70 ° or more, a true density of less than 1.70 g / cm 3 , and a differential thermal analysis. 700
The positive electrode contains Li corresponding to a charge / discharge capacity of 250 mAH or more per gram of the negative carbonaceous material, and has a charge amount of 350 mAH.
/ G and the charge / discharge cycle is repeated 50 times, and the utilization rate represented by the following equation is 95% or more.

【0009】 利用率=(放電量/充電量)×100(%) このように、充電量350mAH/gという高充電量域に
おいて、50サイクル後の利用率が95%を越える非水
電解液二次電池は、報告された例がない。
Utilization rate = (discharge amount / charge amount) × 100 (%) As described above, in the high charge amount region of 350 mAH / g, the non-aqueous electrolyte solution whose utilization ratio after 50 cycles exceeds 95%. Secondary batteries have not been reported.

【0010】[0010]

【発明の実施の形態】本発明の電池は、先にも述べたよ
うに、炭素質材料よりなる負極と、Liを含んだ正極
と、非水電解液とを有してなり、充電量を350mAH/
gとし充放電を50サイクル繰り返した後の下記式で示
される利用率が95%以上であることを特徴とするもの
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, the battery of the present invention has a negative electrode made of a carbonaceous material, a positive electrode containing Li, and a non-aqueous electrolyte, and has a reduced charge amount. 350mAH /
g, and the utilization rate represented by the following equation after repeating charge / discharge for 50 cycles is 95% or more.

【0011】 利用率=(放電量/充電量)×100(%) 上記のような特性は、例えば炭素質材料を選択すること
で得られ、例えば、負極に(002)面の面間隔が3.
70Å以上,真密度が1.70g/cm3 未満であり、且
つ示差熱分析で700℃以上に発熱ピークを有しない炭
素質材料を用いればよい。
Utilization rate = (discharge amount / charge amount) × 100 (%) The above characteristics can be obtained by selecting, for example, a carbonaceous material. .
A carbonaceous material having a true density of 70 ° or more, a true density of less than 1.70 g / cm 3 , and having no exothermic peak at 700 ° C. or more in differential thermal analysis may be used.

【0012】負極に使用される炭素質材料の(002)
面の面間隔が3.70Å未満であると、放電容量は減少
し、サイクル寿命も従来のものと同程度にまで劣化す
る。
(002) of the carbonaceous material used for the negative electrode
If the plane spacing is less than 3.70 °, the discharge capacity decreases and the cycle life deteriorates to the same extent as the conventional one.

【0013】同様に、真密度が1.70g/cm3 を越え
ても、放電容量の劣化やサイクル寿命の劣化が見られ
る。
Similarly, even when the true density exceeds 1.70 g / cm 3 , the discharge capacity and the cycle life deteriorate.

【0014】また、種々の実験を重ねたところ、示差熱
分析の結果が電池特性に大きく影響し、700℃以上に
発熱ピークを有しないことが必要であることがわかっ
た。
Further, as a result of repeating various experiments, it was found that the result of the differential thermal analysis had a large effect on the battery characteristics, and that it was necessary to have no exothermic peak at 700 ° C. or higher.

【0015】かかる特性を有する炭素質材料としては、
フラン樹脂を1500℃未満で焼成して炭素化したもの
が挙げられる。フラン樹脂(例えばフルフリルアルコー
ルの重合体)を原料に用いても、焼成の際の温度を15
00℃以上(例えば1500℃)とすると、示差熱分析
において700℃以上(743℃)に発熱ピークが現
れ、(002)面の面間隔も3.69Åとなり、良好な
炭素質材料は得られない。
As a carbonaceous material having such characteristics,
One obtained by calcining a furan resin at a temperature of less than 1500 ° C. and carbonizing the same. Even if a furan resin (for example, a polymer of furfuryl alcohol) is used as a raw material, the temperature at the time of calcination is set to 15
When the temperature is higher than 00 ° C. (for example, 1500 ° C.), an exothermic peak appears at 700 ° C. or higher (743 ° C.) in the differential thermal analysis, and the spacing between (002) planes is 3.69 °, so that a good carbonaceous material cannot be obtained. .

【0016】出発原料となるフラン樹脂は、フルフリル
アルコールあるいはフルフラールのホモポリマー又はコ
ポリマーよりなるもので、具体的にはフルフラール+フ
ェノール、フルフリルアルコール+ジメチロール尿素、
フルフリルアルコール多量体、フルフリルアルコール+
ホルムアルデヒド、フルフラール+ケトン類等よりなる
重合体が挙げられる。
The furan resin used as a starting material is a furfuryl alcohol or furfural homopolymer or copolymer, specifically, furfural + phenol, furfuryl alcohol + dimethylol urea,
Furfuryl alcohol multimer, Furfuryl alcohol +
Polymers composed of formaldehyde, furfural + ketones and the like can be mentioned.

【0017】一方、正極は十分な量のLiを含んでいる
ことが必要で、Liの量が充放電容量相当で負極炭素質
材料1g当たり250mAH未満であると、高容量を確保
することが難しい。逆に言えば、本発明は、このような
大容量の電池に適用したときに効果が大きく、負極炭素
質材料1g当たり250mAH以上の充放電容量相当分の
Liを含むという規定は、本発明が対象とする電池にお
ける正極側の規定を明示したものである。
On the other hand, the positive electrode must contain a sufficient amount of Li, and if the amount of Li is equivalent to the charge / discharge capacity and is less than 250 mAH per gram of the negative carbonaceous material, it is difficult to secure a high capacity. . Conversely, the present invention has a great effect when applied to such a large-capacity battery, and the provision that the present invention contains Li corresponding to a charge / discharge capacity of 250 mAH or more per gram of the negative electrode carbonaceous material is that the present invention This stipulates the regulation on the positive electrode side in the target battery.

【0018】したがって、正極材料としては一般式Li
MO2 (ただし、MはCo,Niの少なくとも1種を表
す。)で表される複合金属酸化物やLiを含んだ層間化
合物等が好適で、特にLiCoO2 を使用した場合に良
好な特性を発揮する。
Therefore, as a positive electrode material, the general formula Li
A composite metal oxide represented by MO 2 (where M represents at least one of Co and Ni), an intercalation compound containing Li, and the like are preferable. Particularly, when LiCoO 2 is used, good characteristics are obtained. Demonstrate.

【0019】非水電解液は、有機溶媒と電解質とを適宜
組み合わせて調製されるが、これら有機溶媒や電解質と
してはこの種の電池に用いられるものであればいずれも
使用可能である。
The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery.

【0020】例示するならば、有機溶媒としてはプロピ
レンカーボネート、エチレンカーボネート、1,2−ジ
メトキシエタン、1,2−ジエトキシエタン、γ−ブチ
ロラクトン、テトラヒドロフラン、2−メチルテトラヒ
ドロフラン、1,3−ジオキソラン、4−メチル−1,
3−ジオキソラン、ジエチルエーテル、スルホラン、メ
チルスルホラン、アセトニトリル、プロピオニトリル、
アニソール等である。
For example, as the organic solvent, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-methyl-1,
3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile,
Anisole and the like.

【0021】電解質としては、LiClO4、LiAs
6、LiPF6、LiBF4、LiB(C65)4 、Li
Cl、LiBr、CH3SO3Li、CF3SO3Li等で
ある。
As the electrolyte, LiClO 4 , LiAs
F 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , Li
Cl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li and the like.

【0022】[0022]

【実施例】以下、本発明の具体的な実施例について説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described.

【0023】実施例 フルフリルアルコール500重量部,85%リン酸2.
5重量部,水50重量部を混合したものを湯浴上で5時
間加熱し、粘稠な重合体を得た。
Example 500 parts by weight of furfuryl alcohol, 85% phosphoric acid
A mixture of 5 parts by weight and 50 parts by weight of water was heated on a hot water bath for 5 hours to obtain a viscous polymer.

【0024】次に、反応系に1規定NaOHを加えてp
H5まで中和した後、残留水及び未反応アルコールを真
空蒸溜で除去した。
Next, 1N NaOH was added to the reaction
After neutralization to H5, residual water and unreacted alcohol were removed by vacuum distillation.

【0025】さらに、得られたポリマーを500℃で5
時間窒素気流中で炭化した後、さらに1100℃まで昇
温し、1時間熱処理した。
Further, the obtained polymer was heated at 500 ° C. for 5 hours.
After carbonization in a nitrogen stream for an hour, the temperature was further raised to 1100 ° C. and heat-treated for 1 hour.

【0026】このようにして得られた炭素は、乱層構造
を示し、X線回折の結果(002)面の面間隔d002
3.80Åであった。また、真密度ρは1.55g/cm
3であった。
The carbon thus obtained had a turbostratic structure, and as a result of X-ray diffraction, the (002) plane spacing d 002 was 3.80 °. The true density ρ is 1.55 g / cm
Was 3 .

【0027】ここで、d002 の結果は、原子散乱因子
(atomic scattering factor)、ローレンツ因子(Lore
ntz factor)などによる補正を行わず、ピーク位置の回
折線に接線を引き、その交点を2θ(回折角)とする簡
便法によって求めた。(図5参照) また、真密度は、200メッシュ以下に粉砕した試料に
対して、CCl4、CHBr3、ベンゼンの混合液を用い
て浮沈法によって求めた。
Here, the result of d 002 is the atomic scattering factor, the Lorentz factor (Lore
The tangent was drawn to the diffraction line at the peak position without performing correction by ntz factor) or the like, and the intersection was determined by a simple method with 2θ (diffraction angle). (Refer to FIG. 5) The true density was determined by a floating / sedimentation method using a mixture of CCl 4 , CHBr 3 , and benzene for a sample pulverized to 200 mesh or less.

【0028】更に、空気気流中における示差熱分析を行
ったところ、発熱ピークは671℃に現れた。
Further, when a differential thermal analysis was performed in an air stream, an exothermic peak appeared at 671 ° C.

【0029】なお、示差熱分析の条件は、200メッシ
ュ以下に粉砕した試料10mgに対し、空気流量100
ml/分、昇温速度10℃/分とした。
The conditions of the differential thermal analysis were as follows: 10 mg of a sample pulverized to a size of 200 mesh or less, and an air flow rate of 100 mg.
ml / min, and the heating rate was 10 ° C./min.

【0030】この炭素を用いて、次のような電池を構成
した。
The following battery was constructed using this carbon.

【0031】先ず、炭素は乳鉢にて粉砕し、篩により分
級して390メッシュ以下のものを使用した。この分級
した炭素90重量部に対して、結合剤としてポリフッ化
ビニリデン10重量部を加え、ジメチルホルムアミドを
用いてペースト状にし、ステンレス網に塗布した後、4
t/cm2の圧力で圧着した。乾燥後、適当な形に打ち抜
き負極として使用した。
First, carbon was pulverized in a mortar and classified by a sieve and used was 390 mesh or less. To 90 parts by weight of the classified carbon, 10 parts by weight of polyvinylidene fluoride as a binder was added, and a paste was formed using dimethylformamide.
Crimping was performed at a pressure of t / cm 2 . After drying, it was punched into an appropriate shape and used as a negative electrode.

【0032】一方、正極は次のようにして作成した。す
なわちLiNi0.2Co0.82 91重量部,グラファイ
ト6重量部,ポリテトラフルオロエチレン樹脂3重量部
からなる混合物を成形型に入れ、2t/cm2の圧力でコ
ンプレッション成形し、円板状の電極とした。
On the other hand, the positive electrode was prepared as follows. That is, a mixture composed of 91 parts by weight of LiNi 0.2 Co 0.8 O 2 , 6 parts by weight of graphite, and 3 parts by weight of a polytetrafluoroethylene resin was put into a molding die, compression-molded at a pressure of 2 t / cm 2 , and formed into a disk-shaped electrode. did.

【0033】このようにして得られた正極及び負極を用
い、電解液としてプロピレンカーボネート−ジメトキシ
エタン混合溶媒(容量比で1:1)に1モル/dm3
LiClO4 を加えたものを使用し、コイン型電池を作
製して充放電試験を行った。
Using the positive electrode and the negative electrode thus obtained, an electrolyte prepared by adding 1 mol / dm 3 LiClO 4 to a mixed solvent of propylene carbonate-dimethoxyethane (1: 1 by volume) as an electrolytic solution was used. , A charge / discharge test was performed.

【0034】なお、電池の活物質使用量は、電気化学当
量として正極>>負極となるようにし、電池容量が負極
規制となるようにした。また、充電,放電とも電流密度
0.53mA/cm2で行った。
The amount of the active material used in the battery was such that the positive electrode >> the negative electrode as an electrochemical equivalent, and the battery capacity was regulated to the negative electrode. Both charging and discharging were performed at a current density of 0.53 mA / cm 2 .

【0035】サイクル試験の結果を図1に、放電曲線を
図2にそれぞれ示す。サイクル試験は、320mAH/g
の充電を行い、放電は1.5Vでカットして行った。
FIG. 1 shows the result of the cycle test, and FIG. 2 shows the discharge curve. The cycle test is 320 mAH / g
Was charged, and discharging was performed by cutting at 1.5V.

【0036】その結果、本実施例電池では、利用率(放
電量/充電量×100)が97%で、60サイクルを越
えても劣化しないことがわかった。
As a result, it was found that the battery of this example had a utilization rate (discharge amount / charge amount × 100) of 97% and did not deteriorate even after more than 60 cycles.

【0037】そこでさらに、充電量を350mAH/gと
してサイクル寿命を調べた。結果を図3に示す。
Then, the cycle life was further examined by setting the charge amount to 350 mAH / g. The results are shown in FIG.

【0038】この場合にも利用率は95%と良好で、5
0サイクル以降で若干の容量劣化が見られるものの、優
れたサイクル特性を示した。
In this case as well, the utilization is as good as 95%, and 5%.
Although the capacity slightly deteriorated after the 0th cycle, excellent cycle characteristics were exhibited.

【0039】比較例1 従来例として、石油ピッチ系コークスを用いた電池につ
いても比較のためにテストした。
Comparative Example 1 As a conventional example, a battery using petroleum pitch-based coke was also tested for comparison.

【0040】(002)面の面間隔d002 が3.46
Å,真密度ρが2.03g/cm3のコークスを使用し、
他は先の実施例と同様の方法で電池を作製した。
The (002) plane distance d 002 is 3.46.
Å, using a coke with a true density ρ of 2.03 g / cm 3 ,
Otherwise, a battery was manufactured in the same manner as in the previous example.

【0041】この炭素の空気気流中における示差熱分析
の発熱ピークは745℃に現れた。
The exothermic peak of the carbon in the air flow of the differential thermal analysis appeared at 745 ° C.

【0042】得られた電池について、実施例と同様にサ
イクル試験を行ったが、本例では充電量216mAH/
g,1.5Vで放電カットとした。結果を図4に示す。
A cycle test was performed on the obtained battery in the same manner as in the example. In this example, the charge amount was 216 mAH /
g, 1.5 V, and the discharge was cut. FIG. 4 shows the results.

【0043】本例の電池は、図4中曲線Aで示すよう
に、利用率は97%と高かったが、サイクル寿命は短
く、20サイクルあたりから放電容量が低下し始めた。
As shown by the curve A in FIG. 4, the utilization rate of the battery of this example was as high as 97%, but the cycle life was short, and the discharge capacity began to decrease after about 20 cycles.

【0044】さらに充電量を247mAH/gと大きくす
ると、図4中曲線Bのようになり、最高到達利用率89
%,サイクル寿命は2〜3サイクル目以降で劣化が激し
くなった。
When the charge amount is further increased to 247 mAH / g, the curve B in FIG.
%, And the cycle life became severely degraded after the second and third cycles.

【0045】比較例2 熱処理温度1100℃を1500℃とし、他は実施例と
同様に炭素を得た。得られた炭素の形態的パラメータ
は、面間隔d002 =3.69Å,真密度ρ=1.60g
/cm3であった。
Comparative Example 2 Carbon was obtained in the same manner as in Example except that the heat treatment temperature was changed from 1100 ° C. to 1500 ° C. The morphological parameters of the obtained carbon were as follows: interplanar spacing d 002 = 3.69 °, true density ρ = 1.60 g
/ Cm 3 .

【0046】また、空気気流中における示差熱分析の発
熱ピークは679℃および743℃に現れた。
The exothermic peaks of the differential thermal analysis in the air stream appeared at 679 ° C. and 743 ° C.

【0047】得られた炭素を用い、他は実施例と同様の
方法で電池を作製した。
A battery was produced in the same manner as in the example except that the obtained carbon was used.

【0048】この電池に対し、実施例と同様のサイクル
試験(320mAH/g充電,1.5V放電カット)を行
ったところ、図1に示すように、利用率93%程度で、
15サイクル以降で劣化が始まった。
When the same cycle test (320 mAH / g charge, 1.5 V discharge cut) was performed on this battery, as shown in FIG.
Deterioration started after 15 cycles.

【0049】これら実施例及び比較例の結果に見られる
ように、本発明を適用した電池では、放電容量を大幅に
改善することができ、しかもサイクル劣化は従来のもの
より極めて小さい。
As can be seen from the results of these Examples and Comparative Examples, in the battery to which the present invention is applied, the discharge capacity can be greatly improved, and the cycle deterioration is much smaller than that of the conventional battery.

【0050】また、特に実施例と比較例2を比較するこ
とからわかるように、同じ原料から焼成して得られた炭
素であっても、炭素の層間距離が小さくなると放電容量
は減少し、サイクル寿命も従来例程度にまで劣化した。
Also, as can be seen from a comparison between the example and comparative example 2, even if carbon is obtained by firing from the same raw material, the discharge capacity decreases as the carbon interlayer distance decreases, and the cycle time increases. The service life has also deteriorated to the level of the conventional example.

【0051】[0051]

【発明の効果】以上の説明からも明らかなように、本発
明によれば、放電容量が大きく、しかもサイクル寿命が
長い非水電解液電池を提供することが可能である。
As is apparent from the above description, according to the present invention, it is possible to provide a non-aqueous electrolyte battery having a large discharge capacity and a long cycle life.

【0052】また、本発明の電池は、炭素質材料を負極
としているので、充電時間が短いという特徴も維持さ
れ、この点からも実用性に富んだ電池の提供が可能であ
る。
Further, since the battery of the present invention uses the carbonaceous material as the negative electrode, the feature that the charging time is short is maintained, and from this point of view, a highly practical battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した実施例電池のサイクル寿命特
性を比較例のそれと比べて示す特性図である。
FIG. 1 is a characteristic diagram showing cycle life characteristics of an example battery to which the present invention is applied, in comparison with that of a comparative example.

【図2】実施例電池の放電曲線を示す特性図である。FIG. 2 is a characteristic diagram showing a discharge curve of an example battery.

【図3】350mAH/g充電としたときのサイクル寿命
特性を示す特性図である。
FIG. 3 is a characteristic diagram showing cycle life characteristics when charged at 350 mAH / g.

【図4】石油系ピッチコークスを使用した電池のサイク
ル寿命特性を示す特性図である。
FIG. 4 is a characteristic diagram showing cycle life characteristics of a battery using petroleum-based pitch coke.

【図5】簡便法による回折角の求め方を説明する特性図
である。
FIG. 5 is a characteristic diagram illustrating a method of obtaining a diffraction angle by a simple method.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 10/40──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素質材料よりなる負極と、Liを含ん
だ正極と、非水電解液とを有してなり、 上記炭素質材料は、(002)面の面間隔が3.70Å
以上,真密度が1.70g/cm3 未満であり、且つ示差
熱分析で700℃以上に発熱ピークを有しない炭素質材
料であり、 上記正極は、負極炭素質材料1g当たり250mAH以
上の充放電容量相当分のLiを含み、 充電量を350mAH/gとし充放電を50サイクル繰
り返した後の下記式で示される利用率が95%以上であ
ることを特徴とする非水電解液二次電池。 利用率=(放電量/充電量)×100(%)
1. A negative electrode comprising a carbonaceous material, a positive electrode containing Li, and a non-aqueous electrolyte, wherein the carbonaceous material has a (002) plane spacing of 3.70 °.
As described above, the carbonaceous material having a true density of less than 1.70 g / cm 3 and having no exothermic peak at 700 ° C. or higher in differential thermal analysis. The positive electrode has a charge / discharge of 250 mAH or more per gram of the carbonaceous material of the negative electrode. A non-aqueous electrolyte secondary battery comprising Li equivalent to the capacity, and having a charge rate of 350 mAH / g and a charge / discharge cycle of 50 cycles, the utilization of which is represented by the following formula is 95% or more. Utilization rate = (discharge amount / charge amount) x 100 (%)
【請求項2】 上記正極は、一般式LiMO2 (ただ
し、MはCo,Niの少なくとも1種を表す。)で表さ
れる複合金属酸化物であることを特徴とする請求項1記
載の非水電解液二次電池。
2. The non-electrode according to claim 1, wherein the positive electrode is a composite metal oxide represented by a general formula LiMO 2 (where M represents at least one of Co and Ni). Water electrolyte secondary battery.
JP9074164A 1997-03-26 1997-03-26 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2812324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9074164A JP2812324B2 (en) 1997-03-26 1997-03-26 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9074164A JP2812324B2 (en) 1997-03-26 1997-03-26 Non-aqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63217295A Division JP2674793B2 (en) 1988-08-30 1988-08-31 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH103948A JPH103948A (en) 1998-01-06
JP2812324B2 true JP2812324B2 (en) 1998-10-22

Family

ID=13539249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9074164A Expired - Lifetime JP2812324B2 (en) 1997-03-26 1997-03-26 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2812324B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956384B2 (en) * 1999-09-20 2007-08-08 ソニー株式会社 Secondary battery
JP2004227931A (en) * 2003-01-23 2004-08-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte rechargeable battery
JP4838991B2 (en) * 2004-09-16 2011-12-14 日本電気株式会社 Non-aqueous electrolyte secondary battery negative electrode carbon material, secondary battery negative electrode material using the same, and non-aqueous electrolyte secondary battery
TW200723579A (en) * 2005-09-09 2007-06-16 Kureha Corp Negative electrode material for nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH103948A (en) 1998-01-06

Similar Documents

Publication Publication Date Title
JP2674793B2 (en) Non-aqueous electrolyte battery
JP3319258B2 (en) Method for producing positive electrode active material for lithium secondary battery and method for producing lithium secondary battery
KR101073223B1 (en) anode mixture for lithium secondary battery and Lithium secondary battery using the same
CN105280880B (en) Positive electrode for nonaqueous electrolyte secondary battery, and system thereof
JP3136594B2 (en) Non-aqueous electrolyte secondary battery
JP3060474B2 (en) Negative electrode for battery, method for producing the same, and nonaqueous electrolyte battery using the same
KR100975875B1 (en) Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
JP3196226B2 (en) Non-aqueous electrolyte secondary battery
JP3624578B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
EP1439591A1 (en) Lithium ion secondary battery
JP3060471B2 (en) Negative electrode for battery, method for producing the same, and nonaqueous electrolyte battery using the same
JP2004063422A (en) Positive electrode active material and nonaqueous electrolytic battery
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JP4798741B2 (en) Non-aqueous secondary battery
JP3633223B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
JPH09293508A (en) Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
JP3640108B2 (en) Method for synthesizing active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3289231B2 (en) Negative electrode for lithium ion secondary battery
JPH08213014A (en) Nonaqueous electrolyte secondary battery
JP2001089118A (en) Graphite particle, method for producing the same, negative electrode for lithium secondary battery and lithium secondary battery
US5888671A (en) Non-aqueous electrolyte battery
JP2812324B2 (en) Non-aqueous electrolyte secondary battery
EP0987780A2 (en) Non-aqueous electrolyte battery
JP2004059386A (en) Production method for carbon-coated graphite particle, carbon-coated graphite particle, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP3475480B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090807

Year of fee payment: 11