JP2810895B2 - Compensation method for volumetric flow meter - Google Patents
Compensation method for volumetric flow meterInfo
- Publication number
- JP2810895B2 JP2810895B2 JP1339490A JP1339490A JP2810895B2 JP 2810895 B2 JP2810895 B2 JP 2810895B2 JP 1339490 A JP1339490 A JP 1339490A JP 1339490 A JP1339490 A JP 1339490A JP 2810895 B2 JP2810895 B2 JP 2810895B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- fluid
- flow rate
- change
- correlation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Volume Flow (AREA)
- Details Of Flowmeters (AREA)
Description
【発明の詳細な説明】 [発明の属する技術分野] 本発明は、容積式流量計の器差補正方法に関するもの
である。Description: TECHNICAL FIELD [0001] The present invention relates to a method for correcting an instrumental difference in a positive displacement flowmeter.
[従来の技術] プラントで一般に用いられる流体は粘度指数の低い場
合が多く、温度による粘度変化が大きく、高い精度の計
器を用いたとしても誤差は免れない。温度管理を精密に
行うためには高度の技術を要するが,僅かな温度変化で
も粘度の変化を伴い、これによる精度の誤差が生じる。
容積式流量計は計量精度が叩く、特に双回転子型歯車式
流量計は信頼性が高いとされているが、機械式構造であ
るために回転部の機械的摩耗により、計量室内のクリア
ランスの増大により計量機能が低下する。双回転子型流
量計の計量機能をなす回転体相互と両端面は、計量室内
壁面との間に微小間隙を設け、回転自在に収装される
が、回転軸が水平面に体し僅か傾斜すると回転体の一方
の端面がケーシングの内壁面と接触しながら回転するこ
とにより回転抵抗が増し、更に他方の側の端面部内測壁
面との間隙を増し漏れ量が増加するために器差値が大き
くなる。故に回転体の両端面との間隙は、等しい一定値
を保ちながら回転することが望ましく、回転体が正確に
中心位置に保たれることが器差性能の変化を僅少ならし
めるのに重要である。従来の水平軸型は回転体が自由な
水平方向の移動が可能であるため、流体の流れに伴い両
端のクリアランス値が一定に保たれず、このため非円形
回転体の回転速度による慣性モーメントの変化に伴って
微小間隙から漏れる量即ち器差値が変化し、正確な流量
表示が得られない欠点があった。電子式器差補正マイク
ロコンピュータは極めて精密な演算機能を発揮するが、
計器本体の計量素子の摩耗変形、回転位置の変動により
器差性能が変化するのであれば、このような補正な無意
味となる。[Prior Art] Fluids generally used in plants often have a low viscosity index, a large change in viscosity with temperature, and errors are inevitable even when a highly accurate instrument is used. Although a high degree of technology is required to perform temperature control precisely, even a slight change in temperature is accompanied by a change in viscosity, which causes an error in accuracy.
Positive displacement flowmeters are known for their precision in metering, especially dual-rotor gear flow meters are said to have high reliability.However, due to the mechanical structure, the clearance in the measuring chamber is reduced due to the mechanical wear of the rotating parts. The weighing function is reduced by the increase. The rotating bodies and the both end faces, which perform the measuring function of the twin rotor type flow meter, are provided with a small gap between them and the wall surface of the measuring chamber, and are rotatably housed. One end face of the rotator rotates while being in contact with the inner wall surface of the casing, thereby increasing rotation resistance, and further increasing the gap between the other end surface inside the measurement wall surface and increasing the amount of leakage, resulting in a large instrumental difference value. Become. Therefore, it is preferable that the gap between the both end faces of the rotating body is rotated while maintaining the same constant value, and it is important that the rotating body is accurately maintained at the center position in order to minimize a change in instrumental performance. . In the conventional horizontal axis type, since the rotating body can move freely in the horizontal direction, the clearance value at both ends is not kept constant with the flow of fluid, so the moment of inertia due to the rotation speed of the non-circular rotating body is With the change, the amount leaking from the minute gap, that is, the instrumental difference value changes, and there is a disadvantage that an accurate flow rate display cannot be obtained. The electronic instrument difference correction microcomputer demonstrates extremely precise arithmetic functions,
If the instrument difference performance changes due to wear deformation of the measuring element of the instrument main body and fluctuation of the rotational position, such correction becomes meaningless.
電気絶縁性流体の計量機能として優れた性能を有する
容積式流量計は、前述のように機械式構造であり、運転
時間の経過とともに計量機能をなす回転素子の磨耗変形
により性能が低下するため、耐久性に優れた構成が肝要
であるが、これと共に回転素子の計量室内の位置を正確
に保持されることにより計量精度を保つことが可能であ
り、電子式器差補正装置の組み合わせにより容積式流量
計の性能をより以上に高めることがでる。すなわち容積
式流量計の内部漏れが運転時間の経過により変化するこ
とがなく、一定値が維持されれば器差特性は一定である
から、これを流体の温度と相関関係にある流体の体積膨
張及び粘度及び計器固有の器差特性の補正をもって誤差
を零に近づけることが可能となる。Positive displacement flowmeters that have excellent performance as a measuring function for electrically insulating fluids have a mechanical structure as described above, and as the operating time elapses, the performance decreases due to wear deformation of the rotating element that performs the measuring function. It is essential to have a configuration with excellent durability.However, it is possible to maintain the measurement accuracy by accurately maintaining the position of the rotating element in the measuring chamber. The performance of the flow meter can be further enhanced. That is, since the internal leakage of the positive displacement flowmeter does not change with the elapse of the operation time, and if a constant value is maintained, the instrumental error characteristic is constant, the volume expansion of the fluid correlated with the temperature of the fluid. In addition, it is possible to make the error close to zero by correcting the viscosity and the instrument difference characteristic inherent to the instrument.
しかし計器本体の器差特性の温度変化に伴い変化する
値の補正がなされなければ、流量を正しく補正換算する
ことはできず、また微小なクリアリンスで収装される回
転素子の計量室内の回転位置の偏りを生じることなく正
しい中心位置で回転することができれば、このような誤
差が零に近い測定値を得ることは困難である。この回転
体を計量室内の中心位置に保つためには、固定軸型では
スラストリングを介して回転体のサイドクリアランスを
保つ方式が用いられ、又は回転体と軸とを一体に構成す
る軸一体型では、軸端を微調整螺子機構により整する複
雑な構成を必要とした。However, the flow rate cannot be corrected and converted correctly unless the value that changes with the temperature change of the instrumental error characteristic of the instrument body is corrected, and the rotation of the rotating element installed in the weighing chamber with a small clear rinse is not possible. If it is possible to rotate at the correct center position without causing positional deviation, it is difficult to obtain a measurement value in which such an error is close to zero. In order to keep this rotating body at the center position in the measuring chamber, a fixed shaft type uses a method of maintaining side clearance of the rotating body via a thrust ring, or a shaft integrated type that integrally forms the rotating body and the shaft. Thus, a complicated configuration for adjusting the shaft end by a fine adjustment screw mechanism was required.
[発明が解決しようとする課題] 本発明の課題は、流量計の計量素子の回転運動によっ
て表示される指示流量と実測値との間に、被計測流体の
温度変化に伴う粘度の変化、体積膨張、計器本体の器差
特性により生ずる誤差を除去し、正確なる流量指示を与
えることにある。[Problems to be Solved by the Invention] An object of the present invention is to provide a method for measuring a change in viscosity and a volume due to a temperature change of a fluid to be measured between an indicated flow rate indicated by a rotational movement of a measuring element of a flow meter and an actually measured value. An object of the present invention is to provide an accurate flow rate instruction by eliminating an error caused by expansion and an instrumental difference characteristic of an instrument body.
正確な流量指示を与えるには、被計測流体の温度の変
化による体積膨張と温度と粘度の相関関係による器差に
及ぼす影響を除くと共に、計器本体の回転体のルーツロ
ータ、楕円歯車等の回転体相互の係合部及びケーシング
との隙間より漏れる量の温度により異なる計器特有の補
正が必要であり、プロセスの温度変化に伴う被計測流体
のこれら誤差補正と共に計器特有の構成要素の温度によ
る膨張収縮のために起こる器差値の補正により精密な流
量が求められる。In order to give an accurate flow rate instruction, it is necessary to eliminate the effect on volumetric expansion due to the change in the temperature of the fluid to be measured and the effect on the instrumental difference due to the correlation between temperature and viscosity. Different instrument-specific corrections are required depending on the temperature of the amount leaking from the gap between the mutual engagement part and the casing, and these error corrections of the fluid to be measured due to the temperature change of the process are accompanied by expansion and contraction of the instrument-specific components due to the temperature. A precise flow rate is obtained by correcting the instrumental error value caused by the above.
プラントにおけるプロセスの被計測流体の流れの状態
の諸条件は温度と相関関係にあり、これらの変化要因を
直接測定することは困難であるが、これらの変化をリア
ルタイムに把握して換算流量を求めるには、変化する温
度を瞬時に精密測定することが可能であるから、温度の
精密測定により分解能の高い補正値を求めることがで
き、より正確な流量指示が得られる。このように分解能
の高い電子式補正装置は極めて精密な補正値を与えるの
であるから、計量機能が安定した流量計本体と組み合わ
せが肝要でありこれによって誤差の測定が達成される。The various conditions of the flow state of the fluid to be measured in the process in the plant are correlated with the temperature, and it is difficult to directly measure these change factors. However, these changes are grasped in real time to obtain the reduced flow rate. Since it is possible to precisely measure the changing temperature instantaneously, it is possible to obtain a high-resolution correction value by the precise measurement of the temperature, and to obtain a more accurate flow rate instruction. Since such an electronic correction device having a high resolution gives an extremely precise correction value, it is essential to combine it with a flowmeter main body having a stable metering function, thereby achieving error measurement.
第1図に示すように理論線(A)に対し測定する器差
−ローター回転速度曲線(B)とは一定の関係を示す。
即ち、ロータの低速回転域及び高速回転域で増加する器
差値(E)を零となるように回転体の回転により算出さ
れる換算流量に加算し、固体差による器差を補正し、演
算装置により加算することで正しい流量が示される。次
に同一仕様の場合でも僅かの温度変化で被計測流体の比
重と粘度が変化するため、回転体の回転速度により表示
算出される流量は補正値が加えられねばならない。第2
図の線(A)は器差−流量の関係を示し、曲線(C)及
び曲線(D)は実測値を示す器差−流量曲線にして
(C)の曲線よりも(D)の曲線は高温の場合を示す。
しかして実験の結果では曲線(C)及び曲線(D)のピ
ークX1とX2の温度変化に対する乖離と低速回転域Y1とY
2、及び高速回転域Z1、Z2との乖離は比例せず、それぞ
れ特定の変化量を示す。また被計測流体の液種によって
も器差−流量曲線は特定の形状を湿し、低粘度流体では
其の値も増大する。しかして測定基準温度を20℃に設定
する場合は粘度の影響を除くための条件補正値を以て曲
線(C)あるいは曲線(D)を条件補正をもって修正す
れば20℃における器差−流量曲線(B)が描かれる。As shown in FIG. 1, there is a certain relationship with the instrumental difference-rotor rotation speed curve (B) measured with respect to the theoretical line (A).
That is, the instrumental difference value (E) that increases in the low-speed rotation range and the high-speed rotation range of the rotor is added to the reduced flow rate calculated by the rotation of the rotating body so as to become zero, and the instrumental difference due to the individual difference is corrected. Addition by the device indicates the correct flow rate. Next, even in the case of the same specification, since the specific gravity and the viscosity of the fluid to be measured change with a slight temperature change, a correction value must be added to the flow rate calculated and displayed based on the rotation speed of the rotating body. Second
The line (A) in the figure shows the relationship between the instrumental difference and the flow rate, and the curves (C) and (D) show the actual difference between the instrumental difference and the flow rate curve. Shows the case of high temperature.
Thus, the experimental results show that the deviations of the peaks X1 and X2 of the curves (C) and (D) with respect to the temperature change and the low-speed rotation ranges Y1 and Y
2, and the divergence from the high-speed rotation ranges Z1 and Z2 are not proportional, and each show a specific change amount. Further, the instrument difference-flow rate curve wets a specific shape depending on the liquid type of the fluid to be measured, and the value increases with a low-viscosity fluid. Thus, when the measurement reference temperature is set to 20 ° C., if the curve (C) or the curve (D) is corrected with a condition correction value with a condition correction value for eliminating the influence of the viscosity, the instrumental difference-flow rate curve (B) at 20 ° C. ) Is drawn.
これにより上記第1図に示す補正方式でエラーが除か
れ、理論曲線(A)となり、正確な流量が算出される。
故に計器本体の仕様により定められる器差と特性曲線に
従って流量、即ちロータ回転数に対応する器差値をもっ
て補正することにより正しい流量が得られる。第3図
は、低い粘度の流体の場合及び、流量計のロータ間のク
リアランスが大きい場合は内部漏れの量が多いため、図
のようなQE曲線を示す。As a result, the error is removed by the correction method shown in FIG. 1 and a theoretical curve (A) is obtained, and an accurate flow rate is calculated.
Therefore, a correct flow rate can be obtained by correcting the flow rate, that is, the instrumental difference value corresponding to the rotor rotation speed, in accordance with the instrumental error and the characteristic curve determined by the specifications of the instrument body. FIG. 3 shows a QE curve as shown in the figure when the fluid has a low viscosity and when the clearance between the rotors of the flow meter is large, since the amount of internal leakage is large.
第4図は回転体相互の間隔及び回転体と計量室の間隙
を小さくした場合の器差特性曲線を示し、器差は小さく
なるが微小すき間に異物を噛み込み停止する危険が高く
なる欠点がある。FIG. 4 shows an instrumental difference characteristic curve in a case where the distance between the rotating bodies and the gap between the rotating body and the measuring chamber are made small. The instrumental difference becomes small, but there is a disadvantage that foreign matter is more likely to be caught and stopped by a small gap. is there.
然し、回転体が回転するためには間隙が設けられるこ
とにより、器差曲線の直線性が劣るが自由な回転が与え
られ、計量機能を発揮するのであるから、内部漏れは免
れない。この内部漏れを補正する手段を付加することに
より計量精度を高めることが可能となる。However, since a gap is provided for the rotating body to rotate, the linearity of the instrumental error curve is inferior, but free rotation is given and the metering function is exhibited, so that internal leakage is inevitable. By adding a means for correcting the internal leakage, it is possible to increase the weighing accuracy.
回転体を、端面の軸径に対し漸次細くした形状の短軸
をもってそれぞれ両端を支承する構成により、回転時の
両側端のクリアランスが等しく保持されながら回転する
ようにして回転体が軸の中央に対し求心的に回転する機
能を持たせて前記の問題を解消し、回転体の回転時にお
ける計量機能を一定条件に維持して正確な流量を表示せ
しめることができる。しかしこのようなQE曲線が長時間
運転後に於いても変化することなく安定しているなら
ば、電子式補正装置で正確な流量表示が可能となる。The rotating body rotates at the center of the shaft by rotating the rotating body while keeping the clearances at both ends equally at the both ends during rotation by the configuration in which the rotating body is supported at both ends with the short axis of the shape gradually reduced to the shaft diameter of the end face. On the other hand, the above-mentioned problem can be solved by providing a function of centripetal rotation, and an accurate flow rate can be displayed while maintaining a constant weighing function when the rotating body rotates. However, if such a QE curve is stable without change even after long-time operation, an accurate flow rate display can be performed by the electronic correction device.
理想値とされる器差−流量曲線に対し、ロータの回転
速度−器差、及び温度変化−器差との間にそれぞれ関係
があり、これらが誤差として示され、特定の比率をもっ
て補正を加えることにより正確な値を表示する。There is a relationship between the rotor speed-instrument and the temperature change-instrument in relation to the ideal instrument error-flow rate curve, which are indicated as errors, and are corrected with a specific ratio. To display accurate values.
これにより特に精密化学工業の分野における流量の超
精密測定、工程管理用として利用することができ、この
ように容積式流量計に電子式補正機構を加えることによ
り±0.1パーセント以下の極めて高い精度が得られる。As a result, it can be used for ultra-precision flow measurement and process control, especially in the field of precision chemical industry. By adding an electronic correction mechanism to a positive displacement flow meter, extremely high accuracy of ± 0.1% or less can be achieved. can get.
[課題を解決するための手段] 本発明の手段は容積式流量計の誤差要因となる流体の
体積変化と粘度変化、計器特有の特性変化の誤差補正値
をリアルタイムに得るため、測定精度の高い温度センサ
ーにより粘度測定により分解能の高い手段による補正値
をもって規準値に換算して補正を行うことにあり、特に
プロセス中の微小温度変化に伴う流体の粘度及び、比重
の変化および計器本体の温度変化に伴う固有の器差変化
の各データを入力したROMを装備した電子式補正装置を
もって正確な流量を表示する器差補正方法及び双回転子
型容積式流量計の回転体をテーパー軸で支承する方法と
なし、該回転体の求心的な回転を与えることによる安定
した計量機能を発揮する構造の計器本体を、前記電子式
補正方法により、超高精度の計量機能を得ることにあ
る。[Means for Solving the Problems] The means of the present invention obtains an error correction value of a volume change and a viscosity change of a fluid, which is an error factor of a positive displacement flow meter, and an error correction value of a characteristic change peculiar to an instrument in real time. The purpose of this method is to convert to a reference value with a correction value by means of high resolution through viscosity measurement using a temperature sensor, and to perform correction, especially changes in fluid viscosity and specific gravity due to minute temperature changes during the process, and temperature changes in the meter body. Correction method to display the accurate flow rate with an electronic correction device equipped with a ROM that inputs the data of the specific instrumental change due to the change, and to support the rotating body of the twin-rotor positive displacement flowmeter with a tapered shaft. With the above-mentioned electronic correction method, it is possible to obtain an ultra-high-precision weighing function by using the electronic correction method. And there.
回転体の回転毎に得られる流量を示すパルスの周期を
測定し、予めROMに記憶されている周期と、補正流量と
のデータから周期に対する流量を示すパルス1パルスを
読み出して換算するマイクロコンピュータを使用する。
ロータの1回転毎に流量を示すパルス信号を出力する回
転検知センサーと流体の温度を測定する温度センサー
と、マイクロコンピューターを設ける。前記流量パルス
信号の周期を測定し、予めROMに記憶されている各温度
毎の比重と、示す温度補正データよりリアルタイムに温
度補正係数を読み出し、前記のパルス毎の流量を修正す
る。更に前記修正した流量を予めROMに記憶されている
各温度毎の粘度を示す補正係数データより温度に対する
粘度−器差の相関関係より得られる補正係数より修正値
を求め、前記修正した流量にこれら修正値を加えて修正
する。A microcomputer that measures the period of the pulse indicating the flow rate obtained at each rotation of the rotating body, reads one pulse indicating the flow rate corresponding to the period from the data of the period previously stored in the ROM and the corrected flow rate, and converts it. use.
A rotation sensor for outputting a pulse signal indicating the flow rate for each rotation of the rotor, a temperature sensor for measuring the temperature of the fluid, and a microcomputer are provided. The cycle of the flow rate pulse signal is measured, and a temperature correction coefficient is read out in real time from the specific gravity of each temperature stored in the ROM in advance and the indicated temperature correction data to correct the flow rate of each pulse. Further, the corrected flow rate is obtained from the correction coefficient data indicating the viscosity for each temperature stored in the ROM in advance, and a correction value is obtained from a correction coefficient obtained from a correlation between the viscosity and the instrumental difference with respect to the temperature. Modify by adding a correction value.
[発明の実施の形態] 第5図より第6図に示す例により説明する。1は双回
転子型の容積式流量計を示す。5は計量室内又は連接さ
れる管内に設けられる温度センサーである。[Embodiment of the Invention] An explanation will be given with reference to an example shown in FIGS. Reference numeral 1 denotes a twin rotor type positive displacement flowmeter. Reference numeral 5 denotes a temperature sensor provided in the measuring chamber or in a connected pipe.
温度センサー5の信号は、A/D変換器101を経て制御装
置100に配線で継続される。6は粘度センサーの場合を
示す。制御装置100内の演算装置より発信される信号
は、表示器103を作動させる。The signal of the temperature sensor 5 is connected to the control device 100 via the A / D converter 101 by wiring. 6 shows the case of a viscosity sensor. A signal transmitted from an arithmetic unit in the control device 100 activates the display 103.
第6図は、制御装置100の内部電気回路、及び接続さ
れる機器の説明図である。FIG. 6 is an explanatory diagram of an internal electric circuit of the control device 100 and connected devices.
流量計の回転体の回転を伝える回転検知センサー7か
らのパルス信号は入力インターフェイス108に入力さ
れ、中央制御装置CPU(I)112の端子に入力される。The pulse signal from the rotation detection sensor 7 for transmitting the rotation of the rotating body of the flow meter is input to the input interface 108 and input to the terminal of the central control unit CPU (I) 112.
中央制御装置CPU(I)112はこの信号の入力により、
パルスの入力があったことを入出力インターフェイス10
8、109をチェックすることにより確認し、積算に移る。
このパルス入力とその前のパルス入力の間の時間、即ち
パルス間隔によりパルス1パルス当たりの流量をROM
(I)111に予め記憶させた器差の補正データより読み
取り、またA/D変換器101でデジタル値に変換して得られ
た温度を読み取り,ROM(I)111により温度−比重デー
タより体積補正した規準温度における流量に換算した電
気信号は更に入出力インターフェイス109に入力される
と同時にCPU(II)115に入力される。温度センサーのバ
イパスにより導かれる読み取られた温度信号よりROM114
に予め書き込まれた温度−粘度変化の内部漏れ量の相関
関係より得る条件補正値より規準温度における補正した
流量に換算し、表示器103に換算流量或いは瞬時流量を
表示し、又はカウンター105を作動させる。The central control unit CPU (I) 112 receives this signal,
Input / output interface 10
Confirm by checking steps 8 and 109, and proceed to integration.
The time between this pulse input and the previous pulse input, that is, the pulse interval, is used to determine the flow rate per pulse according to the pulse interval.
(I) The temperature is read from the correction data of the instrumental difference stored in advance in 111, and the temperature obtained by converting it into a digital value by the A / D converter 101 is read, and the volume is obtained from the temperature-specific gravity data by the ROM (I) 111. The electric signal converted into the flow rate at the corrected reference temperature is further input to the input / output interface 109 and simultaneously to the CPU (II) 115. ROM114 from read temperature signal guided by temperature sensor bypass
Is converted into the corrected flow rate at the reference temperature from the condition correction value obtained from the correlation of the internal leakage amount of the temperature-viscosity change, which is written in advance, and the converted flow rate or the instantaneous flow rate is displayed on the display 103, or the counter 105 is operated. Let it.
流量計1内に設けられる温度センサー5の比抵抗をア
ナログーデジタル変換器101でデジタル値に変換して得
られた温度を読みとる。ROM(I)112に予め記憶される
温度−比重データより前記パルス当たりの流量を基準温
度、例えば20℃の状態の流量に換算する。前記換算され
た流量は更に入出力インターフェース108.109にフィー
ドバックされる。次に回転検知センサー7からのパルス
1パルス当たりの流量をROM(II)114に記憶される器差
補正データより読み取り、また流量計内に設けられる温
度センサー5の信号をデジタル値に変換して得られる温
度−粘度変化による器差補正データより補正値を求め、
前記流量を基準温度の流量に換算する。次にドライバー
104を介して表示器103に積算流量域は瞬時流量を表示又
は、カウンター105を作動させる。6は連続粘度測定用
センサーを示し、単独あるいは温度センサーと併設する
ことにより広範囲の液種に対応して使用できるが、粘度
を正確に表示することあ不可能であり、参照データとし
て示す目的で使用される。The analog-to-digital converter 101 converts the specific resistance of the temperature sensor 5 provided in the flow meter 1 into a digital value, and reads the temperature. From the temperature-specific gravity data stored in the ROM (I) 112 in advance, the flow rate per pulse is converted to a reference temperature, for example, a flow rate at 20 ° C. The converted flow rate is further fed back to the input / output interface 108.109. Next, the flow rate per pulse from the rotation detection sensor 7 is read from the instrumental difference correction data stored in the ROM (II) 114, and the signal of the temperature sensor 5 provided in the flow meter is converted into a digital value. A correction value is obtained from the instrumental error correction data based on the obtained temperature-viscosity change,
The flow rate is converted into a flow rate at a reference temperature. Then driver
The integrated flow rate range is displayed on the display 103 via the 104 to display the instantaneous flow rate or the counter 105 is operated. Reference numeral 6 denotes a sensor for continuous viscosity measurement, which can be used for a wide range of liquid types by using it alone or in combination with a temperature sensor. However, it is impossible to display the viscosity accurately, and for the purpose of showing it as reference data. used.
保証精度0.05パーセントNO精度は、表示される流量の
2000分の1以内の誤差を意味し、機械式構造の容積式流
量計の計量機能をなす回転子、ベアリング、スラストリ
ング等回転部の磨耗変形のない構造であることが肝要で
ある。例えば非円形歯車式流量計の回転体の歯型を、閉
じ込み現象がなく、噛合い歯面の変形を生じない形状と
すれば、マイクロコンピュータ装備による精密な流量補
正効果を発揮させることができる。Guaranteed accuracy 0.05% NO accuracy is
It means an error within 1/2000, and it is important that the rotor, bearing, thrust ring, and other rotating parts that serve as the measuring function of the mechanical type positive displacement flowmeter have no wear and deformation. For example, if the tooth profile of the rotating body of the non-circular gear type flow meter has a shape that does not cause a trapping phenomenon and does not cause deformation of the meshing tooth surface, it is possible to exert a precise flow rate correction effect by the microcomputer device. .
また機械式構造であるため、使用条件が苛酷でないこ
とが望ましく、計測流量範囲に於ける回転体の回転速度
が低く微小流量に於ける回転速度が低い計器であること
が重要である。即ち吐出率(回転容積に対する1回転当
たりの吐出量の比)の大きい軽量回転体がこの要件を満
足する。低速回転域で器差が増加する特性があるから計
器特有の特性誤差を補正する手段は効果的である。In addition, because of the mechanical structure, it is desirable that the operating conditions are not severe. It is important that the rotating speed of the rotating body in the measured flow rate range is low and the rotating speed in the minute flow rate is low. That is, a lightweight rotating body having a large discharge rate (ratio of the discharge amount per rotation to the rotation volume) satisfies this requirement. Since there is a characteristic that the instrument difference increases in the low-speed rotation range, the means for correcting the characteristic error peculiar to the instrument is effective.
次に前記電子式補正機構を用いて基準温度に於ける正
確な流量に換算し、器差を補正して表示する。しかし計
器本体の計量機能をなす回転子、軸受の機械的磨耗によ
る変形が生じないことが肝要である。これら回転要素の
変形は、流量計本体のクリアランス値を変化させるた
め、器差曲線が変化し、器差補正換算値を修正しなけれ
ばならない。故に回転子は、サイクロイド歯型等の閉じ
込みが 生じない歯型を用いる。このような歯車はスコ
ーリング傷を生じながら耐久性が優れている。更に回転
抵抗も小さく、計量機能が優れている。Next, the flow rate is converted into an accurate flow rate at the reference temperature using the electronic correction mechanism, and the error is corrected and displayed. However, it is important that the rotor and the bearing, which perform the measuring function of the instrument body, are not deformed due to mechanical wear. Since the deformation of these rotating elements changes the clearance value of the flowmeter main body, the instrument error curve changes, and the instrument error correction conversion value must be corrected. Therefore, a rotor that does not cause confinement, such as a cycloid tooth, is used for the rotor. Such gears are excellent in durability while producing scoring flaws. Furthermore, the rotation resistance is small and the weighing function is excellent.
非円形歯車式流量計は容積効率が高いため計量精度が
高いが回転体は偏平度が大きい程、吐出率が大きく、器
差特性が向上すると共に計器本体の大きさが小さなる利
点がある。しかし、噛合う一対の歯車回転子は互いに加
速、減速を繰り返えしながら回転するため、高速回転と
なるにしたがって振動、騒音が大きくなり、更に回転体
による制動力が大きくなり、大流域の漏れが多くなう。The non-circular gear type flow meter has high volumetric efficiency and thus high measurement accuracy, but the greater the flatness of the rotating body, the greater the discharge rate, the better the instrumental difference characteristics, and the advantage of a smaller instrument body. However, a pair of gear rotors that mesh with each other rotate while repeatedly accelerating and decelerating with each other. Therefore, as the rotation speed increases, the vibration and noise increase, and the braking force of the rotating body increases. Many leaks.
第7図は温度センサー、回転倹知センサーを内装した
流量計及び制御装置の間に、理想的QE曲線に対する特性
曲線の誤差を補正するための回転検知センサーからの信
号入力させ、別途クロック信号を入力する制御装置を組
み入れた実施例の回路図を示す。FIG. 7 shows a signal input from a rotation detection sensor for correcting an error of a characteristic curve with respect to an ideal QE curve between a temperature sensor, a flow meter equipped with a rotation sensor, and a control device. 1 shows a circuit diagram of an embodiment incorporating a control device for inputting.
前記第6図に説明した制御装置100で流体の体積変化
及び温度−粘度の相関関係による器差の補正を行うと同
時にROM(III)117に記憶される理想のQE曲線に対する
計器固有特性の誤差を補正するデータを読みとり補正す
る電気回路図である。流量計1の回転体の回転を伝える
回転磁気センサー7、及び温度センサー5からのパルス
信号は入力インターフェイス108に入力され、中央制御
装置CPU(III)118はこの信号入力により、パルス入力
があったことを入出力インターフェイス108からの信号
入力をチェックすることによって確認し、このパルス入
力及び其の前のパルス入力の間の時間間隔より、1パル
ス当たりの流量をROM(III)に記憶される回転体の速度
と計器特有器差の補正データから読み取り各流量域に於
ける計器固有の誤差補正を行い、次に前記第6図で説明
した制御装置100で流体の温度変化による器差の補正値
を演算する。The controller 100 explained in FIG. 6 corrects the instrumental difference based on the correlation between the fluid volume change and the temperature-viscosity, and at the same time, the error of the instrument specific characteristic with respect to the ideal QE curve stored in the ROM (III) 117. FIG. 5 is an electric circuit diagram for reading and correcting data for correcting the error. Pulse signals from the rotary magnetic sensor 7 for transmitting the rotation of the rotating body of the flow meter 1 and the temperature sensor 5 are input to the input interface 108, and the central control unit CPU (III) 118 receives a pulse input by this signal input. This is confirmed by checking the signal input from the input / output interface 108, and from the time interval between this pulse input and the previous pulse input, the flow rate per pulse is stored in the ROM (III). The data is read from the correction data of the body speed and the instrument-specific instrumental difference, and the instrument-specific error correction in each flow rate range is performed. Then, the controller 100 explained with reference to FIG. Is calculated.
第8図は、前記温度変化による流体の体積変化、粘度
変化による器差の値を補正するためのROM(I)111、RO
M(II)114を組み込んだ電気回路、及び流量計路固有の
特性誤差を補正するための回路にROM(III)117を組み
合わせた制御装置の電気回路を示し、瞬時の器差補正値
を表示及び発信する機能を有する本発明の前記温度ー比
重、温度ー粘度、及び温度ー計器特性誤差の三要素の補
正をなす手段を用いた実施例の電子式補正装置の説明図
である。FIG. 8 shows a ROM (I) 111, RO for correcting a value of an instrumental error due to a change in fluid volume and a change in viscosity due to the temperature change.
Shows an electric circuit incorporating M (II) 114 and a control device in which ROM (III) 117 is combined with a circuit for correcting characteristic errors inherent to the flow meter path, and displays instantaneous instrument error correction values. FIG. 3 is an explanatory diagram of an electronic correction device of an embodiment using means for correcting the three elements of temperature-specific gravity, temperature-viscosity, and temperature-instrument characteristic error of the present invention having a function of transmitting and transmitting.
前記のように非円形歯車式流量計本体の電子式補正装
置による補正は極めて精緻な分解能を有し、誤差が除去
されるのであるが、回転体の安定した計量機能を発揮す
る為の形状を第9図に示す。非円形歯車回転体201の軸2
02は図のごとく端面の軸径に対し先端部を細くした形状
をなす。反対側の軸も同様の形状をしている。As described above, the correction of the non-circular gear type flow meter main body by the electronic correction device has extremely fine resolution and eliminates errors, but the shape for exhibiting a stable measuring function of the rotating body is provided. As shown in FIG. Shaft 2 of non-circular gear rotating body 201
02 has a shape in which the tip is thinner than the shaft diameter of the end face as shown in the figure. The opposite shaft has a similar shape.
これらの軸202を填めあわせるための計量室内の内壁
面に孔状の軸受けにそれぞれ填め合わされ。填め合い部
は微小のクリアランスを形成するごとく孔状をなす。被
計測流体の流れにより水平軸に収装された一対の回転体
は互いに噛合い係合しながら回転するが、水平軸線の中
心位置を保ちながら回転し、マグネット203の作用によ
りパルスを発信する。These shafts 202 are fitted to hole-shaped bearings on the inner wall surface in the measuring chamber for fitting. The fitting portion has a hole shape so as to form a minute clearance. The pair of rotators housed on the horizontal axis by the flow of the fluid to be measured rotate while meshing and engaging with each other, but rotate while maintaining the center position of the horizontal axis, and emit a pulse by the action of the magnet 203.
第10図は回転体201の軸孔204を端面の軸径に大して漸
次細くなる穿孔した形状の軸受けを示す。是れを支承す
る計量室内の側壁面に前記軸孔に填め合わされる形状の
固定軸を設けられる。回転体の端面の軸孔に対し内部が
漸次細くなる形状とした軸孔にそれぞれ計量室内壁面に
設けた固定軸がはめ合い、回転自在に収装される。回転
体は前記第9図に示した場合と同様に流体の流れにより
求心的に回転位置が保たれながら回転し、回転体の端面
と計量室内の側壁面とのクリアランスを一定に保ちつつ
運動されるため、器差の変化がなくなり正確な計量がな
される。FIG. 10 shows a bearing having a perforated shape in which the shaft hole 204 of the rotating body 201 is gradually reduced in diameter to the shaft diameter of the end face. A fixed shaft having a shape to be fitted into the shaft hole is provided on a side wall surface in the measuring chamber for supporting the correction. A fixed shaft provided on the wall surface of the measuring chamber is fitted into a shaft hole having a shape gradually narrowing with respect to the shaft hole on the end face of the rotating body, and is rotatably housed. The rotator rotates while the rotational position is centripetally maintained by the flow of the fluid, as in the case shown in FIG. 9, and is moved while maintaining a constant clearance between the end surface of the rotator and the side wall surface in the measuring chamber. Therefore, there is no change in instrumental error, and accurate measurement is performed.
第3図に示した計量室内部の隙間が大きい構造の内部
漏れは、小流量域及び大流量域で多くなり、器差値が大
である。クリアランスを小さくした構造では、同一粘度
の流体は、第4図のごとく漏れが相対的に少なくなる
が、異物の咬み込みによる停止事故の危険があるため、
容積式流量計のQE曲線の示す内部漏れの現象は免れない
のであり、各仕様毎のQE曲線に対応した回転体の回転速
度と相関関係にあたる器差値により補正することによ
り、正確な流量に補正する。The internal leakage of the structure having a large gap inside the measuring chamber shown in FIG. 3 increases in the small flow rate region and the large flow rate region, and the instrumental difference value is large. In a structure with a reduced clearance, fluids of the same viscosity have relatively less leakage as shown in FIG. 4, but there is a risk of a stop accident due to the intrusion of foreign matter,
The phenomenon of internal leakage indicated by the QE curve of the positive displacement flow meter is inevitable, and by correcting with the instrumental difference value that correlates with the rotation speed of the rotating body corresponding to the QE curve for each specification, accurate flow rate can be achieved to correct.
本願の発明は、回転体の自由な回転を可能にするため
の設計上の隙間からの漏れから必然的に生ずる内部漏れ
およびインボリュート歯型による小流量域における戻り
現象によるQE曲線の異常を修正する手段により、微小流
量および大流量の器差値を修正して理想的な直線性を示
すQE曲線となるごとく流量計の特性に基づく計器固有の
計測誤差を補正するためのデータを記録したROMを用い
た手段を加えた器差補正方法、前記手段を合わせた複数
の補正機能のROMを内装する制御装置により、正確な流
量を示す器差補正手段を用いた器差補正装置を提供する
にある。更に軽量素材の成形加工による回転体の形状
を、他端を計量室のこれと同様の形状をなす固定軸と填
め合わされる軸孔となした非円形歯車も、同様の求心的
回転作用をなし、このような構成も発明の要旨に包含さ
れる。The present invention corrects an abnormal QE curve due to internal leakage and return phenomenon in a small flow rate region due to an involute tooth shape which are inevitably caused by leakage from a design gap to allow free rotation of a rotating body. By means, a ROM that records data for correcting instrument-specific measurement errors based on the characteristics of the flow meter so that the instrumental difference value of the small flow rate and the large flow rate is corrected and a QE curve showing ideal linearity is obtained It is an object of the present invention to provide an instrumental difference correction method using an instrumental difference correction unit that shows an accurate flow rate by using a controller that incorporates a ROM for a plurality of correction functions that combine the above means, . Furthermore, non-circular gears with the shape of a rotating body formed by processing a lightweight material and the other end formed as a shaft hole to be fitted with a fixed shaft having the same shape as that of the measuring chamber also perform the same centripetal rotation. Such a configuration is also included in the gist of the invention.
[発明の効果] 本発明は信頼性の高い容積式流量計の指示流量の精度
を高めるため、被計測流体の温度変化に対応して流体の
比重、粘度、及び流量計本体の特性に基づく計器固有の
測定誤差をリアルタイムに回転速度により演算される補
正値をもって換算流量を表示発信する電子式補正により
広い流量範囲に亙り、しかも僅かな温度変化においても
超精密計測機能を発揮する効果があり、このような僅か
な温度環境変化に関連して変化する計器固有の計測誤差
の温度変化による微小な変化を把握して補正する演算装
置を制御装置内に装備せることを特徴とし、また軽量に
して計量室内の軸中心に対し求心的回転作動の回転素子
による安定した機能により誤差の無い計測が可能とな
る。[Effects of the Invention] The present invention provides an instrument based on the specific gravity and viscosity of a fluid and the characteristics of the flowmeter main body in response to a temperature change of a fluid to be measured, in order to enhance the accuracy of the indicated flow rate of a highly reliable positive displacement flowmeter. The electronic correction that displays and sends the converted flow rate with the correction value calculated by the rotation speed in real time has the effect of exhibiting the ultra-precision measurement function over a wide flow rate range and even a slight temperature change. It is characterized by equipping the control unit with an arithmetic unit that grasps and corrects a minute change due to temperature change of the measurement error peculiar to the instrument that changes in association with such a slight temperature environment change, and also reduces the weight. Error-free measurement is possible due to the stable function of the rotating element that rotates concentrically with respect to the axis center in the measuring chamber.
第1図、第2図、第3図及び第4図は、容積式流量計の
器差曲線を示す説明図、第5図は本発明装置の構成を示
す説明図、第6図、第7図及び第8図は器差補正のため
の電子式演算機構を組み込んだ制御装置の回路説明図、
第9図及び第10図は円錐体状の回転軸及び軸受け孔を設
けた非円形歯車回転体を示す図である。 1:流量計、5:温度センサー、7:回転検知センサー、8:配
線、100:制御装置、101:変換器、103:表示器、104,106:
ドライバー、105:カウンター、107:クロック、108,109:
入出力インターフェイス、110,113,116:ROM、118:温度
ー固有器差値・演算用ROM、112,115,118:CPU、201:非円
形回転体、202:テーパー軸、204:軸孔、203:マグネット1, 2, 3 and 4 are explanatory diagrams showing instrumental curves of positive displacement flowmeters, FIG. 5 is an explanatory diagram showing the structure of the apparatus of the present invention, FIG. 6, FIG. FIG. 8 and FIG. 8 are circuit diagrams of a control device incorporating an electronic operation mechanism for correcting instrumental differences,
9 and 10 are views showing a non-circular gear rotating body provided with a conical rotating shaft and a bearing hole. 1: flow meter, 5: temperature sensor, 7: rotation detection sensor, 8: wiring, 100: controller, 101: converter, 103: display, 104, 106:
Driver, 105: Counter, 107: Clock, 108, 109:
I / O interface, 110, 113, 116: ROM, 118: ROM for temperature-specific instrumental difference / calculation, 112, 115, 118: CPU, 201: non-circular rotating body, 202: tapered shaft, 204: shaft hole, 203: magnet
Claims (3)
り算出される流量換算値を、温度の関数である被計測流
体の比重−器差等相関関係が与える補正値により修正し
た流量を出力・表示させるため、流路内に設けた温度セ
ンサーの導線を流量計の電子演算装置に接続し、温度変
化を示す電気信号を演算装置に入力させる流量計器に於
いて、温度の変化に対応して変化する被計測流体の体積
膨張・収縮の変化に対応する補正値を入力したROMを内
装した中央制御装置に温度センサーによりの信号を入力
させ温度の関数である被計測流体の体積対器差の相関関
係が与える器差補正値を演算出力させて求める手段と、
前記補正値を前記回転素子の回転毎に発信されるパルス
信号の周期を測定して算出させる手段と、算出させた流
量換算値に加えてリアルタイムに修正される流量を出力
・表示させる手段とを兼ね備えた、即ち流体の温度と連
係する体積膨張係数の相関関係、及び流体の温度と連係
する粘性係数の相関関数を記録したメモリー及び、流量
計の特性に基づく計器固有の計測誤差を補正するための
データを記録したROMを内装した中央制御装置に回転検
知センサーの信号を入力させ、回転体の回転速度の関数
である計器固有の計測誤差を補正する手段を用いた容積
式流量計の器差補正方法。1. A flow rate obtained by correcting a flow rate conversion value calculated from the rotation of a non-circular rotating body element of a positive displacement type flow meter by a correction value given by a correlation such as a specific gravity-instrumental difference of a fluid to be measured as a function of temperature. In order to output and display the temperature, the conductor of the temperature sensor provided in the flow path is connected to the electronic arithmetic unit of the flow meter, and the electric signal indicating the temperature change is input to the arithmetic unit. A signal from a temperature sensor is input to a central control unit equipped with a ROM in which a correction value corresponding to a change in volume expansion and contraction of a fluid to be measured corresponding to a change is input. Means for calculating and outputting an instrumental difference correction value given by the instrumental correlation,
Means for measuring and calculating the period of the pulse signal transmitted for each rotation of the rotary element, and means for outputting and displaying the flow rate corrected in real time in addition to the calculated flow rate conversion value. A memory for recording the correlation function of the volume expansion coefficient associated with the temperature of the fluid and the correlation function of the viscosity coefficient associated with the temperature of the fluid, and correcting the measurement error inherent in the meter based on the characteristics of the flow meter. The signal of the rotation detection sensor is input to the central control unit equipped with the ROM that stores the data of the data of the volume, and the instrument error of the positive displacement type flow meter using the means to correct the measurement error inherent in the instrument, which is a function of the rotation speed of the rotating body Correction method.
回転素子の端面の径に対し内径の径を小ならしめた形状
となし、これに填め合わされる固定軸を計量室の内測壁
面に設け、回転自在に収装してなる容積式流量計の温度
と相関関係にある流体の体積膨張収縮、流体の粘度の変
化に伴う器差の変化、計測誤差と流体の温度変化と連係
する体積膨張係数の相関関係、及び流体の温度変化に伴
う粘性係数の相関関係のために生ずる計測誤差を補正す
る特許請求の範囲第1項記載の容積式流量計の器差補正
方法。2. A shaft hole of a non-circular rotary element of a twin rotor type is formed to have a shape in which an inner diameter is made smaller than a diameter of an end face of the rotary element, and a fixed shaft to be fitted therein is used as a measuring chamber. The volume expansion and contraction of the fluid, which is correlated with the temperature of the positive displacement flowmeter, which is installed on the inner measuring wall and rotatably housed, the change in the instrumental error due to the change in the viscosity of the fluid, the measurement error and the temperature of the fluid 2. A method according to claim 1, wherein the measurement error caused by the correlation between the volume expansion coefficient associated with the change and the correlation between the viscosity coefficients associated with the temperature change of the fluid is corrected. .
体に構成され、該回転軸を、回転素子の端面の径に対し
外単の計を細い形状となし、これと填め合わされる計量
室内測の軸受けを同様の形状となし、回転素子を回転自
在に収装してなる容積式流量計の計測に伴う流体の温度
変化による計器固有の測定誤差、流体の温度変化と連係
する体積膨張係数の相関関係及び、流体の温度変化に伴
う粘性係数の相関関係のために生ずる計測誤差を補正す
る特許請求の範囲第1項記載の容積式流量計の器差補正
方法。3. A double-rotor type non-circular rotary element and a rotary shaft are integrally formed, and the rotary shaft is formed into a shape that is thinner with respect to the diameter of the end face of the rotary element, and is fitted with this. The shape of the bearing in the measuring chamber is the same as that of the measuring chamber, and it is linked to the measurement error inherent in the instrument due to the temperature change of the fluid accompanying the measurement of the positive displacement flowmeter with the rotating element rotatably housed, and the temperature change of the fluid. 2. The method according to claim 1, wherein a measurement error caused by a correlation between a volume expansion coefficient and a viscosity coefficient caused by a temperature change of a fluid is corrected.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP89300749.2 | 1989-01-26 | ||
EP89300749A EP0326380B1 (en) | 1988-01-26 | 1989-01-26 | Compensating method and device for instrumental error in rotary displacement flowmeter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02236123A JPH02236123A (en) | 1990-09-19 |
JP2810895B2 true JP2810895B2 (en) | 1998-10-15 |
Family
ID=8202571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1339490A Expired - Fee Related JP2810895B2 (en) | 1989-01-26 | 1990-01-23 | Compensation method for volumetric flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2810895B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001324365A (en) * | 2000-05-15 | 2001-11-22 | Akitoshi Kitano | Instrumental error correcting method for volumetric flow meter |
CA2782000C (en) | 2009-12-01 | 2018-04-24 | Nestec S.A. | Flowmeter assembly for a beverage machine |
JP2019200181A (en) * | 2018-05-18 | 2019-11-21 | 株式会社デンソー | Gas flow rate meter and gas flow rate metering method |
-
1990
- 1990-01-23 JP JP1339490A patent/JP2810895B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02236123A (en) | 1990-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01191019A (en) | Instrumental error correcting method for flowmeter | |
US3550426A (en) | Fluid meter field checking method and apparatus | |
US3934473A (en) | Fluid flow meter with counter rotating turbine impellers | |
JPH0560533B2 (en) | ||
JP2000162012A (en) | Method for correcting instrumental error of volume type flowmeter | |
JP2810895B2 (en) | Compensation method for volumetric flow meter | |
US7930134B2 (en) | Electronic device for measuring motion of screw mechanism | |
JPH1089443A (en) | Elliptic gear | |
CN111089530B (en) | Measuring device and measuring method for return clearance of planetary gear motor | |
CN118032068B (en) | Venturi type mechanical flowmeter | |
JP2001324365A (en) | Instrumental error correcting method for volumetric flow meter | |
EP3783319A2 (en) | Flow meter | |
CN105277142A (en) | High-precision hand-cranking low-speed rotating table | |
KR100536432B1 (en) | Servo type volumetric flowmeter | |
JP3620997B2 (en) | Improvement of non-circular gear and non-circular gear type flow meter using the same | |
CN104568021A (en) | Three-screw-rod flow meter | |
JP4254967B2 (en) | Servo type volumetric flow meter | |
JP2002168619A (en) | Method and device for measuring error such as eccentricity of gear | |
CN218469691U (en) | Adjustable position gauge | |
US3301054A (en) | Fluid meter with summating drive | |
JP2003035582A (en) | Method of correcting instrumental error of capacity type flow meter | |
US3318148A (en) | Mass flowmeter | |
JP2002156257A (en) | Servo type volumetric flowmeter | |
US1230583A (en) | Pressure-correcting meter. | |
US3056291A (en) | Flowmeter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080807 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees | ||
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |