JP2810435B2 - Laser processing method - Google Patents

Laser processing method

Info

Publication number
JP2810435B2
JP2810435B2 JP1225928A JP22592889A JP2810435B2 JP 2810435 B2 JP2810435 B2 JP 2810435B2 JP 1225928 A JP1225928 A JP 1225928A JP 22592889 A JP22592889 A JP 22592889A JP 2810435 B2 JP2810435 B2 JP 2810435B2
Authority
JP
Japan
Prior art keywords
substrate
processing
laser
shape
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1225928A
Other languages
Japanese (ja)
Other versions
JPH0389518A (en
Inventor
典明 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1225928A priority Critical patent/JP2810435B2/en
Publication of JPH0389518A publication Critical patent/JPH0389518A/en
Application granted granted Critical
Publication of JP2810435B2 publication Critical patent/JP2810435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はレーザ加工方法に関するものであり、たとえ
ば太陽電池基板に形成するV字溝のような微細窪み加工
に適したレーザ加工方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser processing method, for example, a laser processing method suitable for processing a fine recess such as a V-shaped groove formed in a solar cell substrate. is there.

<従来の技術> 近年、レーザ源の多様化、レーザ装置の進歩に伴いレ
ーザ加工は増々幅広い分野で応用されるようになってお
り、半導体の分野においても抵抗のトリミング、基板の
穴あけ、エッチング等様々な用途に利用されている。
<Prior Art> In recent years, with the diversification of laser sources and the progress of laser devices, laser processing has been increasingly applied in a wide range of fields. In the field of semiconductors, trimming of resistors, drilling of substrates, etching, and the like have been performed. It is used for various purposes.

ところで、従来太陽電池基板の反射防止用V字溝、集
積回路の素子分離用溝等、場所により深さの異なる微細
な窪みが多岐にわたって利用されており、現在はその多
くが化学エッチングにより形成されている。例えばシリ
コン太陽電池では、受光面での反射率を低減しエネルギ
ー変換効率を高める為に、第6図に示すようなテクスチ
ャエッチングと呼ばれる処理がシリコン基板61に施され
ピラミッド状の凹凸62が表面に形成されている。
By the way, a variety of fine pits having different depths depending on locations, such as antireflection V-shaped grooves of a solar cell substrate and element isolation grooves of an integrated circuit, have been widely used, and most of them are currently formed by chemical etching. ing. For example, in a silicon solar cell, a process called texture etching as shown in FIG. 6 is performed on a silicon substrate 61 to reduce the reflectance on the light receiving surface and increase the energy conversion efficiency, and pyramid-shaped irregularities 62 are formed on the surface. Is formed.

<発明が解決しようとする課題> 前記シリコン太陽電池で用いられるテクスチャエッチ
ングの場合、単結晶シリコン基板ではピラミッド状凹凸
がうまく形成されエネルギー変換効率の向上に大きく貢
献しているが、多結晶シリコン基板ではピラミッド状凹
凸がうまく形成されずエネルギー変換効率があまり大き
くなっていない。これはテクスチャエッチングが異方性
エッチングを利用したものであり、多結晶シリコン基板
の場合には、ピラミッド状凹凸形成に有効な{100}面
の基板表面に占める割合が少ないため(例えば、低コス
ト基板として開発されたキャスト基板では10%以下)で
ある。このような多結晶シリコン基板に対して、等方性
エッチングによるフォトリソグラフィによりV字溝を形
成する試みも行われたが、レジストの塗布、露光、現象
を多数回繰り返す必要があり手間がかかるため実用には
至らなかった。また、テクスチャエッチングでは単結晶
基板を用いた場合でもピラミッド状凹凸の大きさを制御
するのは難しい。このように化学エッチングによる場所
により深さの異なる微細な窪みの形成には、形状の制御
が難しい、基板が制限される等の問題がある。
<Problems to be Solved by the Invention> In the case of texture etching used in the silicon solar cell, pyramid-shaped irregularities are formed well on a single-crystal silicon substrate and greatly contribute to improvement of energy conversion efficiency. In this case, the pyramid-shaped irregularities are not formed well, and the energy conversion efficiency is not so large. This is because texture etching uses anisotropic etching. In the case of a polycrystalline silicon substrate, the ratio of the {100} surface effective for forming pyramid-shaped irregularities to the substrate surface is small (for example, low cost). 10% or less for cast substrates developed as substrates). Attempts have been made to form a V-shaped groove on such a polycrystalline silicon substrate by photolithography using isotropic etching, but it is necessary to repeat the application, exposure and phenomena of the resist a number of times, which is troublesome. It did not reach practical use. In texture etching, it is difficult to control the size of the pyramid-shaped irregularities even when a single crystal substrate is used. The formation of the fine dents having different depths depending on the locations by the chemical etching has problems such as difficulty in controlling the shape and limitation of the substrate.

本発明は、以上のような点を鑑み、レーザ光を利用す
ることにより上記のような窪みを種々の基板に制御性よ
く簡単に形成する方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a method of easily forming the above-described depression on various substrates with good controllability by using a laser beam.

<課題を解決するための手段> 前記課題を解決する為に本発明は、太陽電池基板等の
加工面にレーザ光を照射することによる加工方法におい
て、加工面の加工形状に応じてあらかじめ決められた速
度でレーザ光の照射形状を変化させながらかつ照射位置
を移動させながら略V字溝の微細線状窪み加工を行うこ
とを特徴とするレーザ加工方法を提供する。
<Means for Solving the Problems> In order to solve the above problems, the present invention provides a method for irradiating a processing surface such as a solar cell substrate with a laser beam, the method being predetermined in accordance with the processing shape of the processing surface. A laser processing method characterized by performing a fine linear depression of a substantially V-shaped groove while changing an irradiation shape of a laser beam at a varied speed and moving an irradiation position.

<作 用> レーザ光により加工物表面に形成される窪みはその照
射時間により深さが決まるため、一つの窪み内で場所に
より深さを変える場合には、従来法では窪みの大きさよ
り小さい適当な大きさにレーザ光の照射形状を固定し、
深さの異なる場所ごとにビームを移動し、その場所ごと
に加工をしなければならず加工に長時間を要する。
<Operation> The depth of the pit formed on the surface of the workpiece by laser light is determined by the irradiation time. The irradiation shape of the laser beam to a suitable size,
The beam must be moved for each location having different depths, and processing must be performed for each location, which takes a long time.

これに比べ本発明による加工方法では、例えば第1図
に示すように基板11表面にレーザ光を照射し、このレー
ザ光照射形状13を第1図(a)→(b)→(c)→
(d)というように時間と共に小さくすることにより、
レーザ光の照射による溶融・蒸発層12の面積もこれにつ
れて小さくなり、これによって場所による深さの異なる
窪みが従来法によって最深部を一カ所加工するのと同じ
時間で形成される。すなわち、本発明による加工方法で
は、加工物表面に照射したレーザ光の照射形状を時間と
共に変えることによって、場所ごとのレーザ光の照射時
間に分布が生じるので必要な照射時間の異なる場所を同
時に加工できることとなり、短時間で加工が完了するこ
とになる。
In contrast, in the processing method according to the present invention, for example, as shown in FIG. 1, the surface of the substrate 11 is irradiated with laser light, and the laser light irradiation shape 13 is changed to FIG. 1 (a) → (b) → (c) →
By decreasing over time as in (d),
The area of the melted / evaporated layer 12 due to the irradiation of the laser beam also becomes smaller accordingly, whereby pits having different depths depending on locations are formed in the same time as processing the deepest portion at one place by the conventional method. That is, in the processing method according to the present invention, the irradiation shape of the laser light applied to the surface of the workpiece is changed with time, so that a distribution occurs in the irradiation time of the laser light for each place. The processing can be completed in a short time.

またレーザ光は光学系のアパチャにより照射形状を精
度よくかつ微細に制御できるため、V字溝等場所により
深さの異なる微細な窪みを制御よく形成できる。
In addition, since the irradiation shape of the laser beam can be precisely and finely controlled by the aperture of the optical system, it is possible to form a fine depression having a different depth depending on the location such as a V-shaped groove with good control.

<実施例> 実施例1. 多結晶シリコン太陽電池基板の表面加工における本発
明の実施例を示す。
<Example> Example 1. An example of the present invention in surface processing of a polycrystalline silicon solar cell substrate will be described.

レーザ光源としてXeCl光(波長λ=308nm)を有し、
X方向およびY方向ともに1〜50μmの範囲でコンピュ
ータ制御により可変である矩形スリットを有するレーザ
加工装置を用いて多結晶シリコン基板の加工を行った。
XeCl光を光源としたのは、半導体基板の加工の際に紫外
光レーザ、特に360nm以下のものを用いれば、基板内へ
の浸入深さが非常に浅く熱による基板への影響が少ない
こと、吸収係数が大きく効率良く加工できること等の理
由からであり、特にXeCl光は安定性に優れていることか
らである。本装置により、レーザ光エネルギー強度を2
3.6J/cm2とし発振周波数100Hzで400μm厚の多結晶シリ
コン基板上にはレーザ光を照射すると約30秒で基板は貫
通した。このデータより、約8回の照射で基板を深さ方
向に1μm加工できることがわかったので、第2図に示
すように、8回の照射毎にレーザ光照射形状21を50×50
μmの正方形から1×1μmの正方形までステップ状に
小さくし、2.8秒で約35μmの深さを有する逆ピラミッ
ド状の窪み23を形成した。この窪み23は第2図(b)に
示すようなV字断面を有している。さらにX−Yステー
ジに固定された基板を順次移動することにより基板全面
に窪み23を形成した。
XeCl light (wavelength λ = 308nm) as laser light source,
The processing of the polycrystalline silicon substrate was performed using a laser processing apparatus having a rectangular slit which was variable by computer control in the X and Y directions in a range of 1 to 50 μm.
The XeCl light was used as the light source because, when processing the semiconductor substrate, using an ultraviolet laser, especially one with a wavelength of 360 nm or less, the penetration depth into the substrate is very shallow and the effect on the substrate by heat is small, This is because the absorption coefficient is large and processing can be performed efficiently, and in particular, XeCl light is excellent in stability. This device reduces the laser light energy intensity by 2
When a laser beam was irradiated onto a 400 μm thick polycrystalline silicon substrate at an oscillation frequency of 100 Hz at 3.6 J / cm 2 , the substrate penetrated in about 30 seconds. From this data, it was found that the substrate could be processed by 1 μm in the depth direction by about eight irradiations. Therefore, as shown in FIG.
The size was reduced stepwise from a square of μm to a square of 1 × 1 μm, and an inverted pyramid-shaped depression 23 having a depth of about 35 μm was formed in 2.8 seconds. The depression 23 has a V-shaped cross section as shown in FIG. 2 (b). Further, by sequentially moving the substrate fixed to the XY stage, a depression 23 was formed on the entire surface of the substrate.

このような形状に加工することは、従来の照射形状を
固定したレーザ加工法では非常に困難であり、また加工
時間も非常に多くを要したが、本発明による方法によれ
ば、簡単にかつ短時間で形成できることがわかった。
Processing into such a shape is very difficult with the conventional laser processing method in which the irradiation shape is fixed, and also requires a very long processing time. However, according to the method of the present invention, it is simple and easy. It turned out that it can be formed in a short time.

第3図には本発明により形成したV字溝の例を示す。
本V字溝34はレーザ光の照射形状31をまず50×50μmの
正方形にしておき、1照射毎に6μmのステップでX方
向32にステージを動かし基板33の端部まで照射位置が移
動したところで、Y軸スリットにより照射形状を小さく
し、さらに逆のX方向のシテージを動かすということを
繰り返すことによって、深さ方向に約1μmずつの段差
を有する幅が50μmで深さがほぼ35μmのV字状に形成
され、さらに、Y方向にステージを順次動かすことによ
って、全面に同様のV字溝34が形成された。
FIG. 3 shows an example of a V-shaped groove formed according to the present invention.
In this V-shaped groove 34, the irradiation shape 31 of the laser light is first made into a square of 50 × 50 μm, and the stage is moved in the X direction 32 in steps of 6 μm for each irradiation, and the irradiation position is moved to the end of the substrate 33. By repeating the process of reducing the irradiation shape by the Y-axis slit and moving the opposite stage in the X direction, a V-shape having a width of 50 μm and a depth of approximately 35 μm having a step of about 1 μm in the depth direction is repeated. By moving the stage sequentially in the Y direction, a similar V-shaped groove 34 was formed on the entire surface.

こうして作製された基板を用い、第4図に示すV字溝
41と受光面電極42とが直交する構造を有する太陽電池を
作製した。V字溝41と受光面電極42とが直交するように
したのは、光照射により発生した電流の電極への電流経
路を平坦にし短くする為である。この太陽電池の光反射
率は先の実施例の逆ピラミッド状の窪みを有する基板上
に形成した太陽電池より大きいものの、電流経路がこれ
より短くなる為に直列抵抗成分が減少し、全体としては
変換効率はより高い値を示した。また、従来の単結晶シ
リコン基板をテクスチャエッチングしたものと比べても
同等の小さい反射率が得られていることがわかった。ま
た、レーザ加工による基板の劣化はなかった。
Using the substrate thus manufactured, the V-shaped groove shown in FIG.
A solar cell having a structure in which 41 and the light-receiving surface electrode 42 are orthogonal to each other was manufactured. The reason why the V-shaped groove 41 is orthogonal to the light receiving surface electrode 42 is to make the current path generated by the light irradiation to the electrode flat and short. Although the light reflectance of this solar cell is larger than that of the solar cell formed on the substrate having the inverted pyramid-shaped depression of the previous embodiment, the series resistance component is reduced because the current path is shorter than this, and as a whole, The conversion efficiency showed a higher value. In addition, it was found that the same small reflectance was obtained as compared with a conventional single-crystal silicon substrate subjected to texture etching. In addition, there was no deterioration of the substrate due to the laser processing.

本発明によるレーザ加工の方法を用いる事により、従
来困難であった多結晶シリコン基板の反射率を小さくす
る為の加工が容易に出来るようになり、また、微細形状
を正確に加工できる為、理想的な形状の加工が可能にな
り、従来の単結晶以上の光利用率が達成できることがわ
かった。さらに、電極形成部並びに基板周辺部を未加工
のまま残すことが容易であるため、特に低コスト化を目
指した薄型基板では、基板強度を保つためのリブとして
残すことによってさらに有効に本発明を利用できること
もわかった。
By using the laser processing method according to the present invention, processing for reducing the reflectance of a polycrystalline silicon substrate, which has been difficult in the past, can be easily performed, and since a fine shape can be accurately processed, it is ideal. It was found that processing of a general shape became possible, and a light utilization rate higher than that of a conventional single crystal could be achieved. Further, since it is easy to leave the electrode forming portion and the peripheral portion of the substrate unprocessed, especially in a thin substrate aiming at low cost, the present invention can be more effectively achieved by leaving the rib as a rib for maintaining the substrate strength. I also found it available.

実施例2. 電極を2層配線する場合の本発明の適用例を示す。第
5図(a)に示すようにガラス基板51上にNi下部電極52
を2000Å形成した後、上部に絶縁層としてポリイミド層
53を1μm形成した。この後、50μm径のコンタクトホ
ール55を実施例1と同じレーザ装置を用いポリイミド層
53に形成した。レーザ光の照射形状は25×50μmの長方
形から50×50μmの正方形へと等速で1秒間で大きくし
た。また比較のために第5図(b)に示す従来法による
コンタクトホール56も形成した。この後、スパッタリン
グ法によりNi上部電極4を2000Å形成し、2種のコンタ
クトホールについて欠陥の発生率を調べると、従来方法
では50%本発明では0%であった。また、加工に要した
時間は同じであった。
Embodiment 2 An application example of the present invention in the case of wiring two layers of electrodes will be described. As shown in FIG. 5 (a), a Ni lower electrode 52 is placed on a glass substrate 51.
After forming 2000mm, polyimide layer as an insulating layer on top
53 was formed at 1 μm. Thereafter, a contact hole 55 having a diameter of 50 μm is formed in the polyimide layer using the same laser device as in the first embodiment.
53 was formed. The irradiation shape of the laser beam was increased from a rectangle of 25 × 50 μm to a square of 50 × 50 μm at a constant speed in one second. For comparison, a conventional contact hole 56 shown in FIG. 5B was also formed. Thereafter, the Ni upper electrode 4 was formed to a thickness of 2000 ° by the sputtering method, and the occurrence rate of defects in the two types of contact holes was examined. The time required for processing was the same.

以上の事から、コンタクトホール形成についても本発
明は非常に有効であることがわかった。
From the above, it has been found that the present invention is also very effective for forming contact holes.

<発明の効果> 本発明は上記のような構成であるから、従来困難であ
った多結晶シリコン基板の反射率を小さくする為の加工
が容易にでき、また、微細形状を正確に加工できる為、
理想的な形状の加工が可能になり、従来の単結晶以上の
光利用効率が達成でき、さらに、電極形成部並びに基板
周辺部を未加工のまま残すことが容易である為、特に低
コスト化を目指した薄型基板では、基板強度を保つため
のリブとして残すことが容易に可能となる。
<Effects of the Invention> Since the present invention has the above-described configuration, processing for reducing the reflectance of a polycrystalline silicon substrate, which has been conventionally difficult, can be easily performed, and a fine shape can be accurately processed. ,
Ideal shape processing becomes possible, light utilization efficiency higher than that of conventional single crystals can be achieved, and it is easy to leave the electrode formation part and substrate peripheral part unprocessed, thus reducing costs in particular. In a thin substrate aiming at the above, it is easily possible to leave it as a rib for maintaining the substrate strength.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による加工方法の説明図、 第2図は多結晶シリコン基板上に形成された逆ピラミッ
ド状の窪みを示す図、 第3図は多結晶シリコン基板上に形成されたV字溝を示
す図、 第4図はV字溝を形成した基板上に作製された太陽電池
の構造図、 第5図は実施例2のコンタクトホールを示す図、 第6図はテクスチャエッチングにより形成されるピラミ
ッド状の凹凸を示す図である。 13:レーザ光照射形状 21:レーザ光照射形状 23:逆ピラミッド状窪み 31:レーザ光照射形状 34:V字溝 41:V字溝 42:受光面電極 43:基板 44:裏面電極 55,56:コンタクトホール
FIG. 1 is an explanatory view of a processing method according to the present invention, FIG. 2 is a view showing an inverted pyramid-shaped depression formed on a polycrystalline silicon substrate, and FIG. 3 is a V-shape formed on a polycrystalline silicon substrate. FIG. 4 is a view showing a groove, FIG. 4 is a structural view of a solar cell fabricated on a substrate having a V-shaped groove, FIG. 5 is a view showing a contact hole of Example 2, and FIG. 6 is formed by texture etching. FIG. 3 is a diagram showing pyramid-shaped irregularities. 13: Laser light irradiation shape 21: Laser light irradiation shape 23: Inverted pyramid-shaped depression 31: Laser light irradiation shape 34: V-shaped groove 41: V-shaped groove 42: Light receiving surface electrode 43: Substrate 44: Back surface electrode 55, 56: Contact hole

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】太陽電池基板等の加工面にレーザ光を照射
することによる加工方法において、加工面の加工形状に
応じてあらかじめ決められた速度でレーザ光の照射形状
を変化させながらかつ照射位置を移動させながら略V字
溝の微細線状窪み加工を行うことを特徴とするレーザ加
工方法。
In a processing method by irradiating a processing surface such as a solar cell substrate with a laser beam, the irradiation position is changed while changing the irradiation shape of the laser beam at a predetermined speed according to the processing shape of the processing surface. A fine linear recess of a substantially V-shaped groove while moving the laser beam.
JP1225928A 1989-08-31 1989-08-31 Laser processing method Expired - Fee Related JP2810435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1225928A JP2810435B2 (en) 1989-08-31 1989-08-31 Laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1225928A JP2810435B2 (en) 1989-08-31 1989-08-31 Laser processing method

Publications (2)

Publication Number Publication Date
JPH0389518A JPH0389518A (en) 1991-04-15
JP2810435B2 true JP2810435B2 (en) 1998-10-15

Family

ID=16837090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1225928A Expired - Fee Related JP2810435B2 (en) 1989-08-31 1989-08-31 Laser processing method

Country Status (1)

Country Link
JP (1) JP2810435B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313434B1 (en) * 1999-05-27 2001-11-06 International Business Machines Corporation Method for creation of inclined microstructures using a scanned laser image
JP2003151921A (en) * 2001-11-09 2003-05-23 Sanyo Electric Co Ltd Compound semiconductor and method of manufacturing the same
WO2009016776A1 (en) 2007-07-31 2009-02-05 Mitsubishi Electric Corporation Method for manufacturing photovoltaic device
JP5185207B2 (en) 2009-02-24 2013-04-17 浜松ホトニクス株式会社 Photodiode array
JP2013065912A (en) * 2009-02-24 2013-04-11 Hamamatsu Photonics Kk Photodiode manufacturing method and photodiode
JP5185208B2 (en) 2009-02-24 2013-04-17 浜松ホトニクス株式会社 Photodiode and photodiode array
JP5805679B2 (en) * 2009-02-24 2015-11-04 浜松ホトニクス株式会社 Semiconductor photo detector
JP5185206B2 (en) 2009-02-24 2013-04-17 浜松ホトニクス株式会社 Semiconductor photo detector
JP5185205B2 (en) 2009-02-24 2013-04-17 浜松ホトニクス株式会社 Semiconductor photo detector
JP2010283223A (en) * 2009-06-05 2010-12-16 Hamamatsu Photonics Kk Semiconductor optical detecting element and method of manufacturing semiconductor optical detecting element
CN107498189A (en) * 2017-08-28 2017-12-22 大族激光科技产业集团股份有限公司 A kind of laser processing of metal surface three-dimensional V-shaped groove structure
CN108031981A (en) * 2017-12-18 2018-05-15 中国科学院西安光学精密机械研究所 A kind of laser etching method and device for curved-surface structure shaping
CN110676348A (en) * 2019-10-09 2020-01-10 浙江正泰太阳能科技有限公司 Photovoltaic module production facility and weld and take engraving device thereof
CN113020799A (en) * 2019-12-09 2021-06-25 大族激光科技产业集团股份有限公司 Laser surface treatment method
CN114682923A (en) * 2020-12-30 2022-07-01 广东大族粤铭激光集团股份有限公司 Three-dimensional laser cutting method for three-dimensional hemispherical groove

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136618A (en) * 1986-11-28 1988-06-08 Sony Corp Energy irradiation
JPS63278368A (en) * 1987-05-11 1988-11-16 Nec Corp Forming method for viahole of semiconductor substrate

Also Published As

Publication number Publication date
JPH0389518A (en) 1991-04-15

Similar Documents

Publication Publication Date Title
JP2810435B2 (en) Laser processing method
KR900000561B1 (en) Manufacturing method of an ic and device
TWI363374B (en) Single scan irradiation for crystallization of thin films
US5011567A (en) Method of fabricating solar cells
US20090189164A1 (en) Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
JPS6384789A (en) Light working method
JP2004511908A (en) Method and apparatus for processing thin metal layers
JPS6122672A (en) Method of producing aerial diffused region of high aspect ratio in semiconductor article and diode produced thereby
KR960005952A (en) Formation method of multilayer wiring
CA1273275A (en) Preferential etching of a piezoelectric material
JPH05507390A (en) Method for thinning etching of substrates
US7560365B2 (en) Method of semiconductor thin film crystallization and semiconductor device fabrication
US3453723A (en) Electron beam techniques in integrated circuits
KR100611040B1 (en) Apparutus for thermal treatment using laser
EP0020135A1 (en) Three-dimensional integration by graphoepitaxy
KR100761346B1 (en) Method of manufacturing a crystalloid silicone
JPH0629212A (en) Manufacture of semiconductor device
JPS59182529A (en) Pattern formation of semiconductor layer
JPS59126634A (en) Formation of pattern
JPH02224346A (en) Formation of thin film transistor
JPH10214978A (en) Semiconductor micromachine and its manufacture
JP2641448B2 (en) Manufacturing method of optical parts
GB2023926A (en) Conductors for semiconductor devices
EP0308588B1 (en) Semiconductor-on-insulator fabrication method
JPS63299173A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees