JP2808914B2 - Hydrogen gas production method and hydrogen isotope analysis method using microcrystalline metal zinc - Google Patents

Hydrogen gas production method and hydrogen isotope analysis method using microcrystalline metal zinc

Info

Publication number
JP2808914B2
JP2808914B2 JP3071918A JP7191891A JP2808914B2 JP 2808914 B2 JP2808914 B2 JP 2808914B2 JP 3071918 A JP3071918 A JP 3071918A JP 7191891 A JP7191891 A JP 7191891A JP 2808914 B2 JP2808914 B2 JP 2808914B2
Authority
JP
Japan
Prior art keywords
zinc
hydrogen
hydrogen gas
water
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3071918A
Other languages
Japanese (ja)
Other versions
JPH0578101A (en
Inventor
晃 上田
康宏 窪田
勉 荒城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3071918A priority Critical patent/JP2808914B2/en
Priority to DE69206302T priority patent/DE69206302T2/en
Priority to EP92105643A priority patent/EP0507287B1/en
Priority to US07/863,717 priority patent/US5300276A/en
Publication of JPH0578101A publication Critical patent/JPH0578101A/en
Application granted granted Critical
Publication of JP2808914B2 publication Critical patent/JP2808914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水を還元し、その結果
発生した水素ガスを試料とする水素同位体比分析法にお
いて試料となる水素ガスの製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hydrogen gas as a sample in a hydrogen isotope ratio analysis method in which water is reduced and the resulting hydrogen gas is used as a sample.

【0002】[0002]

【従来の技術】一般に、水に含まれる重水素の濃度を知
る場合、水を還元し、その水に含まれる水素を完全にガ
ス化させた後、その水素ガスを試料として安定同位体分
析用質量分析計による水素の同位体分析を行い、その結
果から重水素濃度を算出する方法が採られている。
2. Description of the Related Art In general, when the concentration of deuterium contained in water is known, the water is reduced, the hydrogen contained in the water is completely gasified, and the hydrogen gas is used as a sample for stable isotope analysis. A method has been adopted in which hydrogen isotope analysis is performed by a mass spectrometer and the deuterium concentration is calculated from the results.

【0003】水を還元し、水素ガスを発生させる方法と
しては、従来より劣化ウランまたは亜鉛を用いる方法が
知られている。このうち前者は、一定温度の劣化ウラン
に試料水を通過させることによりガス化した水素を、テ
プラーポンプを用いて回収するもので、ウラン還元法と
呼ばれている。一方、後者は、水を高温真空下で金属亜
鉛と反応させ水素をガス化させるもので、亜鉛還元法と
呼ばれている。
As a method for reducing water to generate hydrogen gas, a method using depleted uranium or zinc has been known. In the former, the hydrogen gasified by passing sample water through depleted uranium at a certain temperature is recovered using a Tepler pump, and is called a uranium reduction method. On the other hand, the latter is a method in which water is reacted with metallic zinc under high-temperature vacuum to gasify hydrogen, and is called a zinc reduction method.

【0004】上記の各方法によれば、試料水中に含まれ
る水素が完全にガス化される。そのため、発生した水素
ガスを試料として水素の同位体比を分析することによ
り、前記試料水の重水素濃度を知ることができる。
[0004] According to each of the above methods, hydrogen contained in the sample water is completely gasified. Therefore, the deuterium concentration of the sample water can be known by analyzing the isotope ratio of hydrogen using the generated hydrogen gas as a sample.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記各
方法のうち、ウラン還元法においては、劣化ウランが入
手困難であり、また、発生した水素ガスの回収に時間が
かかる他、同位体比の異なる水を連続して劣化ウランに
通過させた場合には、前試料の影響により分析精度が低
下するという問題があった。一方、亜鉛還元法において
は、反応に用いられる金属亜鉛として特定の性状のもの
を用いなければ、試料水中に含有される水素を完全にガ
ス化させることができないという問題があった。
However, among the above methods, in the uranium reduction method, it is difficult to obtain depleted uranium, it takes time to recover the generated hydrogen gas, and the isotope ratio is different. When water is continuously passed through depleted uranium, there is a problem that the analysis accuracy is reduced due to the influence of the previous sample. On the other hand, in the zinc reduction method, there is a problem that hydrogen contained in the sample water cannot be completely gasified unless specific properties of metal zinc used in the reaction are used.

【0006】[0006]

【課題を解決するための手段】本発明は、水を高温真空
下で金属亜鉛と反応させて還元し、水素ガスを発生させ
る水素ガス製造法において、反応に用いられる金属亜鉛
の結晶粒径を5μm以下としたものである。
SUMMARY OF THE INVENTION The present invention relates to a hydrogen gas producing method in which water is reduced by reacting water with metallic zinc under a high temperature vacuum to generate hydrogen gas. It is set to 5 μm or less.

【0007】金属亜鉛粒は、通常、亜鉛を少なくともそ
の融点以上の温度で加熱、溶解した後、水中への滴下そ
の他の方法を用いて冷却、凝固させることにより造粒さ
れる。本発明においては、上記工程中亜鉛を溶解する
際、亜鉛に対し10ppm〜10000ppmの濃度でニッケ
ルを添加することにより、金属亜鉛粒を構成する亜鉛の
結晶粒径を、通常の20μm〜50μmから5μm以下へ
と微細化させることができる。また、この場合の金属亜
鉛粒の粒径は、1mm〜2mm前後が適当である。
[0007] Metal zinc particles are usually granulated by heating and dissolving zinc at least at a temperature equal to or higher than its melting point, followed by dropping into water and cooling and solidifying by using other methods. In the present invention, when dissolving zinc in the above step, by adding nickel at a concentration of 10 ppm to 10000 ppm with respect to zinc, the crystal grain size of zinc constituting metal zinc grains is reduced from the usual 20 μm to 50 μm to 5 μm. It can be refined to the following. Also, in this case, the particle diameter of the metal zinc particles is suitably about 1 mm to 2 mm.

【0008】ここで、亜鉛の結晶粒径を5μm以下とす
るために金属亜鉛粒に添加される物質は、特にニッケル
に限られるものではなく、他の重金属元素を始めとす
る、亜鉛の結晶粒径を微細化させる作用を有し、しかも
前記金属亜鉛粒による水の還元を妨げない物質の中から
任意に選択可能である。
Here, the substance added to the metallic zinc grains in order to make the crystal grain size of zinc 5 μm or less is not particularly limited to nickel. It can be arbitrarily selected from substances having an effect of reducing the diameter and not hindering the reduction of water by the metal zinc particles.

【0009】また、溶解した亜鉛を液体窒素その他の極
低温液体中に滴下して急冷する等、金属亜鉛粒造粒時の
温度条件を急激に変化させることにより亜鉛の結晶成長
を抑制し、前記亜鉛の結晶粒径を5μm以下としたり、
前述の急冷その他の操作により、金属亜鉛粒の微細構造
を薄層状あるいは多孔質状のような空隙率の高いものに
変化させ、それに伴い前記亜鉛の結晶粒径を5μm以下
まで微細化させることもできる。
Further, the crystal condition of zinc is suppressed by rapidly changing the temperature conditions at the time of granulating the metallic zinc, such as by dripping dissolved zinc into liquid nitrogen or other cryogenic liquid and rapidly cooling the same. The grain size of zinc should be 5 μm or less,
By the above-mentioned quenching and other operations, the fine structure of the zinc metal particles is changed to a thin layer or a porous material having a high porosity, and the crystal grain size of the zinc is reduced to 5 μm or less. it can.

【0010】一方、噴霧造粒や粉砕およびそれらの併用
により、金属亜鉛を直径5μm以下の微粉末としてもよ
い。更に、上記の各操作の内、複数のものを併用するこ
とももちろん可能である。
On the other hand, metallic zinc may be formed into a fine powder having a diameter of 5 μm or less by spray granulation, pulverization, or a combination thereof. Further, it is of course possible to use a plurality of the above operations in combination.

【0011】上記の各手段により調製した粒径5μm以
下の微結晶構造を有する金属亜鉛と、試料水とを高温真
空下で反応させると、前記試料水が全て還元し、酸化亜
鉛と水素ガスが生成される。すなわち、上記金属亜鉛を
用いることにより、試料水に含まれる水素を完全にガス
化させることができる。従って、上記反応の結果発生し
た水素ガスを試料とすれば、安定同位体質量分析計によ
る水素同位体比分析が可能である。
When zinc metal having a microcrystalline structure having a particle diameter of 5 μm or less prepared by each of the above means and a sample water are reacted under a high temperature vacuum, the sample water is all reduced, and zinc oxide and hydrogen gas are converted. Generated. That is, by using the metal zinc, hydrogen contained in the sample water can be completely gasified. Therefore, if the hydrogen gas generated as a result of the above reaction is used as a sample, a hydrogen isotope ratio analysis by a stable isotope mass spectrometer can be performed.

【0012】なお、上記の水素ガス製造法において、水
と金属亜鉛粒との反応温度は、亜鉛の融点である約42
0℃以下で、かつ反応に用いられる金属亜鉛粒の粒径に
応じて可能な限り高温とする。また、反応時間は2時間
〜3時間が標準的であるが、反応温度がより低い場合に
は、それに応じて反応時間を延長する必要がある。
In the above-described hydrogen gas production method, the reaction temperature between water and metallic zinc particles is about 42 which is the melting point of zinc.
The temperature is set to 0 ° C. or lower and as high as possible according to the particle size of the metal zinc particles used in the reaction. The reaction time is standard for 2 to 3 hours, but when the reaction temperature is lower, the reaction time needs to be extended accordingly.

【0013】[0013]

【実施例】次に、実施例を挙げて、本発明の効果につい
て説明する。金属亜鉛粒の製造工程において、亜鉛を溶
解する際に各々0ppm、6ppm、15ppm、および400p
pmの濃度でニッケルを添加し、結晶粒径が40μm、7
μm、5μm、および1μmである4種の金属亜鉛粒を調
製した。ここで、上記各金属亜鉛粒の粒径は全て2mmで
あった。
EXAMPLES Next, the effects of the present invention will be described with reference to examples. In the production process of metal zinc particles, 0 ppm, 6 ppm, 15 ppm, and 400 p
Nickel is added at a concentration of pm, and the crystal grain size is 40 μm,
Four types of metal zinc particles of μm, 5 μm, and 1 μm were prepared. Here, all of the metal zinc particles had a particle diameter of 2 mm.

【0014】更に、これらの金属亜鉛粒を用い、各々以
下の方法で同一の試料水から水素ガスを製造し、その水
素ガスを試料として、試料水に含まれる水素のガス化率
を測定した。
Further, using these metallic zinc particles, hydrogen gas was produced from the same sample water by the following methods, and the hydrogen gas was used as a sample to measure the gasification rate of hydrogen contained in the sample water.

【0015】(1) 図1に示すようなグリースレススト
ップコック4付きガラス製反応管1内に約1gの金属亜
鉛粒2を入れ、反応管1内の空気を吸引部3から排気
後、ヒーターを用い約250℃で加熱し、金属亜鉛粒2
に吸着している水分を除去する。 (2) ファインピペットを用い5μlの試料水を加えた
後、液体窒素により試料水を凍結させる。 (3) 反応管1内の空気を吸引部3から排気後、ストッ
プコック4を閉鎖して反応管1内を真空としたたまま、
420℃に保ったヒーターを用いて2時間〜4時間加熱
し、試料水を亜鉛で還元することにより水素ガスを発生
させる。
(1) About 1 g of metallic zinc particles 2 are put into a glass reaction tube 1 having a greaseless stopcock 4 as shown in FIG. And heated at about 250 ° C.
Removes moisture adsorbed on (2) After adding 5 μl of sample water using a fine pipette, freeze the sample water with liquid nitrogen. (3) After exhausting the air in the reaction tube 1 from the suction unit 3, the stop cock 4 is closed and the reaction tube 1 is kept in a vacuum state.
Heating is performed for 2 to 4 hours using a heater maintained at 420 ° C., and hydrogen is generated by reducing sample water with zinc.

【0016】その結果を表1に示す。なお、前記各金属
亜鉛粒の亜鉛の結晶粒径は、反射顕微鏡にて測定し、ま
た前記ガス化率は、反応開始4時間後における試料水中
の水素のガス化率(%)で表した。
The results are shown in Table 1. The crystal grain size of zinc in each of the metal zinc particles was measured with a reflection microscope, and the gasification rate was represented by the gasification rate (%) of hydrogen in the sample water 4 hours after the start of the reaction.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示す通り、上記方法による水素ガス
の製造において、試料水中の水素が100%ガス化され
たのは、金属亜鉛粒を構成する亜鉛の結晶粒径を5μm
以下とした場合であった。また、種々検討の結果、金属
亜鉛粒中の亜鉛の結晶粒径が5μm以下となるのは、ニ
ッケルが10ppm以上10000ppm以下の範囲で添加さ
れた場合であった。
As shown in Table 1, in the production of hydrogen gas by the above method, 100% of the hydrogen in the sample water was gasified because the crystal grain size of zinc constituting the metal zinc grains was 5 μm.
The case was as follows. As a result of various studies, the crystal grain size of zinc in the metal zinc grains was 5 μm or less when nickel was added in the range of 10 ppm to 10000 ppm.

【0019】その結果、結晶粒径が5μm以下である金
属亜鉛粒を用い、上記方法により製造して得た水素ガス
を試料とした場合には、安定同位体分析用質量分析計に
よる前記試料水の水素同位体分析が可能であった。更
に、その分析結果から、前記試料水の重水素濃度を算出
することができた。
As a result, when metal zinc particles having a crystal grain size of 5 μm or less are used as a sample and hydrogen gas obtained by the above method is used as a sample, the sample water obtained by the mass spectrometer for stable isotope analysis is used. Was available for hydrogen isotope analysis. Further, the deuterium concentration of the sample water could be calculated from the analysis result.

【0020】[0020]

【発明の効果】以上説明したように、本発明において
は、結晶粒径が5μm以下である金属亜鉛粒を調製し、
その金属亜鉛と試料水とを高温真空下で反応させて試料
水を還元し、水素ガスを発生させたところ、試料水に含
まれる水素を完全にガス化させることができた。従っ
て、その結果発生した水素ガスを試料とする、安定同位
体質量分析計による水素同位体比分析が可能となった。
As described above, in the present invention, zinc metal grains having a crystal grain size of 5 μm or less are prepared,
The sample zinc was reacted with the sample water under a high-temperature vacuum to reduce the sample water and generate hydrogen gas. As a result, hydrogen contained in the sample water was completely gasified. Therefore, hydrogen isotope ratio analysis by a stable isotope mass spectrometer using the resulting hydrogen gas as a sample has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】亜鉛還元法による水素発生に用いられる反応管
の側面図である。
FIG. 1 is a side view of a reaction tube used for hydrogen generation by a zinc reduction method.

【符号の説明】[Explanation of symbols]

1 反応管 2 金属亜鉛粒 3 吸引部 4 ストップコック DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Metal zinc particles 3 Suction unit 4 Stopcock

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C01B 3/08 C01B 4/00 G01N 31/00Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) C01B 3/08 C01B 4/00 G01N 31/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水を高温真空下で金属亜鉛と反応させて
還元し、水素ガスを発生させる水素ガスの製造法におい
て、反応に用いられる金属亜鉛の結晶粒径を5μm以下
としたことを特徴とする水素ガス製造法。
1. A method for producing hydrogen gas by reducing water by reacting water with metallic zinc under high-temperature vacuum to produce hydrogen gas, characterized in that the crystal grain size of metallic zinc used in the reaction is 5 μm or less. Hydrogen gas production method.
【請求項2】 請求項1記載の水素ガス製造法を用いた
水の水素同位体分析法。
2. A hydrogen isotope analysis method for water using the hydrogen gas production method according to claim 1.
JP3071918A 1991-04-04 1991-04-04 Hydrogen gas production method and hydrogen isotope analysis method using microcrystalline metal zinc Expired - Fee Related JP2808914B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3071918A JP2808914B2 (en) 1991-04-04 1991-04-04 Hydrogen gas production method and hydrogen isotope analysis method using microcrystalline metal zinc
DE69206302T DE69206302T2 (en) 1991-04-04 1992-04-02 Process for producing hydrogen gas and process for determining the mass ratio between the hydrogen isotopes.
EP92105643A EP0507287B1 (en) 1991-04-04 1992-04-02 Processes for preparing hydrogen gas and determining ratio of masses between hydrogen isotopes therein
US07/863,717 US5300276A (en) 1991-04-04 1992-04-03 Processes for preparing hydrogen gas and determining ratio of masses between hydrogen isotopes therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3071918A JP2808914B2 (en) 1991-04-04 1991-04-04 Hydrogen gas production method and hydrogen isotope analysis method using microcrystalline metal zinc

Publications (2)

Publication Number Publication Date
JPH0578101A JPH0578101A (en) 1993-03-30
JP2808914B2 true JP2808914B2 (en) 1998-10-08

Family

ID=13474395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3071918A Expired - Fee Related JP2808914B2 (en) 1991-04-04 1991-04-04 Hydrogen gas production method and hydrogen isotope analysis method using microcrystalline metal zinc

Country Status (1)

Country Link
JP (1) JP2808914B2 (en)

Also Published As

Publication number Publication date
JPH0578101A (en) 1993-03-30

Similar Documents

Publication Publication Date Title
Schmidt et al. Physical and chemical characterization of platinum-rhodium gauze catalysts
Vogel et al. Catalyst and binder effects in the use of filamentous graphite for AMS
Wilken et al. Reduction of tungsten oxide to tungsten metal
Chou et al. Plasma production of metallic nanoparticles
Blank et al. Specimen preparation in x‐ray fluorescence analysis of materials and natural objects
Owen et al. The effect of pressure and temperature on the occlusion of hydrogen by palladium
Guggi et al. Diffusion of tritium in single crystal Li2O
Young et al. Water cluster ions: Formation and decomposition of cluster ions in the oxygen‐water system
JP2808914B2 (en) Hydrogen gas production method and hydrogen isotope analysis method using microcrystalline metal zinc
Kinoshita et al. Changes in the morphology of platinum agglomerates during sintering
JP2970026B2 (en) Hydrogen gas production method and hydrogen isotope analysis method
Harrison et al. An Investigation of Chloride Ion Diffusion in Subsurface Layers of Sodium Chloride by an Isotopic Exchange Technique
US5300276A (en) Processes for preparing hydrogen gas and determining ratio of masses between hydrogen isotopes therein
Bardi et al. Carbon monoxide dissociation on polycrystalline cobalt
Naito et al. Purification of inert gas: Removal of oxygen with a metallic getter
Suzuki et al. Improved sensitivity using a microcomputer for electrothermal atomic absorption spectrometry with a metal microtube
Holt Preparation of carbon dioxide from sulfates, sulfur dioxide, air, and water for determination of oxygen isotope ratio
Battagliarin et al. An innovative sample preparation procedure for trace and ultra-trace analysis on non-conducting powders by direct current glow discharge mass spectrometry
Cannon The formation of diamond. I. demonstration of atomic processes involving carbon
Wiswall et al. Removal of tritium from fusion reactor blankets. Annual report, FY 1977
Burylin et al. Development and properties of iron-containing chemical modifier based on activated carbon for electrothermal atomic absorption determination of volatile elements
US2873184A (en) Thermal decomposition of uranium compounds
Anderson et al. Titanium Hydride
Alexandrov et al. PHYSICO-CHEMICAL PROPERTIES OF LANTHANUM, CERIUM, AND SAMARIUM HEXANITRONICKELATES WITH POTASSIUM
Vigeholm et al. CYCLING PERFORMANCE OF THE MAGNESIUM MAGNESIUM HYDRIDE SYSTEM

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980630

LAPS Cancellation because of no payment of annual fees