JP2807465B2 - Ceramic heat-resistant composite parts - Google Patents

Ceramic heat-resistant composite parts

Info

Publication number
JP2807465B2
JP2807465B2 JP63111052A JP11105288A JP2807465B2 JP 2807465 B2 JP2807465 B2 JP 2807465B2 JP 63111052 A JP63111052 A JP 63111052A JP 11105288 A JP11105288 A JP 11105288A JP 2807465 B2 JP2807465 B2 JP 2807465B2
Authority
JP
Japan
Prior art keywords
stress
ceramic
covering member
thermal expansion
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63111052A
Other languages
Japanese (ja)
Other versions
JPH01285603A (en
Inventor
孝遠 溝口
真人 小林
隆夫 井上
久司 竹内
公規 仲山
健一 青田
陽一郎 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63111052A priority Critical patent/JP2807465B2/en
Publication of JPH01285603A publication Critical patent/JPH01285603A/en
Application granted granted Critical
Publication of JP2807465B2 publication Critical patent/JP2807465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミクス製の被覆部材(シェル)内に金
属製補強部材(芯金)を配設してなるセラミクス耐熱複
合部品に関し、特に耐熱衝撃性を改善できるようにした
複合部品に関する。本発明は、ガスタービン,ジェット
エンジン等の各種の耐熱部品に適用されるが、ガスター
ビン翼に好適であるので、以下、このガスタービン翼を
例にとって説明する。
Description: TECHNICAL FIELD The present invention relates to a ceramic heat-resistant composite part in which a metal reinforcing member (core metal) is disposed in a ceramic-made covering member (shell), and particularly to a heat-resistant composite component. The present invention relates to a composite part capable of improving impact resistance. The present invention is applied to various heat-resistant parts such as gas turbines and jet engines, but is suitable for gas turbine blades. Therefore, the gas turbine blades will be described below as an example.

〔従来の技術〕[Conventional technology]

従来から、ガスタービン等の熱機関では、燃焼ガス温
度が高いほど熱効率が向上することが知られているが、
現状ではタービン翼等の構成部品の耐熱性に限度がある
ことから、燃焼ガスは800℃程度以下の温度で使用され
ている。このタービン翼等にセラミクスを用いることが
可能となれば、ガス温度を1400℃程度に高めることがで
き、熱効率を著しく向上できることが期待される。この
セラミクス製タービン翼を実現するには、翼の構造設計
と材料選定の最適化を計り、部品としての信頼性を確保
することが不可欠である。
Conventionally, in heat engines such as gas turbines, it has been known that the higher the combustion gas temperature, the higher the thermal efficiency.
At present, the combustion gas is used at a temperature of about 800 ° C. or less due to the limited heat resistance of components such as turbine blades. If it becomes possible to use ceramics for such turbine blades and the like, it is expected that the gas temperature can be increased to about 1400 ° C. and the thermal efficiency can be significantly improved. In order to realize this ceramic turbine blade, it is essential to ensure the reliability of the parts by optimizing the structural design and material selection of the blade.

ところでセラミクスは耐熱性に優れているが、反面変
形能が低いために、大きな熱歪や衝撃,局部的な接触に
よって破壊し易い欠点を有している。このため、セラミ
クスをタービン翼部材に用いると、昇温過程における急
速加熱、及び緊急停止時の急速冷却に起因する各部の温
度差による熱応力で破壊し易い点が問題となる。また、
セラミクス製タービン翼をロータあるいはステータに取
り付けるには、従来、機械的な嵌合等が用いられている
が、この場合の接触部分の応力集中によりセラミクス部
が破損し易い点も解決すべき問題である。
By the way, although ceramics are excellent in heat resistance, they have a drawback that they are easily broken by large thermal strain, impact, or local contact due to low deformability. For this reason, when ceramics is used for a turbine blade member, there is a problem in that the ceramic blade is easily broken by thermal stress due to a temperature difference between components caused by rapid heating in a temperature rising process and rapid cooling in an emergency stop. Also,
Conventionally, mechanical fitting has been used to attach ceramic turbine blades to the rotor or stator.However, in this case, the problem that the ceramic portion is easily damaged by stress concentration at the contact portion is also a problem to be solved. is there.

これらの問題を解決する方法として、複雑な形状のタ
ービン翼をセラミクスで一体形成するのではなく、セラ
ミクス部品を単純な形状の複数部分に、例えば燃焼ガス
が直接接触する翼部と、これをロータ等に取り付けるた
めの取付部としてのシュラウド部とに分割し、これらを
金属部品で機械的に組み立てて必要な翼形状を確保する
ことにより、温度差による熱応力を逃がす等の工夫をし
たものがある(例えば特開昭61−66802号公報参照)。
As a method for solving these problems, instead of integrally forming a turbine blade having a complicated shape with ceramics, a ceramic component is contacted with a plurality of portions having a simple shape, for example, a blade portion in which combustion gas is in direct contact with a rotor, and the rotor is connected to a rotor. It is divided into a shroud part as an attachment part for attaching to etc., and these are mechanically assembled with metal parts to secure the necessary wing shape, so that thermal stress due to temperature difference is released. (See, for example, JP-A-61-66802).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら上記従来のタービン翼では、以下の問題
点が未解決のままとなっている。
However, the following problems remain unsolved in the above-described conventional turbine blade.

タービン翼の翼部は、横断面で見ると、後縁ほど薄
くなっているので、緊急停止時には後縁が前縁に比較し
てより急速に冷却される。従って、横断面内で相当の温
度差が生じることとなるが、上記公報記載の方法では翼
部部分が一体となっている以上、上記温度差による熱応
力を軽減することはできない。
The cross section of the blade portion of the turbine blade becomes thinner toward the trailing edge, so that the trailing edge is cooled more rapidly than the leading edge during an emergency stop. Therefore, a considerable temperature difference occurs in the cross section. However, the method described in the above publication cannot reduce the thermal stress due to the temperature difference as long as the wing portions are integrated.

分割,組立式にした場合は、一般に構造が複雑とな
り、その分応力集中箇所が多い形状となり易く、信頼性
に欠ける。
In the case of a split or assembled type, the structure is generally complicated, and the shape tends to have many stress concentration points, which is unreliable.

本発明は、上記従来の問題点を解決するためになされ
たもので、緊急停止時等の急冷時にも熱応力の発生を抑
制でき、かつ構造が簡単で応力集中箇所が少なく、信頼
性を向上できるセラミクス耐熱複合部分を提供すること
を目的としている。
The present invention has been made to solve the above-described conventional problems, and can suppress the occurrence of thermal stress even during rapid cooling such as during an emergency stop, and has a simple structure with few stress concentration points, improving reliability. The purpose is to provide a ceramic heat-resistant composite part that can be made.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明者等は上記目的を達成するために、急冷時の熱
応力軽減対策について検討し、特に上記タービン翼の後
縁部に生じる引張り応力を抑制するためには予め圧縮応
力を与えておけばよい点に着目した。一方、定常運転時
には、金属部材からなる補強部材の熱膨張率が大きいこ
とから、そのままでは上記圧縮初期応力が消去されてし
まう。これを防止するには補強部材と被覆部材との熱膨
張差に応じて補強部材の温度を低くしておけばよい点に
想到した。しかもこのように補強部材の温度を低くする
ことは、該部材の耐熱性がセラミクスに比べて低い点を
補う意味でも好都合である。
In order to achieve the above object, the present inventors have studied thermal stress reduction measures at the time of quenching.In particular, in order to suppress the tensile stress generated at the trailing edge of the turbine blade, a compressive stress should be given in advance. We paid attention to good points. On the other hand, during a steady operation, since the thermal expansion coefficient of the reinforcing member made of a metal member is large, the above-mentioned initial compressive stress is eliminated as it is. In order to prevent this, the inventors conceived that the temperature of the reinforcing member should be lowered according to the difference in thermal expansion between the reinforcing member and the covering member. In addition, lowering the temperature of the reinforcing member in this way is also advantageous in compensating for the fact that the heat resistance of the member is lower than that of ceramics.

そこで本発明は、セラミクス製の被覆部材内に該被覆
部材より大きい熱膨張率を有する耐熱金属製の補強部材
を挿入配置してなる部品本体と、該本体の両端に形成さ
れ、装置支持部に固定される取付部とからなり、高温雰
囲気で使用されるセラミクス耐熱複合部品において、上
記被覆部材に急速冷却時の局部的温度差により発生する
熱応力を抑制する圧縮初期応力が室温状態において生じ
るよう該被覆部材を上記取付け部によって圧縮挟持し、
定常状態において上記被覆部材と補強部材との間に温度
差が生じるよう該両部材間に断熱層を形成し、定常状態
での圧縮応力が上記セラミクスの許容圧縮応力以下とな
るように上記被覆部材,補強部材間の温度差,熱膨張率
差,及び断面積比を設定したことを特徴としている。
Accordingly, the present invention provides a component body in which a reinforcing member made of a heat-resistant metal having a larger coefficient of thermal expansion is inserted and placed in a ceramic covering member, and formed on both ends of the main body, and provided on a device support portion. In the ceramic heat-resistant composite part comprising a fixed mounting portion and used in a high-temperature atmosphere, a compression initial stress that suppresses a thermal stress generated due to a local temperature difference at the time of rapid cooling of the covering member is generated at room temperature. The covering member is compressed and held by the mounting portion,
A heat insulating layer is formed between the covering member and the reinforcing member in a steady state so that a temperature difference is generated between the two members, and the covering member is so formed that the compressive stress in the steady state is not more than the allowable compressive stress of the ceramics. In addition, a temperature difference, a thermal expansion coefficient difference, and a sectional area ratio between the reinforcing members are set.

ここで本発明において、上記圧縮初期応力は、急速冷
却時に生じる各部の温度差に基づく熱応力を相殺できる
大きさに設定する必要があり、上記被覆部材にこの圧縮
初期応力を作用させる方法としては、例えば以下の方法
が採用できる。
Here, in the present invention, it is necessary to set the initial compressive stress to a magnitude that can cancel the thermal stress based on the temperature difference between the parts generated at the time of rapid cooling. As a method of applying the initial compressive stress to the covering member, For example, the following method can be adopted.

先ずセラミクス製の被覆部を形成し、該被覆部内及
びこれの両端に位置する取付部相当部分に補強部材用金
属粉を充填し、これを例えば、熱間静水圧成形(以下、
HIPと記す)によって一体成形し、冷却させる。すると
被覆部材と補強部材との熱収縮量の差により、被覆部材
は取付部でもって圧縮挟持され、これにより圧縮初期応
力が発生することとなる。勿論、補強部材には引張応力
が発生する。
First, a coating portion made of ceramics is formed, and metal powder for a reinforcing member is filled into the coating portion and portions corresponding to the mounting portions located at both ends of the coating portion.
HIP) and cooled. Then, due to the difference in the amount of thermal shrinkage between the covering member and the reinforcing member, the covering member is compressed and held by the mounting portion, thereby generating an initial compressive stress. Of course, a tensile stress is generated in the reinforcing member.

上記被覆部材の両端にこれを挟むように配置された
両取付部同士を、締結用ボルトで締め付け、これにより
被覆部材に圧縮初期応力を機械的に発生させる。
Both mounting portions arranged on both ends of the covering member so as to sandwich the covering member are fastened with fastening bolts, thereby mechanically generating an initial compressive stress in the covering member.

また、定常運転時に被覆部材に生じさせるべき圧縮応
力は、上記圧縮初期応力以上で、かつ被覆部材の許容圧
縮応力以下に保持する必要がある。これは、被覆部材,
補強部材の熱膨張率差,両者の温度差,及び両者の断面
積比で決定される。一方、上記温度差は、一般に補強部
材の耐熱温度(例えば600℃)と使用雰囲気温度(例え
ば1400℃)から決定されるので、この耐熱温度に保持し
た場合の温度差によって上記許容範囲内の圧縮応力が得
られるようこの熱膨張率差,断面積比を適宜選定するこ
ととなる。また、被覆部材と補強部材との間に所定の温
度差を発生させるために、本発明では、両部材間に断熱
層を形成したのであるが、この断熱層は、例えばセラミ
クスウールを1mm程度の厚さに成形したものを両部材間
に配設することで実現できる。
Further, it is necessary to maintain the compressive stress to be generated in the covering member during the steady operation to be equal to or higher than the initial compression stress and equal to or less than the allowable compressive stress of the covering member. This is a covering member,
It is determined by the difference in thermal expansion coefficient of the reinforcing member, the temperature difference between the two, and the cross-sectional area ratio between the two. On the other hand, the temperature difference is generally determined from the heat-resistant temperature (for example, 600 ° C.) of the reinforcing member and the ambient temperature for use (for example, 1400 ° C.). The difference in the coefficient of thermal expansion and the ratio of the cross-sectional area are appropriately selected so as to obtain the stress. In addition, in order to generate a predetermined temperature difference between the covering member and the reinforcing member, in the present invention, a heat insulating layer is formed between both members, and the heat insulating layer is, for example, about 1 mm of ceramic wool. It can be realized by disposing a member molded to a thickness between both members.

〔作用〕[Action]

本発明に係るセラミクス耐熱複合部品では、セラミク
ス製の被覆部材に圧縮初期応力を発生させておくととも
に、定常使用状態で被覆部材と補強部材との間に相当の
温度差が生じるように断熱層を形成したので、定常使用
状態では、この温度差,熱膨張率差及び断面積比に応じ
た圧縮応力が被覆部材に発生し、上記圧縮初期応力を助
長することとなる。従って、例えばガスタービンの緊急
停止等のように、急速冷却状態になると、部品の断面形
状の如何によって局部的に冷却される部分が生じるが、
該部分の熱応力は上述の定常時の圧縮応力によって相殺
されることとなり、この局部冷却により引張応力が発生
することはなく、その結果耐熱衝撃性が大幅に向上する
こととなる。
In the ceramic heat-resistant composite part according to the present invention, the compressive initial stress is generated in the ceramic covering member, and the heat insulating layer is formed so that a considerable temperature difference occurs between the covering member and the reinforcing member in a normal use state. As a result, in the normal use state, a compressive stress corresponding to the temperature difference, the thermal expansion coefficient difference, and the cross-sectional area ratio is generated in the covering member, which promotes the above-mentioned initial compressive stress. Therefore, when a rapid cooling state is established, such as an emergency stop of a gas turbine, a part to be locally cooled is generated depending on the cross-sectional shape of the component.
The thermal stress in this portion is offset by the above-described compressive stress in the steady state, and no tensile stress is generated by this local cooling, and as a result, the thermal shock resistance is greatly improved.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図ないし第5図は本発明の一実施例によるガスタ
ービン用静翼を説明するための図である。この静翼を示
す第1図及び第2図において、1はガスタービン静翼で
あり、これは翼部2とこれの両端に形成された取付部3,
3とから構成されている。
1 to 5 are views for explaining a stationary blade for a gas turbine according to an embodiment of the present invention. In FIGS. 1 and 2 showing the stationary blade, reference numeral 1 denotes a gas turbine stationary blade, which is a blade portion 2 and mounting portions 3 formed at both ends thereof.
It consists of three.

上記翼部2は、前縁2aから後縁2bに欠けて徐々に厚が
薄くなる、いわゆる翼形状のものであり、被覆部材とし
てのセラミクスシェル4内に断熱層5を挟んで補強部材
としての金属ライナ6を挿入配置してなる。この金属ラ
イナ6には、複数の空気孔6aが形成されており、これは
空気の流通により該ライナ6の異常昇温を防止するため
のものである。またこの金属ライナ6の上,下端部には
外方に段状の押圧部6bが形成されており、上記セラミク
スシェル6はその図示上,下両端がこの両押圧部6b,6b
で所定の圧縮初期応力が生じるように挟持されている。
この圧縮初期応力は、緊急停止時に翼部2の後縁部2bが
前縁部2aより急速に冷却されることによる熱応力(例え
ば引張り応力30kg/mm2)を相殺できる大きさ、従って最
低30kg/mm2以上に設定される。
The wing portion 2 has a so-called wing shape in which the thickness is gradually reduced by being chipped from the leading edge 2a to the trailing edge 2b. The wing portion 2 serves as a reinforcing member with a heat insulating layer 5 interposed in a ceramic shell 4 as a covering member. The metal liner 6 is inserted and arranged. A plurality of air holes 6a are formed in the metal liner 6 to prevent abnormal temperature rise of the liner 6 due to the flow of air. A stepped pressing portion 6b is formed outwardly at the upper and lower ends of the metal liner 6, and the ceramic shell 6 has both pressing portions 6b, 6b at its upper and lower ends in the drawing.
At a predetermined compression initial stress.
This initial compressive stress is large enough to offset thermal stress (for example, tensile stress of 30 kg / mm 2 ) due to the cooling of the trailing edge 2b of the wing portion 2 more rapidly than the leading edge 2a at the time of emergency stop, and therefore at least 30kg. / mm 2 or more.

上記セラミクスシェル4は、SIC,Si3N4等の粉末を焼
成してなり、また上記断熱層5は上記SiC等のセラミク
ス繊維を例えば1mm厚さに成形してなるものである。ま
た上記金属ライナ6には、例えばTi合金あるいはこれに
SiC,Si3N4等の長繊維を複合化した複合材料、またはNi
基合金にSiC,Si3N4等の長繊維を複合化した複合材料が
採用される。この金属ライナ6とセラミクスシェル4
は、所定の熱膨張率差になるように選定されている。こ
の熱膨張率差は、定常運転時において上記断熱層5によ
り生じるセラミクスシェル4と金属ライナ6との温度差
及び両者の断面積比によって、該セラミクスシェル4に
所定範囲の定常運転時圧縮応力が生じるように設定され
る。そしてこの定常運転時圧縮応力は、上記圧縮初期応
力(30kg/mm2)以上で、セラミクスの許容圧縮応力(例
えば90kg/mm2)以下の応力に設定される。
The ceramic shell 4 is formed by firing powder such as SIC or Si 3 N 4 , and the heat insulating layer 5 is formed by molding ceramic fibers such as SiC to a thickness of, for example, 1 mm. The metal liner 6 may be made of, for example, Ti alloy or
A composite material composed of long fibers such as SiC, Si 3 N 4 or Ni
A composite material in which long fibers such as SiC and Si 3 N 4 are composited with a base alloy is employed. This metal liner 6 and ceramic shell 4
Are selected so as to have a predetermined coefficient of thermal expansion difference. The difference in the coefficient of thermal expansion is determined by the temperature difference between the ceramic shell 4 and the metal liner 6 caused by the heat insulating layer 5 during the steady operation and the cross-sectional area ratio between the two. Set to occur. The compressive stress at the time of steady operation is set to a stress not less than the initial compressive stress (30 kg / mm 2 ) and not more than the allowable compressive stress of the ceramics (for example, 90 kg / mm 2 ).

上記取付部3は、以下のように構成されている。即
ち、上記金属ライナ6の上,下端部に外方への段状に一
体形成された押圧部6bに、該ライナ6と同一材質の金属
シュラウド部7を嵌合装置して両者を接合するととも
に、該シュラウド部7の内側にインサート部材8を介し
て上記シェル4と同一材質のセラミクスシェラウド部9
を接合して構成されている。上記金属シュラウド部7の
両側部には、これから外方に突出する嵌合片7aが形成さ
れており、これは装置の支持部に嵌合装着される。ま
た、上記インサート材8は軟質材料、あるいは上記セラ
ミクスシュラウド部9と金属シュラウド部7との中間の
熱膨張率を有する材料からなり、両者を高温で接合する
際の熱膨張量の差に基づく応力の発生を抑制するための
ものである。
The mounting part 3 is configured as follows. That is, a metal shroud portion 7 of the same material as the liner 6 is fitted to a pressing portion 6b integrally formed in a stepwise outward direction at the upper and lower ends of the metal liner 6 to join them together. The ceramic shroud 9 made of the same material as the shell 4 is inserted inside the shroud 7 via an insert member 8.
Are joined. On both sides of the metal shroud portion 7, fitting pieces 7a projecting outward from the metal shroud portion 7 are formed, and these are fitted and mounted on the support portion of the apparatus. The insert member 8 is made of a soft material or a material having a thermal expansion coefficient intermediate between that of the ceramic shroud portion 9 and the metal shroud portion 7, and the stress based on the difference in the amount of thermal expansion when the two are joined at a high temperature. The purpose of this is to suppress the occurrence of.

上記押圧部6bの段部内面と上記シェル4の端面4aと
は、間にBN等の離型剤を介在させることにより接合され
ることなく分離しており、また上記シェル4と上記セラ
ミクスシュラウド部7bとの間には若干の隙間4bが設けら
れている。
The step inner surface of the pressing portion 6b and the end surface 4a of the shell 4 are separated from each other without being joined by interposing a release agent such as BN therebetween, and the shell 4 and the ceramic shroud portion are separated. A slight gap 4b is provided between the gap 4b and the gap 7b.

ここで上記タービン静翼1の製造方法について説明す
る。
Here, a method for manufacturing the turbine vane 1 will be described.

翼部2のセラミクスシェル4を、SiC,Si3N4等の粉
末を用いて焼結成形する。
The ceramics shell 4 of the wing portion 2 is formed by sintering using a powder such as SiC or Si 3 N 4 .

上記セラミクスシェル4内及び上記ライナ6の押圧
部6bに相当する部分にTi合金,又はNi基合金粉末、ある
いはこれらのいずれかにさらに、SiC,Si3N4等の長繊維
混合したものを充填する。このとき、予めセラミクスシ
ェル4の内面にSiC,Si3N4等の長繊維からなる断熱層5
を挿入配置するとともに、該シェル4の上,下端面4aに
BN等の離型剤を塗布しておく。
The inside of the ceramic shell 4 and the portion corresponding to the pressing portion 6b of the liner 6 are filled with a Ti alloy or a Ni-based alloy powder, or a mixture of any of them and a long fiber such as SiC or Si 3 N 4. I do. At this time, the heat insulating layer 5 made of long fiber such as SiC, Si 3 N 4 is previously formed on the inner surface of the ceramics shell 4.
And the upper and lower end surfaces 4a of the shell 4
A release agent such as BN is applied beforehand.

上記のものを、熱間静水圧成形(HIP)によって、
例えば1000℃,200kg/cm2で一体化成形する。
The above are hot isostatic pressing (HIP)
For example, integral molding is performed at 1000 ° C. and 200 kg / cm 2 .

上記と別個に準備した、金属シュラウド部7とセラ
ミクスシュラウド部9とを接合してなる取付部3を上記
翼部2に装着し、これもHIPによって拡散接合する。
The mounting part 3 prepared separately from the above and formed by joining the metal shroud part 7 and the ceramic shroud part 9 is mounted on the wing part 2, and this is also diffusion bonded by HIP.

このようなタービン静翼1の製造においては、上述の
ように、翼部2の金属ライナ6,セラミクスシェル4の断
面積比,熱膨張率差及び温度差によって、金属ライナ6,
セラミクスシェル4に発生する初期応力及び定常運転時
応力が決定される。
In the manufacture of such a turbine vane 1, as described above, the metal liner 6, the thermal expansion coefficient difference and the temperature difference depend on the cross-sectional area ratio of the metal liner 6 and the ceramic shell 4 of the blade section 2.
The initial stress generated in the ceramic shell 4 and the stress during steady operation are determined.

第3図ないし第5図は、上記熱膨張率差,断面積比等
の最適範囲を見出すために行った数値解析結果を示す。
先ず、第3図は、上述のHIP成形時において発生する圧
縮初期応力に及ぼす金属ライナ6の断面積Amとセラミク
スシェル4の断面積Acとの比Am/Ac,及びそれぞれの熱膨
張率αとαとの差Δα=α−αの効果について
の数値解析結果を示し、第4図は同じく定常運転時にセ
ラミクスシェル4が1400℃に、金属ライナ6が550℃に
なった場合に、この温度差によって生じた応力を上記第
3図の初期応力に重畳した場合の応力を示す。
FIG. 3 to FIG. 5 show the results of numerical analysis performed to find the optimum ranges of the above-mentioned difference in thermal expansion coefficient, cross-sectional area ratio, and the like.
First, FIG. 3, the ratio A m / A c of the cross-sectional area A c of the cross-sectional area A m and ceramic shell 4 of the metal liner 6 on compression initial stress generated during HIP molding described above, and respective thermal FIG. 4 shows the results of numerical analysis on the effect of the difference Δα = α m −α c between the expansion coefficients α m and α c . FIG. 4 also shows the ceramic shell 4 at 1400 ° C. and the metal liner 6 at 550 ° C. during steady operation. FIG. 3 shows the stress when the stress caused by this temperature difference is superimposed on the initial stress in FIG.

初期応力及び定常運転時応力のいずれも、セラミクス
シェル4については、断面積比が大きい(金属ライナ6
の断面積が大)ほど、また熱膨張率差が大きい(金属ラ
イナ6の熱膨張率が大)ほど大きくなっている。
Regarding both the initial stress and the stress during steady operation, the ceramic shell 4 has a large sectional area ratio (the metal liner 6).
The larger the cross-sectional area is, the larger the difference in thermal expansion coefficient (the larger the thermal expansion coefficient of the metal liner 6).

そして例えば、定常運転状態から緊急停止した場合
は、上記翼部2の厚さの薄い部分、例えば翼部2の後縁
部2bから急速冷却することとなるから、被覆部材である
セラミクスシェル4の圧縮応力が高いほど局部的な冷却
による熱応力の相殺効果が大きくなる。従ってこの圧縮
応力が大きくなるよう上記断面積比,熱膨張率比を選択
すればよいこととなる。しかしながらセラミクスシェル
4側の圧縮応力が高過ぎると、これによる局部的曲げ等
により破壊が生じる恐れがある。本発明者等の実験によ
れば、その限界圧縮応力はおよそ90kg/mm2である。一
方、上記後縁部2bの急速冷却による熱応力はおよそ30kg
/mm2以上であることが判明しているから、結局定常時に
は最小限30kg/mm2,最大限90kg/mm2の圧縮応力がセラミ
クスシェル4に発生している必要がある。また、冷却さ
れた状態での圧縮応力も適度な値になっていることが望
ましい。さらに第4図から明らかなように、断面積比が
あまりに小さくなると(金属ライナの断面積が小)、該
金属ライナ6の引張応力が過大になる。従って金属ライ
ナ6の最高温度550〜600℃における引張強度を超過しな
いように断面積比を選定する必要がある。
For example, in the case of an emergency stop from the steady operation state, rapid cooling is performed from the thin portion of the wing portion 2, for example, from the trailing edge portion 2 b of the wing portion 2. The higher the compressive stress is, the greater the effect of canceling the thermal stress by local cooling is. Therefore, the above-mentioned cross-sectional area ratio and thermal expansion coefficient ratio should be selected so as to increase the compressive stress. However, if the compressive stress on the ceramics shell 4 side is too high, there is a possibility that destruction may occur due to local bending or the like. According to experiments by the present inventors, the critical compressive stress is about 90 kg / mm 2 . On the other hand, the thermal stress due to the rapid cooling of the trailing edge 2b is approximately 30 kg.
Since / it mm 2 or more is known, eventually during steady need minimum 30kg / mm 2, compressive stress maximum 90 kg / mm 2 is generated in the ceramic shell 4. It is also desirable that the compressive stress in the cooled state has an appropriate value. Further, as apparent from FIG. 4, when the cross-sectional area ratio becomes too small (the cross-sectional area of the metal liner is small), the tensile stress of the metal liner 6 becomes excessive. Therefore, it is necessary to select the cross-sectional area ratio so as not to exceed the tensile strength of the metal liner 6 at the maximum temperature of 550 to 600 ° C.

以上の制約条件を考えると、以下のように、断面積比
と熱膨張率差とにおいて満たすべき条件が定まり、これ
を満たす範囲を第5図に示す。図中直線A,B,Cで囲まれ
た範囲とする必要があり、さらに好ましくは直線B,C,D
で囲まれた範囲が良い。
Considering the above constraints, the conditions to be satisfied in the cross-sectional area ratio and the difference in the coefficient of thermal expansion are determined as follows, and the range in which the conditions are satisfied is shown in FIG. It is necessary to set the area surrounded by the straight lines A, B, C in the figure, and more preferably, the straight lines B, C, D
The area surrounded by is good.

直線Aは有効圧縮初期応力をセラミクスシェル4に
与えるための限界であり、 Am/Ac=0.4で表わされる。
Line A is the limit for providing effective compression initial stress in ceramic shell 4, represented by A m / A c = 0.4.

直線Bはセラミクスシェル4が圧縮破壊しないよう
にするための限界であり、 Δα×10-6≦5.0−6.67(Am/Ac−1)で表わされる。
The straight line B is a limit for preventing the ceramic shell 4 from compressive failure, and is represented by Δα × 10 −6 ≦ 5.0−6.67 (A m / A c −1).

直線Cは金属ライナ6が引張破壊しないようにする
ための限界であり、これの600℃における引張強度をσ
(kg/mm2)とすると、 Δα×10-6≦σ/90×Am/Acで表わされる。
The straight line C is a limit for preventing the metal liner 6 from breaking in tension.
(Kg / mm 2 ), Δα × 10 −6 ≦ σ / 90 × A m / A c

上述の必要な圧縮応力を得るには上記3条件を満足す
る必要がある。また、曲線Dは急速冷却時において、初
期応力と温度偏差による熱応力とが相殺された状態にお
いてさらに有効な圧縮力を作用させるための限界を示
し、この曲線Dと直線B,Cとで囲む範囲とするのがより
望ましい。
In order to obtain the above-mentioned necessary compressive stress, it is necessary to satisfy the above three conditions. Curve D shows the limit for applying a more effective compressive force in a state where the initial stress and the thermal stress due to the temperature deviation are offset during rapid cooling, and is surrounded by this curve D and straight lines B and C. It is more desirable to set the range.

上記条件を満足できる補強部材用材料としては、Ti合
金及びTi合金にSiCの長繊維を複合化させて熱膨張率と
高温強度を調整したTi基複合材料がある。またNi基合
金,ステンレスは耐熱性に優れるが、そのままではセラ
ミクスとの熱膨張率差が過大になり、上記条件を満たす
ことができない。しかしこれに例えばSiC繊維等の低熱
膨張率繊維を複合化させて熱膨張率を調整すれば使用可
能となる。
As a material for a reinforcing member that satisfies the above conditions, there is a Ti alloy or a Ti-based composite material in which a SiC long fiber is compounded with a Ti alloy to adjust the coefficient of thermal expansion and high-temperature strength. Ni-based alloys and stainless steels are excellent in heat resistance, but as they are, the difference in thermal expansion coefficient with ceramics becomes too large to satisfy the above conditions. However, this can be used if the thermal expansion coefficient is adjusted by compounding a low thermal expansion coefficient fiber such as SiC fiber with this.

次に本実施例の作用効果について説明する。 Next, the operation and effect of this embodiment will be described.

本実施例のタービン静翼1では、上記セラミクスシェ
ル4の両端が上記ライナ6の両押圧部6bで短縮挟持され
ており、これによりこのシェル4には常温状態で、つま
り初期状態で圧縮応力が発生している。また高温の定常
運転状態では、セラミクスシェル4が1400℃程度である
のに対し、断熱層5および空気孔6aの存在により、金属
ライナ6は600℃程度になっており、両者の温度差によ
り、セラミクスシェル4にはさらに大きい圧縮応力が作
用することとなる。このような状態で、ガスタービンの
緊急停止が行われると、翼部2では、これの前縁部2aに
比較して後縁部2bがより急速に冷却し、両部分に温度差
が発生することとなるが、本実施例では、この温度差に
基づく熱応力は該翼部2のセラミクスシェル4に定常時
に作用していた圧縮応力によって相殺され、従って急速
冷却時においても熱応力が異常に上昇することはなく、
その結果、耐熱衝撃性が大幅に向上できる。
In the turbine vane 1 of this embodiment, both ends of the ceramic shell 4 are shortened and pinched by both pressing portions 6b of the liner 6, whereby the shell 4 has a compressive stress in a normal temperature state, that is, in an initial state. It has occurred. In a high-temperature steady operation state, the temperature of the ceramics shell 4 is about 1400 ° C., whereas the temperature of the metal liner 6 is about 600 ° C. due to the presence of the heat insulating layer 5 and the air holes 6a. A larger compressive stress acts on the ceramic shell 4. When an emergency shutdown of the gas turbine is performed in such a state, the trailing edge portion 2b of the blade portion 2 cools more rapidly than the leading edge portion 2a thereof, and a temperature difference occurs between the two portions. In this embodiment, however, the thermal stress based on this temperature difference is offset by the compressive stress acting on the ceramics shell 4 of the wing portion 2 in a steady state, and therefore, even during rapid cooling, the thermal stress becomes abnormal. Never rise,
As a result, the thermal shock resistance can be significantly improved.

ところで、上記セラミクスシェル4の両端を金属ライ
ナ6の押圧部6bで押圧挟持する構造の場合は、この押圧
部とセラミクスェルとを接合しておくと、冷却時に金属
ライナ6が収縮する際にこの押圧部6bが上方に反り、セ
ラミクスシェル4に引張が生じることがあることが判明
した。これを防止するため本実施例では、セラミクスシ
ェル4の上,下端部4aと押圧部6bとの間に離型剤を介在
させて両者を分離しておくようにした。そのため上述の
ような反りが生じてもセラミクスシェル4が破損するこ
とはない。
By the way, in the case of a structure in which both ends of the ceramic shell 4 are pressed and held by the pressing portions 6b of the metal liner 6, if this pressing portion and the ceramic shell are joined in advance, when the metal liner 6 contracts during cooling, this pressing is performed. It has been found that the portion 6b may be warped upward and the ceramic shell 4 may be pulled. In order to prevent this, in the present embodiment, a mold release agent is interposed between the upper and lower ends 4a of the ceramic shell 4 and the pressing portion 6b to separate them. Therefore, even if the above-mentioned warpage occurs, the ceramics shell 4 is not damaged.

また、セラミクスシェル4とセラミクスシュラウド部
9とを一体形成した場合は、急速冷却時に全体的に熱変
形し、両者間の断面変化部に熱応力が集中し易いことも
判明した。そこで本実施例では、セラミクスシェル4と
セラミクスシュラウド部9とを一体化することなく両者
間に隙間4bを形成してこの問題の発生を防止した。即
ち、セラミクスシェル4と金属ライナー6とを一体化し
てなる翼部2と、金属シュラウド部とセラミクスシュラ
ウド部とを一体化してなる取付部3とを別個に作成して
おき、両者を金属部同士のみで接合する構造とした。
In addition, when the ceramics shell 4 and the ceramics shroud portion 9 were integrally formed, it was found that the entire body was thermally deformed at the time of rapid cooling, and that thermal stress was likely to concentrate on a cross-sectional change portion between the two. Therefore, in this embodiment, a gap 4b is formed between the ceramics shell 4 and the ceramic shroud portion 9 without integrating them, thereby preventing the occurrence of this problem. That is, a wing portion 2 in which the ceramics shell 4 and the metal liner 6 are integrated and a mounting portion 3 in which the metal shroud portion and the ceramic shroud portion are integrated are separately prepared, and the two are joined together. The structure was such that only the joints were used.

また、該タービン静翼1の周辺機器への取付は、取付
部3の金属シュラウド部7に形成した嵌合部7aを機器の
支持部に嵌合させるようにしたので、セラミクス部分が
他の部材と接触することはなく、それだけ取付部の信頼
性を向上できる。
In addition, since the fitting portion 7a formed on the metal shroud portion 7 of the mounting portion 3 is fitted to the support portion of the device, the ceramic portion is made of another member. And the reliability of the mounting portion can be improved accordingly.

次に本発明の効果を説明するために行った実験結果に
ついて説明する。
Next, the results of experiments performed to explain the effects of the present invention will be described.

本実験は、第1表に示す各種の材料を用いて、上記第
1図,第2図に示す形状のタービン静翼を上記製造方法
で製造し、セラミクスシェル4の後縁部2bに生じる初期
応力を測定するとともに、耐熱衝撃性を評価した。評価
結果を同表に示すとともに、第5図にその適正範囲に対
する関係位置を×印で示した。なお、表中Lは翼部2の
前後長,Ltはセラミクスシェル4,金属ライナ6の後端間
距離である。
In this experiment, a turbine vane having the shape shown in FIGS. 1 and 2 was manufactured using the various materials shown in Table 1 by the above-described manufacturing method, and the initial stage generated at the trailing edge 2b of the ceramic shell 4 was obtained. The stress was measured and the thermal shock resistance was evaluated. The evaluation results are shown in the same table, and in FIG. 5, the positions related to the appropriate range are indicated by crosses. Incidentally, in the table L is longitudinal length of the blade portion 2, L t is a ceramic shell 4, a rear distance between the metal liner 6.

この実験からも明らかなように、最も望ましい断面積
比,熱膨張率差を有する(第5図の直線B,C,Dで囲まれ
た領域内にある)ものNo.4,5,7,9,10,12〜14では、適正
範囲の初期圧縮応力が得られており、熱衝撃試験におい
ても破損することはなく、耐熱衝撃性が確保されている
ことがわかる。
As is clear from this experiment, No. 4, 5, 7, and 7 having the most desirable cross-sectional area ratio and thermal expansion coefficient difference (in the region surrounded by straight lines B, C, and D in FIG. 5) In the cases of 9, 10, 12 and 14, the initial compressive stress in an appropriate range was obtained, and it was found that there was no breakage in the thermal shock test, and that the thermal shock resistance was secured.

これに対して、No.1〜3は、断面積比,熱膨張率差が
適正範囲内にないとともに、セラミクスシェル4と金属
ライナ6の押圧部6b(押さえブロック)とが接合されて
いることから、No.1では圧縮応力が過大となって成形時
に破損が生じ、No.2,3では初期圧縮応力を得ることがで
きず、亀裂,破損が生じている。
On the other hand, in Nos. 1 to 3, the cross-sectional area ratio and the difference in thermal expansion coefficient are not within the appropriate ranges, and the ceramic shell 4 and the pressing portion 6b (pressing block) of the metal liner 6 are joined. Therefore, in No. 1, the compressive stress was excessive and breakage occurred during molding. In Nos. 2 and 3, the initial compressive stress could not be obtained, and cracks and breakage occurred.

またNo.6は熱膨張率差と断面積比との組み合わせが最
も好ましい範囲にはなく、破損が生じていないものの充
分な初期圧縮応力が発生していない。またNo.8,11は断
面積比に対して熱膨張率差が大きすぎてセラミクスシェ
ル4に過大の圧縮力が作用した例である。
In No. 6, the combination of the difference in thermal expansion coefficient and the cross-sectional area ratio was not in the most preferable range, and although no breakage occurred, sufficient initial compressive stress was not generated. Nos. 8 and 11 are examples in which the difference in thermal expansion coefficient with respect to the cross-sectional area ratio was too large and an excessive compressive force acted on the ceramic shell 4.

なお、上記実施例では、ガスタービン翼について説明
したが、本発明の適用範囲はこれに限定されるものでは
なく、ジェットエンジン部品等、高温で、かつ急激な温
度変化の生じる雰囲気内で使用される部品であれば有効
である。
Although the gas turbine blades have been described in the above embodiments, the scope of the present invention is not limited to this. The gas turbine blades are used in a high-temperature atmosphere where rapid temperature changes occur, such as jet engine parts. It is effective if it is a part.

〔発明の効果〕〔The invention's effect〕

以上のように本発明に係るセラミクス耐熱複合部品に
よれば、被覆部材に局部的温度差による熱応力を抑制す
る圧縮初期応力を予め与えるとともに、被覆部材と補強
部材との間に断熱層を形成して定常状態でセラミクスの
許容圧縮応力以下の圧縮応力が発生するようにしたの
で、急速冷却によって局部的な温度偏差 が生じても、熱応力を抑制でき、耐熱衝撃性を大幅に向
上できる効果がある。
As described above, according to the ceramic heat-resistant composite part according to the present invention, the cover member is given a compressive initial stress that suppresses thermal stress due to a local temperature difference, and a heat insulating layer is formed between the cover member and the reinforcing member. In the steady state, a compressive stress less than the allowable compressive stress of the ceramics was generated. Even if the occurrence occurs, there is an effect that the thermal stress can be suppressed and the thermal shock resistance can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第5図は本発明の一実施例によるガスター
ビン静翼を説明するための図であり、第1図はその一部
断面斜視図、第2図はその断面平面図、第3図ないし第
5図はその断面積比−熱膨張率差の適正範囲を説明する
ための特性図である。 図において、1はタービン静翼(セラミクス耐熱複合部
品)、2は翼部(部品本体)、3は取付部、4はセラミ
クスシェル(被覆部材)、5は断熱層、6は金属ライナ
(補強部材である)。
1 to 5 are views for explaining a gas turbine vane according to an embodiment of the present invention. FIG. 1 is a partially sectional perspective view of FIG. 1, FIG. FIG. 5 to FIG. 5 are characteristic diagrams for explaining an appropriate range of the cross-sectional area ratio-thermal expansion coefficient difference. In the figure, 1 is a turbine vane (ceramic heat-resistant composite part), 2 is a blade part (part body), 3 is a mounting part, 4 is a ceramic shell (coating member), 5 is a heat insulating layer, 6 is a metal liner (reinforcing member). Is).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲山 公規 兵庫県神戸市東灘区北青木2丁目10―6 (72)発明者 青田 健一 兵庫県神戸市北区惣山町3丁目9―9 (72)発明者 米田 陽一郎 神奈川県鎌倉市手広731―1―4 (56)参考文献 特開 昭62−41903(JP,A) 特開 昭61−89905(JP,A) 特開 昭62−605(JP,A) ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor, Kiminori Nakayama 2- 10-6 Kita-Aoki, Higashinada-ku, Kobe-shi, Hyogo (72) Inventor Ken-ichi Aota 3- 9-9, Soyama-cho, Kita-ku, Kobe, Hyogo (72) Inventor Yoichiro Yoneda 731-1-4 Tehiro, Kamakura City, Kanagawa Prefecture (56) References JP-A-62-41903 (JP, A) JP-A-61-89905 (JP, A) JP-A-62-605 (JP) , A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミクス製の被覆部材内に該被覆部材よ
り大きい熱膨張率を有する耐熱金属製の補強部材を挿入
配置してなる部品本体と、該本体の両端に形成され、装
置支持部に固定される取付部とからなり、高温雰囲気で
使用されるセラミクス耐熱複合部品において、上記被覆
部材に急速冷却時の局部的温度差により発生する熱応力
を抑制する圧縮初期応力が室温状態において生じるよう
該被覆部材を上記取付け部によって圧縮挟持し、定常状
態において上記被覆部材と補強部材との間に温度差が生
じるよう該両部材間に断熱層を形成し、定常状態での圧
縮応力が上記セラミクスの許容圧縮応力以下となるよう
に上記被覆部材,補強部材間の温度差,熱膨張率差,及
び断面積比を設定したことを特徴とするセラミクス耐熱
複合部品。
1. A component body in which a reinforcing member made of a heat-resistant metal having a larger coefficient of thermal expansion than a coating member is inserted and placed in a coating member made of ceramics; In the ceramic heat-resistant composite part comprising a fixed mounting portion and used in a high-temperature atmosphere, a compression initial stress that suppresses a thermal stress generated due to a local temperature difference at the time of rapid cooling of the covering member is generated at room temperature. The covering member is compression-clamped by the mounting portion, and a heat insulating layer is formed between the covering member and the reinforcing member so that a temperature difference occurs between the covering member and the reinforcing member in a steady state. Wherein the temperature difference, the coefficient of thermal expansion difference, and the cross-sectional area ratio between the covering member and the reinforcing member are set to be equal to or less than the allowable compressive stress of the ceramics heat-resistant composite part.
JP63111052A 1988-05-07 1988-05-07 Ceramic heat-resistant composite parts Expired - Fee Related JP2807465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63111052A JP2807465B2 (en) 1988-05-07 1988-05-07 Ceramic heat-resistant composite parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63111052A JP2807465B2 (en) 1988-05-07 1988-05-07 Ceramic heat-resistant composite parts

Publications (2)

Publication Number Publication Date
JPH01285603A JPH01285603A (en) 1989-11-16
JP2807465B2 true JP2807465B2 (en) 1998-10-08

Family

ID=14551190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63111052A Expired - Fee Related JP2807465B2 (en) 1988-05-07 1988-05-07 Ceramic heat-resistant composite parts

Country Status (1)

Country Link
JP (1) JP2807465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224488A (en) * 2013-05-16 2014-12-04 三菱日立パワーシステムズ株式会社 Moving blade of axial flow turbo machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1219787B1 (en) * 2000-12-27 2005-12-21 Siemens Aktiengesellschaft Gas turbine blade and gas turbine
FR2898641B1 (en) * 2006-03-17 2008-05-02 Snecma Sa CARTERING IN A TURBOJET ENGINE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189905A (en) * 1984-10-11 1986-05-08 Central Res Inst Of Electric Power Ind Ceramic double layer blade structure
JPS62605A (en) * 1985-06-26 1987-01-06 Mitsubishi Heavy Ind Ltd Static vane of gas turbine
JPH076366B2 (en) * 1985-08-20 1995-01-30 三菱重工業株式会社 Gas turbine vane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224488A (en) * 2013-05-16 2014-12-04 三菱日立パワーシステムズ株式会社 Moving blade of axial flow turbo machine

Also Published As

Publication number Publication date
JPH01285603A (en) 1989-11-16

Similar Documents

Publication Publication Date Title
US3619077A (en) High-temperature airfoil
JP4378436B2 (en) Combustion chamber and nozzle for high performance engines
JP5200283B2 (en) Brazed joint between titanium-based metal piece and silicon carbide (SiC) and / or carbon-based ceramic piece
US4563128A (en) Ceramic turbine blade having a metal support core
US4396349A (en) Turbine blade, more particularly turbine nozzle vane, for gas turbine engines
US4557704A (en) Junction structure of turbine shaft
US20090162139A1 (en) Thermally Insulated Flange Bolts
JP2007107524A (en) Assembly for controlling thermal stress in ceramic matrix composite article
JPS6166802A (en) Turbine blade of gas turbine
JPH0988506A (en) Blade for hybrid type gas turbine moving blade and turbine disc and hybrid type gas turbine moving blade consisting of them
JP2001132405A (en) Device for reducing thermal stress in turbine aerofoil
JP2807465B2 (en) Ceramic heat-resistant composite parts
JP2000179401A (en) Propulsion device
US7481618B2 (en) Mounting arrangement
US4521496A (en) Stress relieved metal/ceramic abradable seals
JPH08226304A (en) Ceramic stator blade
JPS59180006A (en) Gas turbine stator blade segment
EP1798378A1 (en) A mounting arrangement of a gas turbine vane
US20160032735A1 (en) Transient liquid phase bonded tip shroud
US4379812A (en) Stress relieved metal/ceramic abradable seals and deformable metal substrate therefor
JPS6189908A (en) Ceramics metal compound stationary blade structure
JPS62605A (en) Static vane of gas turbine
JPS5979007A (en) Turbine blade
WO2024017261A1 (en) Turbine guide vane and turbine containing same, and aeroengine
JPH0913903A (en) Gas turbine moving blade

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees