【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電子写真感光体に関する。更に詳しくは、特
定の化合物からなる感光層からなる単層型電子写真感光
体に関する。
〔従来の技術〕
フタロシアニン系顔料、ジアゾ系顔料、ペリレン系顔
料など種々の顔料とポリビニルカルバゾール、オキサジ
アゾール、ヒドラゾン、ピラゾリンなどを組み合わせた
ような有機化合物からなる電子写真感光体は、セレン、
硫化カドミウムなどの無機光導電性化合物からなる電子
写真感光体に比較して、無公害性、高生産性などの利点
があり、高感度でしかも耐久性に優れた組み合わせが種
々提案されている。
〔発明が解決しようとする問題点〕
上記有機化合物系の電子写真感光体は優れたものでは
あるが、電荷移動層として好適なオキサジアゾール、ヒ
ドラゾン、ピラゾリンなどは単独では良好な膜とはなら
ず、種々のバインダーを使用する必要がある上に、多層
構造であるため感光体の製造が困難であり、電荷移動層
を電荷発生層の上に設ける構造のものでは、負電荷帯電
とする必要があり、オゾンの発生とか従来からのセレン
を感光体とする電子写真用のトナーが使用できない等の
問題があった。
〔問題点を解決するための手段〕
本発明者らは、上記問題点を解決した、単層で高感度
の電子写真感光体について鋭意探索し、特定の物質の組
合せが極めて優れていることを見出し、本発明を完成し
た。
即ち、本発明は、実質的に単層の感光層から成る電子
写真感光体において、感光層が少なくとも電荷発生材を
ポリシラン中に分散したものであることを特徴とする電
子写真感光体である。。
本発明において感光層に用いる電荷発生材としては公
知の種々の顔料が使用でき、特に制限はなく、例えば、
ジスアゾ、トリスアゾ、テトラキスアゾ等のアゾ系顔
料、無金属フタロシアニン、銅フタロシアニン、チタン
フタロシアニン、マグネシウムフタロシアニン等のフタ
ロシアニン系顔料、ペリレンテトラカルボン酸イミド、
ビス(イミダゾピリドノ)ペリレンなどのペリレン系の
顔料、ジチオリウム塩類、2,4−ビス置換シクロブテン
ジイリウム1,3−ジオレート類等が好ましいものとして
挙げられる。
本発明において重要なのは上記電荷発生材としての顔
料をポリシラン中に分散せしめた感光層からなることで
ある。
ここでポリシランとしては、好ましくは少なくとも一
つの炭化水素残基を有するジハロゲノシランおよび/ま
たはジハロゲノジシランを脱ハロゲン重縮合して得られ
る。
ここで用いるジハロゲノシランおよびジハロゲノジシ
ランとしては、ジメチルジクロルシラン、メチルフェニ
ルジクロルシラン、ジフェニルジクロルシラン、ジエチ
ルジクロルシラン、エチルフェニルジクロルシラン、ジ
プロピルジクロルシラン、プロピルフェニルジクロルシ
ランなどのジクロロシラン、テトラメチルジクロルジシ
ラン、トリメチルフェニルジクロルジシラン、ジメチル
ジフェニルジクロルジシラン、ジメチルジエチルジクロ
ルジシラン、トリメチルエチルジクロルジシランなどの
ジクロロジシランが挙げられ、これらの塩化物の他にこ
れらの弗化物が具体例として挙げられる。
ジハロゲノシランおよび/またはジハロゲノジシラン
から脱ハロゲン重縮合でポリシランを製造する方法とし
ては特に制限はないが、上記ジハロゲノシランおよび/
またはジハロゲノジシランとアルカリ金属とを加熱接触
処理する方法が好ましく例示できる〔例えば、R.C.Wes
t,Comprehensive Organic Chmistry,Vol.2,Chaptor9.4,
P365〜387(1982)、edited by G.Wilkinson et al.,Pe
rgamon Press,New York〕。
本発明においては、ポリシランが電荷発生材の分散媒
体として用いられるが、上記電荷発生材である顔料のほ
かに2,4,7−トリニトロ−9−フルオレノン、m−ジシ
アノベンゼン、テトラシアノエチレン、フタル酸ジエス
テル、トリフェニルアミンなどの電子受動性あるいは電
子供与性の化合物、又は公知の電荷移動材として有用な
種々のヒドラゾン、オキサジアゾール、ピラゾリン、ト
リフェニルメタン、ビフェニルアミン等の誘導体を併用
することもできる。また、上記ポリシランを溶液などに
して塗布乾燥して感光層とした後、更に紫外線等を照射
して架橋せしめておくこともできる。本発明において感
光層の厚みは通常、数μm〜数十μmであるのが一般的
であり、帯電量が適当であり感度の優れた感光体がえら
れる。
また、感光層における電荷発生材の濃度としては、通
常1〜50重量%好ましくは数〜30重量%である。
本発明においては感光体は実質的に単層からなる感光
層より形成されるが、上述の感光層とその下に設けられ
た導電支持層の間に導電支持層から感光層への自由電荷
の注入を阻止し、かつ、感光層と導電支持層の接着性を
向上させるために、酸化アルミニウム、酸化インジウ
ム、酸化錫、ポリプロピレン樹脂、アクリル樹脂、メタ
クリル樹脂、ポリ塩化ビニル樹脂、エポキシ樹脂、ポリ
エステル樹脂、アルキッド樹脂、ポリウレタン樹脂、ポ
リイミド樹脂等の層を設けることもできる。
〔実施例〕
以下、実施例により本発明を説明する。
実施例1
τ型フタロシアニン“Liophoton"(商標、東洋インキ
製造(株)製)1重量部にトルエン99重量部を加え、24
時間超音波分散を行った。次ぎにポリシラスチレン1重
量部をテトラヒドロフラン9重量部に溶解した液と上記
分散液10重量部を混合した塗布液を厚さ100μのアルミ
板上にフィルムアプリケーターを用いて塗布した後、暗
所で、80℃、1時間の乾燥して、膜厚7μの感光層を形
成した。
このようにして作成した電子写真感光体の特性を、エ
レクトロスタチックペーパーアナライダー“EPA−8100"
(川口電気(株)製)を用いて測定した。
まず、−6kVまたは+6kVのコロナ放電を2秒間行い、
初期表面電位を測定した後、暗所に2秒間放置し、次い
でカラーガラスフィルターIR−80(保谷硝子(株)製)
を通し、照度5.0luxの光を照射して半減露光量を測定し
た。結果を表−1に示す。
実施例2
無金属フタロシアニンとしてBASF社製のα型を用いた
以外は、実施例1と同様にして電子写真感光体を製造
し、感光体の特性を実施例1と同様に測定した。結果を
表−1に示す。
実施例3
無金属フタロシアニンとして東京化成(株)製β型を
用いた以外は、実施例1と同様にして電子写真感光体を
製造し、感光体の特性を実施例1と同様に測定した。ま
た、露光の際に用いたフィルターをY−52に代えて測定
した。これらの結果を表−1に示す。
比較例1、2
ポリシラスチレンの代わりにポリエステル樹脂(東洋
紡績(株)製バイロン200、比較例1)又はポリカーボ
ネート樹脂(帝人化成(株)製パンライト、比較例2)
を用いた他は実施例1と同様にして感光体を製造した。
得られた感光体の半減露光量はそれぞれ3.5lux・sec、
4.2lux・secと不良であった(−6kVコロナ放電によ
る)。
実施例4
電荷移動物質として、ポリシラスチレンの代わりに
(Me2ClSi)2と(MeCl2Si)2から得られるメチルクロ
ロポリシランのアニリン誘導体(Ronald H.Baney,Organ
ometallics 1983 859−864に記載の方法で製造した)を
用いた以外は、実施例1と同様にして電子写真感光体を
形成し、得られた電子写真感光体の特性を実施例1と同
様に測定した。
結果を表−2に示す。
実施例5
ε型銅フタロシアニン“Lionol Blue ER"(商標、東
洋インキ製造(株)製)1重量部にトルエン99重量部を
加え、24時間超音波分散を行った。次ぎにポリシラスチ
レン1重量部をテトラヒドロフラン9重量部に溶解した
液と上記分散液10重量部を混合した塗布液を厚さ100μ
mのアルミ板上にフィルムアプリケーターを用いて塗布
した後、暗所で、80℃で1時間乾燥して、膜厚7μmの
感光層を形成した。
このようにして作成した電子写真感光体の特性を測定
した。
−6kVのコロナ放電を2秒間行い、初期表面電位を測
定した後、暗所に2秒間放置し、次いでカラーガラスフ
ィルターIR−80(保谷硝子(株)製)を通し、照度5.0l
uxの光を10秒間露光した。その結果を以下に示す。
初期表面電位 −840Volt
半減露光量 3.1lux・sec
次に、コロナ放電を+6kVとして同様の測定を行っ
た。また、2000回の測定を繰り返した後のデータ(括弧
内)と共に以下に示す。
初期表面電位 +960(+940)Volt
半減露光量 3.5(3.3)lux・sec
実施例6
銅フタロシアニンとしてβ型のもの“Lionol Blue NC
B Tonor"(商標、東洋インキ製造(株)製)を用いた以
外は、実施例5と同様にして電子写真感光体を製造し、
感光体の特性を測定した。
コロナ放電を−6kVとした場合は、
初期表面電位 −630Volt
半減期露光量 4.8lux・sec
であり、コロナ放電を+6kVとした場合は、
初期表面電位 +660(+620)Volt
半減期露光量 5.2(4.9)lux・sec
であった(括弧内は2000回測定後の値)。
比較例3、4
ポリシラスチレンに代えて、ポリエステル樹脂(東洋
紡(株)製バイロン200、比較例3)またはポカーボネ
ート樹脂(帝人化成(株)製パンライトL、比較例4)
を用いる外は、実施例5と同様にして電子写真感光体を
製造し、感光体の特性を測定した。
初期表面電位はそれぞれ−240Volt、−280Voltであっ
たが、いずれも光照射しても電位が半減しなかった。
実施例7
ポリシラスチレンの代わりにテトラメチルジクロルジ
シラン(Me2ClSi)2とテトラクロルジメチルジシラン
(MeCl2Si)2から得られるメチルクロロポリシランの
アニリン誘導体(Ronald H.Baney,Organometallics,198
3,859−864に記載の方法で製造した)を用いた以外は、
実施例5と同様にして電子写真感光体を形成した。
得られた電子写真感光体の特性を、ガラスフィルター
としてY−52(保谷硝子(株)製)を用い、実施例1と
同様に測定したところ、
初期表面電位 +460Volt
半減露光量 6.5lux・sec
であった。
実施例8
下記構造式I である。)
で表されるジアゾ系顔料1重量部にトルエン99重量部を
加え、5時間超音波分散を行った。次ぎにポリシラスチ
レン(上記R.C.Westらの方法により合成したもの)1重
量部をテトラヒドロフラン9重量部に溶解した液と上記
分散液10重量部を混合した塗布液を厚さ100μmのアル
ミ板上にフィルムアプリケーターを用いて塗布した後、
暗所で、80℃で1時間乾燥して、膜厚10μmの感光層を
形成した。
このようにして作成した電子写真感光体の特性を、下
記の条件で初期電位(V0(Volt))、暗減衰率(%、暗
所で2秒放置後の電位V2の残存率、V2/V0×100)、半減
露光量(E1/2)および光照射10秒後の残留電位(V12)
を測定した。結果を表−3に示す。
測定条件
(1) 印加電圧 +6.0kVまたは−6.0kV
(2) 測定モード Stat.1
(3) 暗所放置時間 2sec
(4) 照射光量5lux(保谷硝子(株)製のフィルター
Y−52を使用)
(5) 光照射時間 10sec
実施例9
実施例8のジアゾ系顔料分散液100重量部に対し、m
−ジシアノベンゼン1重量部を加える以外は実施例8と
同様にして電子写真感光体を製造し、感光体の特性を測
定した。結果を表−4に示す。
実施例10
ジアゾ系顔料として下記構造式II
で表されるものを用いる以外は実施例8と同様にして電
子写真感光体を製造し、感光体の特性を測定した。結果
を表−5に示す。
比較例5、6
ポリシラスチレンの代わりにポリエステル樹脂(東洋
紡績(株)製バイロン200、比較例5)又はポリカーボ
ネート樹脂(帝人化成(株)製パンライト、比較例6)
を用いた他は実施例10と同様にして感光体を得た。得ら
れた感光体の半減露光量はそれぞれ21.5lux・sec、18.4
lux・secと不良であった。
実施例11、12
電荷発生剤としてペリレン系顔料Pigment Red149(実
施例11)又は2,4−ビス(2′−エチルカルボニルアミ
ノ)−4′−(N,N−ジエチルフェニル)シクロヴテン
ジイリウム−1,3−ジオレート(実施例12)をポリシラ
ンに対し1/10重量比添加する他は実施例8と同様にして
電子写真感光体を製造し、感光体の特性を−6kVのコロ
ナ放電により測定した。
結果を表−6に示す。
比較例7
電荷発生材として実施例1で用いたτ型フタロシアニ
ンを用い、ポリシラスチレンのかわりにポリエステル樹
脂(東洋紡績(株)製バイロン200)を用いて分散物を
製造し、塗布、乾燥して、厚さ2μmの電荷発生層とし
た。この上にポリシラスチレン溶液を塗布し厚さ20μm
の電荷移動層を形成して多層構造の感光体を作り、同様
にして評価したところ、初期表面電位 −580Volt、暗
減衰率 92.3%、半減露光量 8.2lux・sec、残留電位
6.5Voltであり、初期電位がやや高いが半減露光量は
極めて不良である。
比較例8
ラジカル重合で合成したポリ−N−ビニルカルバゾー
ル(ゲルパーミエーションクロマトグラフィーで測定し
たポリスチレン換算した数平均分子量が10万のもの)を
ポリシラスチレンの代わりに用いた他は実施例1と同様
にしたところ、結果は表−7に示した通りであり、表面
に十分な電位を乗せることができなかったのでτ型フタ
ロシアニンの使用量を0.1重量部、トルエン99.9重量部
とした他は上記と同様にしたところ、表−8に示すよう
に、電位を乗せることはできたが半減露光量が大きく劣
るものであった。
比較例9
ダイアンブルー(C.I.21180)3重量部、ポリシラス
チレン40重量部、および2,6,8−トリニトロ−4H−イン
デノ〔1,2−b〕チオフェン−4−オン4重量部にテト
ラヒドロフラン390重量部を加え、これをボールミル中
で粉砕混合して塗布液を得た。これを用い、実施例1と
同様にして電子写真感光体を製造し、感光体の特性を実
施例1と同様に測定した。結果を表−9に示す。
〔発明の効果〕
本発明の電子写真感光体は感度に優れ、しかも製造が
簡単であり、電子写真複写機に利用できるのみならず、
レーザー・プリンター、CRTプリンター、電子写真式製
板システムなどの電子写真応用分野に広く用いることが
でき、更に、正電荷帯電においても極めて高感度であ
り、工業的に極めて価値がある。The present invention relates to an electrophotographic photoreceptor. More specifically, the present invention relates to a single-layer type electrophotographic photoreceptor comprising a photosensitive layer comprising a specific compound. (Prior Art) Phthalocyanine pigments, diazo pigments, electrophotographic photoreceptors made of organic compounds such as polyvinyl carbazole, oxadiazole, hydrazone, pyrazoline, etc. combined with various pigments such as selenium,
As compared with an electrophotographic photoreceptor made of an inorganic photoconductive compound such as cadmium sulfide, various combinations have been proposed which have advantages such as non-pollution and high productivity, and have high sensitivity and excellent durability. [Problems to be Solved by the Invention] Although the organic compound-based electrophotographic photoreceptor is excellent, oxadiazole, hydrazone, pyrazoline and the like suitable as a charge transfer layer alone do not form a good film. In addition, it is necessary to use various binders, and it is difficult to manufacture a photoreceptor because of a multilayer structure. In a structure in which a charge transfer layer is provided on a charge generation layer, it is necessary to use a negative charge. Therefore, there have been problems such as generation of ozone and the inability to use a conventional electrophotographic toner using selenium as a photoreceptor. [Means for Solving the Problems] The present inventors have diligently searched for a single-layer, high-sensitivity electrophotographic photosensitive member which has solved the above-mentioned problems, and have found that the combination of specific substances is extremely excellent. Heading, the present invention has been completed. That is, the present invention is an electrophotographic photoreceptor comprising a substantially single-layered photosensitive layer, wherein the photosensitive layer has at least a charge generating material dispersed in polysilane. . Various known pigments can be used as the charge generating material used in the photosensitive layer in the present invention, and there is no particular limitation.
Disazo, trisazo, azo pigments such as tetrakisazo, metal-free phthalocyanine, copper phthalocyanine, titanium phthalocyanine, phthalocyanine pigments such as magnesium phthalocyanine, perylene tetracarboximide,
Preferred are perylene pigments such as bis (imidazopyridono) perylene, dithiolium salts, 2,4-bis-substituted cyclobutenediylium 1,3-diolates, and the like. What is important in the present invention is that the photosensitive layer comprises a photosensitive layer in which the pigment as the charge generating material is dispersed in polysilane. Here, the polysilane is preferably obtained by dehalogenating polycondensation of dihalogenosilane and / or dihalogenodisilane having at least one hydrocarbon residue. The dihalogenosilane and dihalogenodisilane used here include dimethyldichlorosilane, methylphenyldichlorosilane, diphenyldichlorosilane, diethyldichlorosilane, ethylphenyldichlorosilane, dipropyldichlorosilane, and propylphenyldichlorosilane. Dichlorosilane such as dichlorosilane such as silane, tetramethyldichlorodisilane, trimethylphenyldichlorodisilane, dimethyldiphenyldichlorodisilane, dimethyldiethyldichlorodisilane, and dichlorodisilane such as trimethylethyldichlorodisilane are included, and in addition to these chlorides. These fluorides are mentioned as specific examples. The method for producing a polysilane from dehalogenosilane and / or dihalogenodisilane by dehalogenation polycondensation is not particularly limited, but the dihalogenosilane and / or
Alternatively, a method of subjecting a dihalogenodisilane and an alkali metal to heat contact treatment can be preferably exemplified (for example, RCWes
t, Comprehensive Organic Chmistry, Vol.2, Chaptor9.4,
P365-387 (1982), edited by G. Wilkinson et al., Pe
rgamon Press, New York]. In the present invention, polysilane is used as a dispersion medium of the charge generating material. In addition to the pigment as the charge generating material, 2,4,7-trinitro-9-fluorenone, m-dicyanobenzene, tetracyanoethylene, and phthalate Use of electron-passive or electron-donating compounds such as acid diesters and triphenylamines, or derivatives of various hydrazones, oxadiazoles, pyrazolines, triphenylmethanes and biphenylamines useful as known charge transfer materials Can also. Alternatively, the photosensitive layer may be formed by applying and drying the above-mentioned polysilane in a solution or the like to form a photosensitive layer, and then irradiating ultraviolet rays or the like to crosslink. In the present invention, the thickness of the photosensitive layer is generally several μm to several tens μm, and a photosensitive member having an appropriate charge amount and excellent sensitivity can be obtained. The concentration of the charge generating material in the photosensitive layer is usually 1 to 50% by weight, preferably several to 30% by weight. In the present invention, the photoreceptor is formed of a photosensitive layer substantially consisting of a single layer, but the free charge from the conductive support layer to the photosensitive layer is provided between the above-described photosensitive layer and a conductive support layer provided thereunder. Aluminum oxide, indium oxide, tin oxide, polypropylene resin, acrylic resin, methacrylic resin, polyvinyl chloride resin, epoxy resin, polyester resin to prevent injection and improve the adhesion between the photosensitive layer and the conductive support layer And a layer of an alkyd resin, a polyurethane resin, a polyimide resin, or the like. EXAMPLES Hereinafter, the present invention will be described with reference to examples. Example 1 To 1 part by weight of τ-type phthalocyanine “Liophoton” (trademark, manufactured by Toyo Ink Mfg. Co., Ltd.) was added 99 parts by weight of toluene.
Time ultrasonic dispersion was performed. Next, a coating solution obtained by mixing 1 part by weight of polysilastyrene in 9 parts by weight of tetrahydrofuran and 10 parts by weight of the above-mentioned dispersion liquid was applied on a 100-μm-thick aluminum plate using a film applicator, and then in a dark place. After drying at 80 ° C. for 1 hour, a 7 μm-thick photosensitive layer was formed. The characteristics of the electrophotographic photoreceptor created in this way were evaluated using the electrostatic paper analyzer “EPA-8100”.
(Manufactured by Kawaguchi Electric Co., Ltd.). First, a corona discharge of -6 kV or +6 kV is performed for 2 seconds.
After measuring the initial surface potential, it was left in a dark place for 2 seconds, and then a color glass filter IR-80 (manufactured by Hoya Glass Co., Ltd.)
And irradiated with light having an illuminance of 5.0 lux to measure a half-life exposure amount. The results are shown in Table 1. Example 2 An electrophotographic photosensitive member was manufactured in the same manner as in Example 1 except that α-type manufactured by BASF was used as the metal-free phthalocyanine, and the characteristics of the photosensitive member were measured in the same manner as in Example 1. The results are shown in Table 1. Example 3 An electrophotographic photosensitive member was manufactured in the same manner as in Example 1 except that β-type manufactured by Tokyo Chemical Industry Co., Ltd. was used as the metal-free phthalocyanine, and the characteristics of the photosensitive member were measured in the same manner as in Example 1. In addition, the measurement was performed by replacing the filter used in the exposure with Y-52. Table 1 shows these results. Comparative Examples 1 and 2 Instead of polysilastyrene, a polyester resin (Vylon 200 manufactured by Toyobo Co., Ltd., Comparative Example 1) or a polycarbonate resin (Panlite manufactured by Teijin Chemicals, Comparative Example 2)
A photoreceptor was manufactured in the same manner as in Example 1 except for using.
The half-life exposure of the obtained photoreceptor is 3.5 luxsec,
It was poor at 4.2lux · sec (due to -6kV corona discharge). Example 4 Instead of polysilastyrene, an aniline derivative of methylchloropolysilane obtained from (Me 2 ClSi) 2 and (MeCl 2 Si) 2 (Ronald H.Baney, Organ)
ometallics 1983 859-864) was used to form an electrophotographic photosensitive member in the same manner as in Example 1, and the characteristics of the obtained electrophotographic photosensitive member were measured in the same manner as in Example 1. It was measured. Table 2 shows the results. Example 5 99 parts by weight of toluene was added to 1 part by weight of ε-type copper phthalocyanine “Lionol Blue ER” (trademark, manufactured by Toyo Ink Mfg. Co., Ltd.), and ultrasonic dispersion was performed for 24 hours. Next, a coating solution obtained by mixing a solution obtained by dissolving 1 part by weight of polysilastyrene in 9 parts by weight of tetrahydrofuran and 10 parts by weight of the above-mentioned dispersion was coated to a thickness of 100 μm
m, and dried at 80 ° C. for 1 hour in a dark place to form a 7 μm-thick photosensitive layer. The characteristics of the electrophotographic photoreceptor thus prepared were measured. A corona discharge of -6 kV was performed for 2 seconds, and the initial surface potential was measured. Then, the device was allowed to stand in a dark place for 2 seconds.
ux light was exposed for 10 seconds. The results are shown below. Initial surface potential -840 Volt Half-reduction exposure amount 3.1 lux · sec Next, the same measurement was performed with a corona discharge of +6 kV. The results are shown below together with data (in parentheses) after 2000 measurements. Initial surface potential +960 (+940) Volt Half-exposure amount 3.5 (3.3) lux · sec Example 6 Copper phthalocyanine β-type “Lionol Blue NC”
An electrophotographic photoreceptor was manufactured in the same manner as in Example 5 except that B Tonor "(trademark, manufactured by Toyo Ink Mfg. Co., Ltd.) was used.
The characteristics of the photoreceptor were measured. When the corona discharge is -6 kV, the initial surface potential is -630 Volt, the half-life exposure is 4.8 lux · sec. When the corona discharge is +6 kV, the initial surface potential is +660 (+620) Volt, the half-life exposure is 5.2 (4.9 ) Lux · sec (values in parentheses after 2,000 measurements). Comparative Examples 3 and 4 Instead of polysilastyrene, a polyester resin (Vylon 200, manufactured by Toyobo Co., Ltd., Comparative Example 3) or a polycarbonate resin (Panlite L, manufactured by Teijin Chemicals Ltd., Comparative Example 4)
An electrophotographic photoreceptor was manufactured in the same manner as in Example 5, except for using, and the characteristics of the photoreceptor were measured. The initial surface potential was -240 Volt and -280 Volt, respectively, but the potential was not reduced by half even when irradiated with light. Example 7 An aniline derivative of methylchloropolysilane obtained from tetramethyldichlorodisilane (Me 2 ClSi) 2 and tetrachlorodimethyldisilane (MeCl 2 Si) 2 instead of polysilastyrene (Ronald H. Banney, Organometallics, 198)
3 , 859-864).
An electrophotographic photosensitive member was formed in the same manner as in Example 5. The characteristics of the obtained electrophotographic photosensitive member were measured in the same manner as in Example 1 using Y-52 (manufactured by Hoya Glass Co., Ltd.) as a glass filter, and the initial surface potential was +460 Volt and the half-exposure amount was 6.5 lux · sec. there were. Example 8 The following structural formula I It is. ) Was added to 1 part by weight of the diazo pigment, and 99 parts by weight of toluene was added thereto, followed by ultrasonic dispersion for 5 hours. Then, a coating solution obtained by mixing 1 part by weight of polysilastyrene (synthesized by the method of RCWest et al., Described above) in 9 parts by weight of tetrahydrofuran and 10 parts by weight of the above dispersion liquid was coated on an aluminum plate having a thickness of 100 μm. After applying using an applicator,
Drying was performed at 80 ° C. for 1 hour in a dark place to form a photosensitive layer having a thickness of 10 μm. The characteristics of the electrophotographic photoreceptor prepared in this manner were measured under the following conditions under the following conditions: initial potential (V 0 (Volt)), dark decay rate (%, residual rate of potential V 2 after leaving for 2 seconds in a dark place, V 2 / V 0 × 100), half-exposure (E 1/2 ) and residual potential 10 seconds after light irradiation (V 12 )
Was measured. The results are shown in Table-3. Measurement conditions (1) Applied voltage +6.0 kV or -6.0 kV (2) Measurement mode Stat.1 (3) Darkness leaving time 2 sec (4) Irradiation light intensity 5lux (Use a filter Y-52 manufactured by Hoya Glass Co., Ltd.) (5) Light irradiation time 10sec Example 9 To 100 parts by weight of the diazo pigment dispersion of Example 8, m
An electrophotographic photosensitive member was manufactured in the same manner as in Example 8 except that 1 part by weight of dicyanobenzene was added, and the characteristics of the photosensitive member were measured. The results are shown in Table-4. Example 10 As a diazo pigment, the following structural formula II An electrophotographic photoreceptor was manufactured in the same manner as in Example 8 except that the one represented by the following formula was used, and the characteristics of the photoreceptor were measured. The results are shown in Table-5. Comparative Examples 5 and 6 Instead of polysilastyrene, a polyester resin (Vylon 200 manufactured by Toyobo Co., Ltd., Comparative Example 5) or a polycarbonate resin (Panlite manufactured by Teijin Chemicals, Comparative Example 6)
A photoreceptor was obtained in the same manner as in Example 10 except for using. The resulting photoreceptor half-exposure dose was 21.5 luxsec, 18.4
It was poor with lux-sec. Examples 11, 12 Perylene pigment Pigment Red 149 (Example 11) or 2,4-bis (2'-ethylcarbonylamino) -4 '-(N, N-diethylphenyl) cyclobutenediylium as a charge generating agent An electrophotographic photoreceptor was manufactured in the same manner as in Example 8, except that 1,3-diolate (Example 12) was added at a 1/10 weight ratio to polysilane, and the characteristics of the photoreceptor were measured by a corona discharge of -6 kV. did. The results are shown in Table-6. Comparative Example 7 A dispersion was produced using the τ-type phthalocyanine used in Example 1 as a charge generating material, and a polyester resin (Vylon 200 manufactured by Toyobo Co., Ltd.) instead of polysilastyrene, followed by coating and drying. Thus, a charge generating layer having a thickness of 2 μm was obtained. A polysilastyrene solution was applied on top of this and a thickness of 20 μm
The charge transfer layer was formed to produce a multi-layer photoreceptor, which was evaluated in the same manner. The initial surface potential was -580 Volt, the dark decay rate was 92.3%, the half-exposure amount was 8.2lux · sec, and the residual potential was
6.5 Volt, the initial potential is slightly higher, but the half-life exposure is extremely poor. Comparative Example 8 Example 1 was repeated except that poly-N-vinylcarbazole (having a number average molecular weight in terms of polystyrene of 100,000 as measured by gel permeation chromatography) synthesized by radical polymerization was used in place of polysilastyrene. When the same was done, the results were as shown in Table 7, except that a sufficient potential could not be applied to the surface, so that the used amount of τ-type phthalocyanine was 0.1 part by weight and toluene was 99.9 parts by weight. As shown in Table 8, the potential was able to be applied, but the half-reduction exposure amount was significantly inferior. Comparative Example 9 3 parts by weight of Diane Blue (CI21180), 40 parts by weight of polysilastyrene, and 4 parts by weight of 2,6,8-trinitro-4H-indeno [1,2-b] thiophen-4-one were mixed with 390 parts by weight of tetrahydrofuran. Was added and the mixture was pulverized and mixed in a ball mill to obtain a coating liquid. Using this, an electrophotographic photosensitive member was manufactured in the same manner as in Example 1, and the characteristics of the photosensitive member were measured in the same manner as in Example 1. The results are shown in Table-9. [Effect of the Invention] The electrophotographic photoreceptor of the present invention has excellent sensitivity and is easy to manufacture, and can be used not only for electrophotographic copying machines,
It can be widely used in electrophotographic applications such as laser printers, CRT printers, and electrophotographic plate making systems, and is extremely sensitive to positive charge, and is extremely valuable industrially.
フロントページの続き
(56)参考文献 特開 昭61−170747(JP,A)
特開 昭59−222845(JP,A)
特開 昭54−62831(JP,A)
Bull,Am.Phys.So
c.,Vol.29,P.509,KH2Continuation of front page
(56) References JP-A-61-170747 (JP, A)
JP-A-59-222845 (JP, A)
JP-A-54-62831 (JP, A)
Bull, Am. Phys. So
c. , Vol. 29, p. 509, KH2