JP2806517B2 - Coil wire - Google Patents

Coil wire

Info

Publication number
JP2806517B2
JP2806517B2 JP57161438A JP16143882A JP2806517B2 JP 2806517 B2 JP2806517 B2 JP 2806517B2 JP 57161438 A JP57161438 A JP 57161438A JP 16143882 A JP16143882 A JP 16143882A JP 2806517 B2 JP2806517 B2 JP 2806517B2
Authority
JP
Japan
Prior art keywords
solvent
coil wire
lubricant
wire
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57161438A
Other languages
Japanese (ja)
Other versions
JPS5950507A (en
Inventor
立身 井手
俊文 桜井
正裕 泉
公男 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tetra Co Ltd
NEC Corp
Original Assignee
Tetra Co Ltd
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tetra Co Ltd, NEC Corp filed Critical Tetra Co Ltd
Priority to JP57161438A priority Critical patent/JP2806517B2/en
Priority to DE8383109075T priority patent/DE3381763D1/en
Priority to CA000436718A priority patent/CA1200587A/en
Priority to EP83109075A priority patent/EP0103307B1/en
Priority to US06/532,189 priority patent/US4605917A/en
Publication of JPS5950507A publication Critical patent/JPS5950507A/en
Application granted granted Critical
Publication of JP2806517B2 publication Critical patent/JP2806517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils

Landscapes

  • Insulated Conductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【発明の詳細な説明】 本発明は電磁継電器などの電気機器の励磁巻線に用い
られるコイル線材に関する。 従来、この種のコイル線材は、銅などの導電性素線の
外周にクレゾール,フェノールおよびベンゼン核を有す
る溶剤を含む混合溶剤で溶解したポリウレタン樹脂ある
いはポリイミド樹脂などの電気的絶縁被覆材を塗布,焼
付けし、かつこの絶縁被覆膜の外周に線材の滑りを良く
し巻線時の断線を防止するためにパラフインあるいはオ
イルなどを滑剤として塗布して形成されている。第1図
にこのコイル線剤の断面構造を示す。ここで、符号1は
導電性素線,2は絶縁被覆膜および3は滑剤膜である。か
かる構成のエナメル線材を第2図に示すような封止形の
電磁継電器の励磁巻線4に適用すると、継電器動作に伴
なって巻線4の絶縁被覆膜中に残留している溶剤さらに
は滑剤成分が有機ガスとして密閉容器5内に蒸発して充
満し、開閉動作する接点部材6の接触抵抗増大および接
点活性化を起こし易く、接点消耗を著しく促進すること
になる。 本発明の目的は、励磁巻線を有する電気機器における
上述したような問題を解消し得るコイル線材を提供する
ことにある。 本発明は、導電性素線を被覆する絶縁膜外周に滑剤膜
を施して成るコイル線材において、滑剤膜がポリプロピ
レングリコールおよびこれの末端の水素の少なくとも1
つを他の反応基で置換した物質のいずれかから構成され
たことを特徴とする。 また、本発明は上記構成において、絶縁膜をKAソルベ
ントを溶剤としてポリウレタン樹脂により構成したこと
を特徴とする。 さらに、本発明は上記構成において、絶縁膜をキシレ
ノールおよびアルコール系の混合物を溶剤としてポリウ
レタン樹脂により構成したことを特徴とする。 次に、本発明の実施例について図面を参照して説明す
る。 この発明においては、導電性素線を被覆する絶面膜外
周に滑剤膜を施して成るコイル線材が及ぼす上述した問
題を解消するために、絶縁膜を構成する樹脂の溶解に使
用する溶剤と滑剤膜を構成する滑剤とが与える影響をそ
れぞれ個別に調査して改善し、さらに最終的コイル線材
としての影響を調べた。一方、電磁継電器などの電気機
器の励磁巻線に適用されたコイル線材からガスが発生し
たとしてもこの発生ガスが、(1)付着した電気接点部
材の接触抵抗を増大させない、(2)電気接点部材の機
械的開閉動作によるメカノケミカル反応生成物の量によ
り接触抵抗を増大させない、(3)電気接点部材のアー
クによって分解生成する炭素量が少なくアーク持続時間
を増大させないつまり接点消耗を増大させないものであ
ることが望まれる。発生ガスのこれらの特性を評価する
と共に、改善された絶縁膜用溶剤および滑剤の与える影
響を調査するために、第3図,第4図および第5図に示
すような構成の実験装置を用いた。 以下これら実験装置について詳述すると、まず第3図
に記載のものは、試料9から放出して気密容器7内に充
満するガスが金(Au)板8の表面に付着し、その付着物
質が金板8の表面接触抵抗をいかに増大させるかを調べ
る実験装置であり、200時間放置後1grの接触荷重で純金
触針を用いて四端子法により表面接触抵抗を測定する。
次に、第4図に記載のものは、付着物質が検体としての
電気接点部材11がコイル12によって励磁され開閉動作す
ることで形成される絶縁被膜による電気接点部材11の接
触抵抗の増大程度を四端子接触抵抗測定器13にて調べる
実験装置である。また、第5図に示す実験装置は容器7
内に充満するガス中で検体としての電気接点部材11に負
荷回路14を接続しアーク条件下で開閉動作させ、アーク
持続時間をオシロスコープ15で連続的に監視することに
より、ある動作回数以上でアーク持続時間が急激に増大
することを調べるものである。このような増大現象は接
点の活性化と呼ばれるが、この現象にいたるまでの動作
回数が多くしかもアーク持続時間の増大程度が小さいこ
とが電気接点部材にとって好しい。大体の目安として、
この接点活性化までの接点動作回数によって試料の検体
に及ぼす影響を把握することができる。なお、上述した
各実験は120℃の雰囲気中にて行なわれる。 上述した実験装置を用いて本発明の実施例における滑
剤および溶剤毎の特性を上記評価項目(1),(2),
(3)について調査すると、第6図および第7図に記載
の結果を得た。 まず、第6図を参照すると、従来から用いられている
滑剤、スピンドル油およびパラフィンは上記評価項目
(1)〜(3)の特性において明らかに劣るのに対し、
本発明によるコイル線材の滑剤膜を形成するポリプロピ
レングリコール:平均分子量400,1000,2000、ポリオキ
シプロピレンモノブチルエーテル:平均分子量700,250
0、およびポリオキシプロピレンモノプロピルエーテ
ル:平均分子量1000は、同評価項目についてすべて極め
て良好な特性を示すことが判明した。ここで、後者の2
つの物質は、ポリプロピレングリコールの末端の水素の
一方を反応器で置換した一例のものであり、他の同族物
質においても同様に良好な性質を示す。つまり、基本的
にはポリプロピレングリコールと特性に基づくものであ
り、かかる物質の平均分子量は後述するように、、線材
としての滑剤に適用した場合の粘度の許容範囲を左右す
るものである。次に、第7図を参照すると、絶縁膜形成
に従来のクレゾールを含む溶剤を用いた滑剤塗布前の線
材に比べ、本発明に適用される溶剤つまり商品名KAソル
ベント(ソルベントナフサ30%−アセチルブチルセロソ
ルブ70%)は上記評価項目(1)について大差はないが
同項目(2),(3)について極めて良好な特性を示す
ことが理解できる。また、本発明においては、キシレノ
ールを40%以下他をアセチルブチルセロソルブあるいは
ベンゼン核を含まないアルコール系統の混合溶剤を適用
した場合も同様な結果が得られた。 このような評価結果に基づき、本発明によるコイル線
材の第1の実施例は、滑剤膜をポリプロピレングリコー
ル,ポリオキシプロピレンモノブチルエーテル及びポリ
オキシプロピレンモノプロピルエーテルのいずれかによ
り形成したものであり、絶縁膜は従来の溶剤を用いて形
成する。ここで、ポリプロピレングリコールの平均分子
量は、滑剤としての必要粘度に関係し、1000程度が従来
の巻線工法を変更することなく適用できるが、巻線直前
あるいは巻線後に洗浄あるいはベーキング等の工法を実
施する場合、2000以下の広範にわたって選択可能であ
る。また、後者の2物質も全く同様な観点から選択適用
できるものである。この実施例のコイル線材を評価する
ために、絶縁膜がポリウレタン樹脂またはポリイミド樹
脂より成る従来のエナメル線材の各々の外周にポリプロ
ピレングリコール,ポリオキシプロピレンモノブチルエ
ーテル及びオキシプロピレンモノプロピルエーテルのそ
れぞれを用いて滑剤膜を形成した6種類のコイル線材
と、同様なエナメル線材の外周にスピンドル油及びパラ
フィンをそれぞれ用いて滑剤膜を形成した4種類のコイ
ル線材とを適用した励磁巻線を作り、これらを第2図に
示したような封止形の電磁継電器に組込み電気接点部材
の性能を調査した結果、第8図に示すような結果を得
た。すなわち、本発明の第1の実施例に係わる上記6種
類のコイル線材を用いた場合の接点性能は、従来の上記
4種類のものに比べ高温放置試験,DC48V−10mA抵抗負荷
走行試験およびDC48V−0.5A抵抗負荷走行試験の各々に
おいて良好な特性を示した。また、コイル線材単体での
既述した3つの評価項目に関わる実験結果も第6図に示
した結果と同一傾向の特性を示した。なお、本発明の第
1の実施例は、他の一般的なエナメル線材(ポリイミド
アミド線材,ポリエステル線材など)にも同様に実施で
きることはいうまでもない。 次に、本発明によるコイル線材の第2の実施例につい
て説明するに、この実施例は第7図を併用して詳述した
KAソルベントを絶縁膜形成時の溶剤とし、且つ上記第1
の実施例の滑剤を塗布して滑剤膜を形成した構成のポリ
ウレンタン線材である。また、KAソルベントに代えてキ
シレノールとアルコール系との混合溶剤により絶縁膜を
形成した場合も同様に実施できる。なお、この実施例に
おいては、これらの溶剤がポリイミド等の耐熱線材に対
して溶解力の点で充分に適用できないためポリウレタン
線材に適用することが好ましい。この実施例のコイル線
材を上記第1の実施例と同様に評価した結果、従来のク
レゾール系溶剤を使用したポリウレタン線材にスピンド
ル油を滑剤として塗布した線材及び第1の実施例に記載
構成の線材に比べこの第2の実施例のものは、第8図に
示した各評価条件での性能においても最も良好であっ
た。すなわち、この第2の実施例は、絶縁膜を構成する
ポリウレタン樹脂中にクレゾール等の成分が含有され
ず、さらに滑剤膜をポリプロピレングリコール等で形成
するので、最終的線材としての電気接点部材に及ぼす影
響を一層少なくすることができる。 以上この発明の実施例によるコイル線材を接点部材を
有する密封形の電磁継電器の励磁巻線に適用した場合に
ついて述べたが、磁気駆動されて機械的な接触,非接触
状態を提供する他の接触部材を備えた電気機器および構
成部品を筐体内にある程度気密的に配設した電磁継電器
などにおいても同様に実施できる。 上述したように本発明によれば、導電性素線を被覆す
る絶縁膜外周にポリプロピレングリコールあるいはこの
物質の末端の少なくとも1つの水素を他の反応基で置換
した物質の内のいずれかより成る滑剤膜を設けることに
より、有害ガス発生を抑制したコイル線材が得られる。
また、絶縁膜をポリウレタン樹脂にて形成する線材にあ
っては、この樹脂をクレゾールおよびフェノールなどを
含有しないKAソルベントなどの溶剤を用いて溶解して絶
縁膜を構成し、さらに上記の滑剤膜を施すことにより、
有害ガス発生を一層抑制できる。
The present invention relates to a coil wire used for an exciting winding of an electric device such as an electromagnetic relay. Conventionally, this type of coil wire is coated with an electrically insulating coating material such as a polyurethane resin or a polyimide resin dissolved in a mixed solvent containing a solvent having cresol, phenol and benzene nuclei around the outer periphery of a conductive wire such as copper. It is formed by baking and applying paraffin or oil or the like as a lubricant on the outer periphery of the insulating coating film in order to improve the slip of the wire and prevent disconnection at the time of winding. FIG. 1 shows a sectional structure of the coil wire agent. Here, reference numeral 1 denotes a conductive element wire, 2 denotes an insulating coating film, and 3 denotes a lubricant film. When the enameled wire having such a configuration is applied to the excitation winding 4 of the sealed electromagnetic relay as shown in FIG. 2, the solvent remaining in the insulating coating film of the winding 4 due to the operation of the relay is further reduced. The lubricant component evaporates and fills the closed container 5 as an organic gas, and the contact member 6 that opens and closes tends to increase the contact resistance and activate the contact, thereby greatly promoting the contact consumption. An object of the present invention is to provide a coil wire capable of solving the above-described problem in an electric device having an excitation winding. The present invention relates to a coil wire having a lubricant film formed on the outer periphery of an insulating film covering a conductive element, wherein the lubricant film has at least one of polypropylene glycol and hydrogen at the terminal thereof.
Characterized in that it is composed of one of the substances in which one is replaced by another reactive group. Further, the present invention is characterized in that, in the above configuration, the insulating film is made of a polyurethane resin using KA solvent as a solvent. Further, the present invention is characterized in that, in the above structure, the insulating film is made of a polyurethane resin using a mixture of xylenol and alcohol as a solvent. Next, embodiments of the present invention will be described with reference to the drawings. In the present invention, a solvent and a lubricant film used for dissolving a resin constituting an insulating film are provided in order to solve the above-mentioned problems caused by a coil wire obtained by applying a lubricant film to an outer periphery of a masked film covering a conductive element wire. The effects of the lubricant and the constituents were individually investigated and improved, and the effects as final coil wires were also investigated. On the other hand, even if gas is generated from a coil wire applied to an exciting winding of an electric device such as an electromagnetic relay, the generated gas does not (1) increase the contact resistance of the attached electric contact member, (2) The contact resistance is not increased by the amount of the mechanochemical reaction product due to the mechanical opening / closing operation of the member. (3) The amount of carbon generated by the arc of the electric contact member is small and the arc duration is not increased, that is, the contact consumption is not increased. It is desired that In order to evaluate these characteristics of the generated gas and to investigate the effects of the improved solvent and lubricant for the insulating film, an experimental device having a configuration as shown in FIGS. 3, 4 and 5 was used. Was. Hereinafter, these experimental devices will be described in detail. In the experimental device shown in FIG. 3, first, the gas released from the sample 9 and filled in the airtight container 7 adheres to the surface of the gold (Au) plate 8, and the adhered substance is removed. This is an experimental device for examining how to increase the surface contact resistance of the gold plate 8. After leaving for 200 hours, the surface contact resistance is measured by a four-terminal method using a pure gold stylus with a contact load of 1 gr.
Next, in FIG. 4, the degree of increase in the contact resistance of the electrical contact member 11 due to the insulating film formed by the electric contact member 11 serving as the specimen being excited by the coil 12 and being opened / closed is determined. This is an experimental device to be examined by a four-terminal contact resistance measuring device 13. The experimental apparatus shown in FIG.
A load circuit 14 is connected to an electrical contact member 11 as a specimen in a gas filled therein, and is opened and closed under an arc condition, and the arc duration is continuously monitored by an oscilloscope 15, so that the arc is operated at a certain number of operations or more. The purpose of this study is to observe that the duration increases sharply. Such an increase phenomenon is called activation of a contact, and it is preferable for an electric contact member that the number of operations up to this phenomenon is large and the degree of increase in arc duration is small. As a rough guide,
The influence on the specimen of the sample can be grasped by the number of contact operations until the activation of the contact. The above-described experiments are performed in an atmosphere at 120 ° C. The characteristics of each lubricant and solvent in the examples of the present invention were evaluated using the above-mentioned experimental items (1), (2),
When (3) was investigated, the results shown in FIGS. 6 and 7 were obtained. First, referring to FIG. 6, the conventionally used lubricant, spindle oil and paraffin are clearly inferior in the characteristics of the above evaluation items (1) to (3),
Polypropylene glycol for forming a lubricant film of the coil wire according to the present invention: average molecular weight 400, 1000, 2000, polyoxypropylene monobutyl ether: average molecular weight 700, 250
0, and polyoxypropylene monopropyl ether: an average molecular weight of 1000 was found to exhibit extremely good properties for all the evaluation items. Here, the latter 2
One of the materials is an example in which one of the terminal hydrogens of polypropylene glycol is replaced with a reactor, and the other homologous materials also show good properties. That is, it is basically based on the properties of polypropylene glycol, and the average molecular weight of such a substance determines the allowable range of viscosity when applied to a lubricant as a wire rod, as described later. Next, referring to FIG. 7, the solvent applied to the present invention, that is, KA Solvent (trade name: Solvent Naphtha 30% -acetyl) is compared with a wire rod before applying a lubricant using a solvent containing cresol for forming an insulating film. It can be understood that butyl cellosolve (70%) shows no significant difference in the evaluation item (1), but shows very good characteristics in the same items (2) and (3). In the present invention, the same results were obtained when acetyl butyl cellosolve or an alcohol-based mixed solvent containing no benzene nucleus was used for the xylenol of 40% or less. On the basis of such evaluation results, the first embodiment of the coil wire according to the present invention has a lubricant film formed of any of polypropylene glycol, polyoxypropylene monobutyl ether and polyoxypropylene monopropyl ether. The film is formed using a conventional solvent. Here, the average molecular weight of polypropylene glycol is related to the required viscosity as a lubricant, and about 1000 can be applied without changing the conventional winding method, but a method such as washing or baking immediately before or after winding is used. If implemented, a wide range of choices, up to 2000, is possible. In addition, the latter two substances can be selectively applied from exactly the same viewpoint. In order to evaluate the coil wire of this embodiment, a conventional enamel wire having an insulating film made of a polyurethane resin or a polyimide resin was formed by using polypropylene glycol, polyoxypropylene monobutyl ether and oxypropylene monopropyl ether on the outer periphery of each wire. Excitation windings were made by applying six types of coil wires having lubricant films formed thereon and four types of coil wires having lubricant films formed on the outer periphery of similar enamel wires using spindle oil and paraffin, respectively. As a result of investigating the performance of the electrical contact member incorporated in the sealed electromagnetic relay as shown in FIG. 2, the result as shown in FIG. 8 was obtained. That is, the contact performance in the case of using the above-mentioned six types of coil wires according to the first embodiment of the present invention is higher than that of the above-mentioned four types in the high-temperature storage test, the DC48V-10mA resistance load running test and the DC48V- Good characteristics were shown in each of the 0.5A resistance load running tests. In addition, the experimental results for the above-described three evaluation items using the coil wire alone showed the same tendency as the results shown in FIG. It is needless to say that the first embodiment of the present invention can be similarly applied to other general enameled wires (polyimide amide wires, polyester wires, etc.). Next, a second embodiment of the coil wire according to the present invention will be described. This embodiment is described in detail with reference to FIG.
KA solvent is used as a solvent for forming an insulating film, and the first
Is a polyurethane wire having a configuration in which a lubricant film is formed by applying the lubricant of the embodiment. Further, the same operation can be performed when an insulating film is formed by using a mixed solvent of xylenol and alcohol instead of the KA solvent. In this embodiment, since these solvents cannot be sufficiently applied to a heat-resistant wire such as polyimide in terms of dissolving power, it is preferable to apply the solvent to a polyurethane wire. As a result of evaluating the coil wire of this embodiment in the same manner as in the first embodiment, a wire obtained by applying spindle oil as a lubricant to a conventional polyurethane wire using a cresol-based solvent and a wire having the configuration described in the first embodiment In comparison with this, the device of the second embodiment exhibited the best performance under the respective evaluation conditions shown in FIG. That is, in the second embodiment, since the components such as cresol are not contained in the polyurethane resin constituting the insulating film, and the lubricant film is formed of polypropylene glycol or the like, the electric contact member as the final wire is exerted. The influence can be further reduced. The case where the coil wire according to the embodiment of the present invention is applied to the excitation winding of a sealed electromagnetic relay having a contact member has been described. However, other contacts that are magnetically driven to provide a mechanical contact and a non-contact state are provided. The present invention can be similarly applied to an electric device including members and an electromagnetic relay in which components are arranged in a housing in a somewhat airtight manner. As described above, according to the present invention, a lubricant consisting of polypropylene glycol or a substance in which at least one terminal hydrogen of this substance is substituted by another reactive group on the outer periphery of the insulating film covering the conductive element wire By providing the film, a coil wire in which generation of harmful gas is suppressed can be obtained.
In the case of a wire having an insulating film formed of a polyurethane resin, the resin is dissolved using a solvent such as KA solvent not containing cresol and phenol to form an insulating film. By applying
The generation of harmful gas can be further suppressed.

【図面の簡単な説明】 第1図はコイル線材の断面図、第2図はコイル線材の適
用例を示す電磁継電器の構成図、第3図,第4図および
第5図は本発明の実施例によるコイル線材を評価する実
験装置、第6図は同実施例のコイル線材の滑剤膜を形成
する滑剤の評価結果を示す図、第7図は同実施例のコイ
ル線材の絶縁膜を形成する溶剤の評価結果を示す図、第
8図は同実施例のコイル線材全体の評価結果を示す図で
ある。 1……導電性素線、2……絶縁膜、3……滑剤膜。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a coil wire, FIG. 2 is a configuration diagram of an electromagnetic relay showing an application example of the coil wire, and FIGS. 3, 4 and 5 show an embodiment of the present invention. Experimental apparatus for evaluating a coil wire according to an example, FIG. 6 is a view showing evaluation results of a lubricant forming a lubricant film of the coil wire of the embodiment, and FIG. 7 is forming an insulating film of the coil wire of the embodiment. FIG. 8 is a view showing the evaluation results of the solvent, and FIG. 8 is a view showing the evaluation results of the entire coil wire of the example. 1 ... conductive wire, 2 ... insulating film, 3 ... lubricant film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜井 俊文 東京都港区芝五丁目33番1号 日本電気 株式会社内 (72)発明者 泉 正裕 横浜市港北区新吉田町2801番地 大黒電 線株式会社内 (72)発明者 杉村 公男 春日井市細木町二丁目147番地 株式会 社テトラ内 (56)参考文献 特開 昭55−80205(JP,A) 特開 昭47−25566(JP,A) 特開 昭55−80207(JP,A) 電子通信学会技術研究報告、第79巻 第208号 P.37−42 (EMC79− 35),1979年12月 (58)調査した分野(Int.Cl.6,DB名) H01B 7/02,7/18 H01F 5/00──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshifumi Sakurai 5-33-1, Shiba, Minato-ku, Tokyo NEC Corporation (72) Inventor Masahiro Izumi 2801 Shinyoshidacho, Kohoku-ku, Yokohama Daikoku Denki Line Stock In-company (72) Inventor Kimio Sugimura 2-147 Hosoki-cho, Kasugai-shi Terauchi Co., Ltd. (56) References JP-A-55-80205 (JP, A) JP-A-47-25566 (JP, A) 55-80207 (JP, A) IEICE Technical Report, Vol. 79, No. 208, p. 37-42 (EMC 79-35), December 1979 (58) Fields investigated (Int. Cl. 6 , DB name) H01B 7/02, 7/18 H01F 5/00

Claims (1)

(57)【特許請求の範囲】 1.導電性素線を被覆する絶縁膜外周に滑剤膜を施して
成るコイル線材において、前記滑剤膜がポリプロピレン
グリコールおよびこれの末端の水素の少なくとも1つを
他の反応基で置換した物質のいずれかから構成されたこ
とを特徴とするコイル線材。 2.前記絶縁膜をKAソルベントを溶剤としてポリウレタ
ン樹脂により構成したことを特徴とする特許請求の範囲
第1項記載のコイル線材。 3.前記絶縁膜をキシレノールおよびアルコール系の混
合物を溶剤としてポリウレタン樹脂により構成したこと
を特徴とする特許請求の範囲第1項記載のコイル線材。
(57) [Claims] In a coil wire obtained by applying a lubricant film on the outer periphery of an insulating film covering a conductive wire, the lubricant film is made of any of polypropylene glycol and a substance in which at least one terminal hydrogen of the glycol is replaced by another reactive group. A coil wire material characterized by being constituted. 2. 2. The coil wire according to claim 1, wherein said insulating film is made of polyurethane resin using KA solvent as a solvent. 3. 2. The coil wire according to claim 1, wherein said insulating film is made of a polyurethane resin using a mixture of xylenol and alcohol as a solvent.
JP57161438A 1982-09-14 1982-09-14 Coil wire Expired - Lifetime JP2806517B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57161438A JP2806517B2 (en) 1982-09-14 1982-09-14 Coil wire
DE8383109075T DE3381763D1 (en) 1982-09-14 1983-09-14 WINDING WIRE.
CA000436718A CA1200587A (en) 1982-09-14 1983-09-14 Coil wire for sealed electric device
EP83109075A EP0103307B1 (en) 1982-09-14 1983-09-14 Coil wire
US06/532,189 US4605917A (en) 1982-09-14 1983-09-14 Coil wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57161438A JP2806517B2 (en) 1982-09-14 1982-09-14 Coil wire

Publications (2)

Publication Number Publication Date
JPS5950507A JPS5950507A (en) 1984-03-23
JP2806517B2 true JP2806517B2 (en) 1998-09-30

Family

ID=15735111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57161438A Expired - Lifetime JP2806517B2 (en) 1982-09-14 1982-09-14 Coil wire

Country Status (1)

Country Link
JP (1) JP2806517B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121213A (en) * 1986-11-11 1988-05-25 住友電気工業株式会社 Lubricating polyurethane insulated wire and electromagnetic relay
JPS63121212A (en) * 1986-11-11 1988-05-25 住友電気工業株式会社 Polyurethane insulated wire and electromagnetic relay using the same
JP2699118B2 (en) * 1989-12-20 1998-01-19 大日精化工業株式会社 Self-lubricating insulated wire
JP2007336630A (en) * 2006-06-12 2007-12-27 Chugoku Electric Power Co Inc:The Relay

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580205A (en) * 1978-12-12 1980-06-17 Hitachi Cable Insulated wire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電子通信学会技術研究報告、第79巻 第208号 P.37−42 (EMC79−35),1979年12月

Also Published As

Publication number Publication date
JPS5950507A (en) 1984-03-23

Similar Documents

Publication Publication Date Title
US5861578A (en) Electrical conductors coated with corona resistant, multilayer insulation system
Maina et al. Dielectric loss characteristics of copper-contaminated transformer oils
JP2806517B2 (en) Coil wire
EP0103307B1 (en) Coil wire
JP2806518B2 (en) Coil wire
US4751488A (en) High voltage capability electrical coils insulated with materials containing SF6 gas
JPS59114720A (en) Electromagnetic relay
Masood et al. Breakdown strength of solid dielectrics in liquid nitrogen
JPS5950509A (en) Coil wire material
US3163705A (en) Oil insulated impregnant for high voltage electrical apparatus
US5254408A (en) Magnet wire and electromagnetic relay using the same
McMahon et al. A Study of the Effects of Corona on Polyethylene
Mammootty et al. Properties of castor oil impregnated all-polypropylene and polypropylene-paper capacitors
Grzybowski et al. Comparison of aging behavior of two-layer polymeric dielectrics aged at AC and DC voltages
Giants Aging effects on the electrical properties of silver-filled epoxy adhesives
Darveniza et al. Condition monitoring of the bulk insulation of distribution transformers by electrical and chemical techniques
Chen et al. Researches on the Discharge Characteristics of the Novel 3-Element Mixed Oil-Pressboard Insulation System Under Severe Non-uniform Electrical Field
US3113993A (en) Electrical devices comprising biphenylyl silicate
JPS63121213A (en) Lubricating polyurethane insulated wire and electromagnetic relay
Hikita et al. Partial discharge endurence test on several kinds of nano-filled enameled wires under high-frequency ac voltage simulating inverter surge voltage
Reddy et al. Life Estimation of Thermally Stressed Insulating Papers of Rotating Machines by Using Arrhenius Model
Nagao et al. Effect of acetophenone coating on carrier injection into polyethylene
Kirkwood A dynamic test procedure for the evaluation of magnet wire insulation systems used in windings of electronic transformers having crossed turns
US3129277A (en) Dielectric medium containing tercyclohexyl
JPS63121212A (en) Polyurethane insulated wire and electromagnetic relay using the same