JP2806451B2 - Wave height measurement method - Google Patents

Wave height measurement method

Info

Publication number
JP2806451B2
JP2806451B2 JP8141708A JP14170896A JP2806451B2 JP 2806451 B2 JP2806451 B2 JP 2806451B2 JP 8141708 A JP8141708 A JP 8141708A JP 14170896 A JP14170896 A JP 14170896A JP 2806451 B2 JP2806451 B2 JP 2806451B2
Authority
JP
Japan
Prior art keywords
hull
wave height
grid
test grid
cameras
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8141708A
Other languages
Japanese (ja)
Other versions
JPH09325027A (en
Inventor
隆一 佐藤
健治 長沼
弘之 秋山
Original Assignee
防衛庁技術研究本部長
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 防衛庁技術研究本部長, 石川島播磨重工業株式会社 filed Critical 防衛庁技術研究本部長
Priority to JP8141708A priority Critical patent/JP2806451B2/en
Publication of JPH09325027A publication Critical patent/JPH09325027A/en
Application granted granted Critical
Publication of JP2806451B2 publication Critical patent/JP2806451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、航行中の船体の周
囲に生じる波の波高分布を測定する波高測定法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wave height measuring method for measuring a wave height distribution of a wave generated around a hull during navigation.

【0002】[0002]

【従来の技術】航行中の船体の周囲には波が発生する
が、この波が砕ける(砕波する)ときに破砕音が発生す
る。この破砕音は、漁船の魚群探知や海洋調査船の調査
活動等に悪影響を及ぼす。このため、実際に船を航行さ
せて、どの程度の砕波がどこに生じ、どの程度の雑音が
生じているか等を調べなければならない。そのためには
実船の周りに生じる波を簡便かつ必要十分な精度で測定
しなければならない。
2. Description of the Related Art Waves are generated around a hull during navigation, and when the waves break (break), a crushing sound is generated. This crushing noise has an adverse effect on the detection of schools of fish on fishing boats and the research activities of oceanographic research vessels. For this reason, it is necessary to actually sail the ship to find out how much breaking waves are generated where and how much noise is generated. For that purpose, waves generated around the actual ship must be measured simply and with sufficient accuracy.

【0003】波高を測定する方法としては、以下の方法
がある。
[0003] There are the following methods for measuring the wave height.

【0004】(1) 水面に針を接触させるとともに波の変
化に応じてその針を追従させ、その変化を電気抵抗の変
化として検出する方法(サーボ式波高計)。
(1) A method in which a needle is brought into contact with the surface of the water and the needle is followed according to a change in a wave, and the change is detected as a change in electric resistance (servo wave height meter).

【0005】(2) 電磁波や超音波を水面に照射してから
その反射波を受けるまでの間の時間を測定することによ
り波の変化を解析する方法。
(2) A method of analyzing a change in a wave by measuring a time from irradiating an electromagnetic wave or an ultrasonic wave to the water surface until receiving the reflected wave.

【0006】(3) カメラで標識(格子縞の板)を撮影し
て得られる単一の画像を解析する方法。
(3) A method of analyzing a single image obtained by photographing a marker (a checkered plate) with a camera.

【0007】(4) 2つのカメラで水面を同時に撮影して
得られた2つの画像を解析する方法(ステレオ写真
法)。
(4) A method of analyzing two images obtained by simultaneously photographing the water surface with two cameras (stereo photography).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述し
た(1) 〜(2) の方法には以下のような問題がある。
However, the above-mentioned methods (1) and (2) have the following problems.

【0009】(1) の方法は、接触式であるため、実海面
で波高を測定する場合には船体から離れた位置の測定が
できない。また、同時に多点測定を行うのは困難であ
り、非定常な波面にも適用できない。
The method (1) is a contact type, so that when measuring the wave height on the actual sea surface, it is not possible to measure a position away from the hull. Further, it is difficult to perform multi-point measurement at the same time, and cannot be applied to an unsteady wavefront.

【0010】(2) の方法は、非接触式であるが、通常は
測定可能な距離が短いため、船体から離れた位置の測定
が困難である。また遠距離測定を可能とする装置は大規
模で高価である。さらに同時多点測定、非定常な波面の
測定は困難である。
The method (2) is a non-contact method, but it is usually difficult to measure a position far from the hull because the measurable distance is short. In addition, a device capable of measuring a long distance is large-scale and expensive. Furthermore, simultaneous multipoint measurement and measurement of unsteady wavefronts are difficult.

【0011】(3) の方法は、船体から比較的離れた位置
も測定できるが、原理上精度は良くない。また、波面の
広い範囲について同時に測定することは困難である。
The method (3) can measure a position relatively far from the hull, but its accuracy is not good in principle. Also, it is difficult to simultaneously measure a wide range of the wavefront.

【0012】(4) の方法は、船体から離れた位置も測定
できるが、専用の撮影装置や解析装置が必要であり非常
に高価である。また、通常は画面内に測定の尺度を写し
込む必要がある。
The method (4) can measure a position far from the hull, but requires a special photographing device and an analyzing device and is very expensive. Usually, it is necessary to print the measurement scale in the screen.

【0013】そこで、本発明の目的は、上記課題を解決
し、航行中の船体の周囲に生じる波の波高分布を、比較
的簡便かつ十分な精度で測定することができる波高測定
法を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a wave height measuring method which can relatively easily and with sufficient accuracy measure a wave height distribution of waves generated around a hull during navigation. It is in.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に本発明は、航行中の船体の周囲に生じる波の波高分布
を測定する波高測定法において、船体の側壁に予め位置
が既知の多数の点をもつ検定格子を取り付け、他方、そ
の検定格子を異なる位置から撮影する少なくとも2つの
カメラを船体に設置し、各カメラで検定格子を同時に撮
影し、得られた検定格子の各点の画像上の位置情報を照
合させて解析した後、検定格子を船体から除去し、航行
中にカメラで撮影した少なくとも2つの海面の画像より
海面上の共通の特定点を求めるとともに、検定格子で得
られた画像上の位置情報よりその特定点の位置を3次元
で算出するものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to a wave height measuring method for measuring the wave height distribution of waves generated around a hull during navigation. At least two cameras are installed on the hull to capture the calibration grid from different positions, and the cameras are simultaneously photographed with the calibration grid, and the obtained image of each point of the calibration grid is obtained. After collating and analyzing the above position information, the test grid is removed from the hull, and a specific point on the sea surface is obtained from at least two images of the sea surface taken by the camera during navigation, and obtained by the test grid. The position of the specific point is calculated three-dimensionally from the position information on the image.

【0015】船体の側壁に予め位置が既知の検定格子を
取り付けておき、船体に少なくとも2つのカメラを異な
る位置に設置する。各カメラで検定格子を同時に撮影す
ると、一つの検定格子の各交点が少なくとも2つの画像
上の異なる座標位置に点映像として点在する。これらの
画像を突き合わせて任意の点映像の3次元位置を計算す
るための変換式(行列)を求める。船体から検定格子を
除去した後、実海面を航行し、各カメラで同一海面を同
時に撮影する。撮影して得られた各画像における波面状
の共通の特定点を抽出し、その特定点の各画像における
座標を求める。求めた座標の行列と変換式との積を求め
ることにより特定点の3次元位置を表わす行列が求ま
り、船体周囲の波高分布を比較的簡便かつ十分な精度で
測定することができる。
A verification grid with a known position is attached to the side wall of the hull in advance, and at least two cameras are installed at different positions on the hull. When the test grids are simultaneously photographed by the cameras, the intersections of one test grid are scattered as point images at different coordinate positions on at least two images. By comparing these images, a conversion formula (matrix) for calculating the three-dimensional position of an arbitrary point image is obtained. After removing the calibration grid from the hull, the ship sails on the actual sea surface, and each camera simultaneously photographs the same sea surface. A wavefront-like common specific point in each captured image is extracted, and the coordinates of the specific point in each image are obtained. By calculating the product of the calculated coordinate matrix and the conversion formula, a matrix representing the three-dimensional position of the specific point is obtained, and the wave height distribution around the hull can be measured relatively easily and with sufficient accuracy.

【0016】[0016]

【発明の実施の形態】まず、本発明の測定原理について
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the measurement principle of the present invention will be described.

【0017】図2に示すような3次元空間における任意
の点P(x,y,z)を、異なる位置に設置されたカメ
ラ(図示せず)で撮影すると、図3(a)及び図3
(b)に示すような画像が得られる。図3(a)に示さ
れた画像上の点映像をPaとし、図3(b)に示された
画像上の点映像をPbとする。
When an arbitrary point P (x, y, z) in a three-dimensional space as shown in FIG. 2 is photographed by a camera (not shown) installed at a different position, FIGS.
An image as shown in (b) is obtained. Figure 3 video points on the image shown that in (a) and P a, the image points on the image shown that in FIG. 3 (b) and P b.

【0018】点映像Paの画像上の実測値をLa,Ha
し、点映像Pbの画像上の実測値Lb,Hbとし、画像上
のPa,Pbの位置の実測値(La,Ha)、(Lb,Hb
が3次元空間の座標値(x,y,z)の1次線形結合で
表されると仮定する。すなわちCijをある定数として数
1〜数4を仮定する。
[0018] The measured values of the point image P a of the image and L a, H a, measured value L b of the image of the point image P b, and H b, the image on the P a, measured position P b Values (L a , H a ), (L b , H b )
Is represented by a first-order linear combination of coordinate values (x, y, z) in a three-dimensional space. That is, Equations 1 to 4 are assumed with C ij as a constant.

【0019】[0019]

【数1】Ha=C11・x+C12・y+C13・Z+C14 [Number 1] H a = C 11 · x + C 12 · y + C 13 · Z + C 14

【0020】[0020]

【数2】La=C21・x+C22・y+C23・Z+C24 [Equation 2] L a = C 21 · x + C 22 · y + C 23 · Z + C 24

【0021】[0021]

【数3】Hb=C31・x+C32・y+C33・Z+C34 [Equation 3] H b = C 31 · x + C 32 · y + C 33 · Z + C 34

【0022】[0022]

【数4】Lb=C41・x+C42・y+C43・Z+C44 3次元空間における座標が既知である4つの点(x1
1,z1)、(x2,y2,z2)、(x3,y3,z3)、
(x4,y4,z4)については数5〜数8で表わされ
る。
L b = C 41 × x + C 42 × y + C 43 × Z + C 44 Four points (x 1 , x 1) whose coordinates in the three-dimensional space are known
y 1, z 1), ( x 2, y 2, z 2), (x 3, y 3, z 3),
(X 4 , y 4 , z 4 ) is represented by Equations 5 to 8.

【0023】[0023]

【数5】 Has=C11・xs+C12・ys+C13・zs+C14 Equation 5] H as = C 11 · x s + C 12 · y s + C 13 · z s + C 14

【0024】[0024]

【数6】 Las=C21・xs+C22・ys+C23・zs+C24 [6] L as = C 21 · x s + C 22 · y s + C 23 · z s + C 24

【0025】[0025]

【数7】 Hbs=C31・xs+C32・ys+C33・zs+C34 Equation 7] H bs = C 31 · x s + C 32 · y s + C 33 · z s + C 34

【0026】[0026]

【数8】 Lbs=C41・xs+C42・ys+C43・zs+C44 但し、s=1,2,3,4 これらの数1〜数8を連立させることにより、16元連
立1次方程式が得られ、これを行列で表わすと数9のよ
うになる。
Equation 8] where L bs = C 41 · x s + C 42 · y s + C 43 · z s + C 44, by simultaneous equations s = 1, 2, 3, 4 equations 1 8 thereof, 16 yuan A system of linear equations is obtained, which can be represented by a matrix as shown in Equation 9.

【0027】[0027]

【数9】 (Equation 9)

【0028】この数9を解くことにより行列Cijが求ま
る。
By solving equation 9, the matrix C ij is obtained.

【0029】3次元空間における任意の点の位置を求め
るには、点T(xT,yT,zT)について同じカメラに
よる2つの画像からHaT、LaT、HbT、LbTのうち少な
くとも3者を実測すればよい。例えば数10の関係があ
る場合にはこれを解くと数11(変換式)が得られるの
で、HaT、LaT、HbT、LbTのうちの3者をこの変換式
に代入すれば点Tの座標(xT,yT,zT)が得られ
る。
[0029] To determine the position of an arbitrary point in the three-dimensional space, the point T (x T, y T, z T) for H aT from two images with the same camera, L aT, H bT, among L bT What is necessary is just to measure at least three persons. The number 11 (conversion equation) is obtained by solving this if for example the number 10 a relationship of, H aT, L aT, H bT, 3 person point by substituting this conversion formula of L bT T coordinates (x T, y T, z T) is obtained.

【0030】[0030]

【数10】 (Equation 10)

【0031】[0031]

【数11】 [Equation 11]

【0032】図4(a)及び図4(b)は停船中の船体
模型の右舷に配置された検定格子を異なる位置に配置さ
れたカメラで撮影したときの画像である。
FIGS. 4 (a) and 4 (b) are images obtained by photographing the test grid arranged on the starboard side of the hull model while the ship is stopped with cameras arranged at different positions.

【0033】図4(a)及び図4(b)に示すように、
空の回流水槽1内に配置された船体模型2の右舷には、
銅パイプ3と糸4とで構成した枠5の各交点にビーズ玉
6を多数固定したジャングルジム形状の検定格子7が配
置されている。この検定格子7は位置が既知のビーズ玉
6群を事前に撮影して解析に用いるためのものである。
この船体模型2の右舷の上には高さ方向の異なる位置に
2つのカメラ(図示せず)が設置されている。検定格子
をカメラで撮影した後、2つの画像を突き合わせ、任意
のビーズ玉6の位置の画像上の座標で測定してCijを求
めておく。
As shown in FIGS. 4A and 4B,
On the starboard side of the hull model 2 placed in the empty circulating water tank 1,
At each intersection of a frame 5 composed of a copper pipe 3 and a thread 4, a jungle gym-shaped test grid 7 in which a large number of bead balls 6 are fixed is arranged. The test grid 7 is used for photographing a group of beads 6 whose positions are known in advance and using them for analysis.
On the starboard side of the hull model 2, two cameras (not shown) are installed at different positions in the height direction. After the test grid is photographed by the camera, the two images are abutted and measured at the coordinates of the position of an arbitrary bead ball 6 on the image to obtain C ij .

【0034】次に検定格子7を除去した後、回流水槽1
に水を満たし、造波装置(図示省略)で波を発生して船
体模型2を航行状態にし、2つのカメラで水面を同時に
撮影する。図5(a)及び図5(b)は航行中の船体模
型2の右舷水面を各カメラで撮影したときの画像であ
る。
Next, after removing the test grid 7, the circulation water tank 1
Is filled with water, a wave is generated by a wave-making device (not shown), and the hull model 2 is brought into a navigating state, and the water surface is simultaneously photographed by two cameras. FIG. 5A and FIG. 5B are images obtained by photographing the starboard water surface of the hull model 2 during navigation with each camera.

【0035】尚、水面上の測定点を明確にするために回
流水槽1の底面の観測窓から水玉状の光線(観測窓に複
数の孔を形成した膜を設け、この膜を介して光源からの
光を照射させた光線)8を上向きに照射した。さらに、
上流から細かい気泡を流して水面での乱反射を促進する
ことにより観測しやすくした。
In order to clarify the measurement points on the water surface, a polka-dot-shaped light beam is provided from an observation window on the bottom of the circulating water tank 1 (a film having a plurality of holes formed in the observation window, and a light source is transmitted through the film. 8) were irradiated upward. further,
Fine bubbles were flowed from the upstream to promote diffuse reflection on the water surface, making it easier to observe.

【0036】予め求めた変換式(数11)を用いて水面
上の共通の特定点8a〜8nの位置をそれぞれ3次元で
算出することにより波高を測定した。
The wave height was measured by calculating the positions of the common specific points 8a to 8n on the water surface in three dimensions, respectively, using the conversion equation (Equation 11) obtained in advance.

【0037】図6は2つのカメラの画像の位置情報より
その共通の特定点の位置を変換式を用いて算出したデー
タに基づいた波面の立体図である。同図に示すように船
体から離れた位置の波の高さが立体的に示されているの
が分かる。
FIG. 6 is a three-dimensional diagram of a wavefront based on data obtained by calculating the position of a common specific point from the position information of the images of two cameras using a conversion formula. As shown in the figure, it can be seen that the height of the wave at a position away from the hull is shown three-dimensionally.

【0038】このように、船体周囲の波高分布を比較的
簡便かつ十分な精度で測定することができる。
Thus, the wave height distribution around the hull can be measured relatively easily and with sufficient accuracy.

【0039】以下、本発明の実施の形態を添付図面に基
づいて詳述する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

【0040】図1(a)及び図1(b)は本発明の波高
測定法の一実施の形態を示す図である。
FIGS. 1A and 1B are views showing one embodiment of the wave height measuring method of the present invention.

【0041】図1(a)に示すように、停船中の船10
の右舷に検定格子11を、喫水線12を含むように取り
付けておくと共に、2つのカメラ13,14を上下(或
いは左右)に異なる位置に検定格子11を撮影できるよ
うに設置する。2つのカメラ13,14で同時に検定格
子11を撮影し、得られた2つのカメラ13,14の画
像を突き合わせ、画像上の共通の格子点の点映像の座標
を測定し、任意の点の3次元位置を計算するための変換
式を求める。
As shown in FIG. 1 (a), the stopped ship 10
A verification grid 11 is mounted on the starboard side so as to include the waterline 12, and the two cameras 13 and 14 are installed so that the verification grid 11 can be photographed at different positions vertically (or left and right). The test grid 11 is photographed by the two cameras 13 and 14 at the same time, the obtained images of the two cameras 13 and 14 are compared, and the coordinates of the point image of the common grid point on the images are measured. A conversion formula for calculating the dimension position is obtained.

【0042】次に検定格子11を船体10から除去し、
船体10を航行させる(図1(b))。船体10を航行
させたまま2つのカメラ13,14で同時に同一海面を
撮影する。得られた2つの海面の画像を突き合わせ、波
面状の特定点の座標を変換式を用いて3次元位置を算出
することにより、船体周囲の波高分布を比較的簡便かつ
十分な精度で測定することができる。
Next, the test grid 11 is removed from the hull 10,
The hull 10 is made to sail (FIG. 1B). The same sea surface is photographed simultaneously with the two cameras 13 and 14 while the hull 10 is being navigated. By comparing the obtained two images of the sea surface and calculating the three-dimensional position of the coordinates of the specific point on the wavefront using a conversion formula, the wave height distribution around the hull can be measured relatively easily and with sufficient accuracy. Can be.

【0043】以上において、本実施の形態の波高測定法
は、地形図の作成に用いられるようなステレオ撮影法と
は異なり、特殊なカメラは不要である。本実施の形態で
測定に使用するカメラの位置関係は、精密に測定する必
要がないため、測定システムの設置は容易となる。カメ
ラにTV(テレビ)カメラを用いれば非定常な波面を連
続して測定することができる。検定格子の位置を正確に
測定することにより、実用上十分な測定精度が得られ
る。
In the above, the wave height measuring method of the present embodiment does not require a special camera, unlike the stereo photographing method used for creating a topographic map. It is not necessary to precisely measure the positional relationship of the cameras used for measurement in the present embodiment, so that the measurement system can be easily installed. If a TV (television) camera is used as a camera, an unsteady wavefront can be continuously measured. By accurately measuring the position of the test grid, practically sufficient measurement accuracy can be obtained.

【0044】本実施の形態ではカメラが2台の場合で説
明したが、3台以上のカメラを同時に使用してもよくこ
の場合には測定範囲を広げたり、測定精度を高めること
ができる。
In the present embodiment, the case where two cameras are used has been described. However, three or more cameras may be used at the same time, and in this case, the measurement range can be expanded and the measurement accuracy can be improved.

【0045】[0045]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0046】船体の側壁に検定格子を取り付け、他方、
その検定格子を異なる位置から撮影し、得られた検定格
子の各点の画像上の位置情報を照合させて解析した後、
検定格子を船体から除去し、航行中にカメラで撮影した
少なくとも2つの海面の画像より海面上の共通の特定点
を求め、検定格子で得られた位置情報よりその特定点の
位置を3次元で算出するので、航行中の船体の周囲に生
じる波の波高分布を、比較的簡便かつ十分な精度で測定
することができる。
A verification grid is attached to the side wall of the hull,
After photographing the test grid from different positions, collating and analyzing the position information on the obtained image of each point of the test grid,
The test grid is removed from the hull, a common specific point on the sea surface is determined from at least two images of the sea surface taken by the camera during navigation, and the position of the specific point is determined in three dimensions from the position information obtained by the test grid. Since the calculation is performed, the wave height distribution of the waves generated around the hull during navigation can be measured relatively easily and with sufficient accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)及び(b)は本発明の波高測定法の一実
施の形態を示す図である。
FIGS. 1A and 1B are diagrams showing an embodiment of a wave height measuring method according to the present invention.

【図2】3次元空間の座標を示す図である。FIG. 2 is a diagram showing coordinates in a three-dimensional space.

【図3】(a)及び(b)は3次元空間における任意の
点Pを、異なる位置に設置されたカメラで撮影したとき
の画像である。
FIGS. 3A and 3B are images obtained by photographing an arbitrary point P in a three-dimensional space with cameras installed at different positions.

【図4】(a)及び(b)は停船中の船体模型の右舷に
配置された検定格子を異なる位置に配置されたカメラで
撮影したときの画像である。
4 (a) and 4 (b) are images obtained by photographing a test grid arranged on the starboard side of a hull model at a standstill with cameras arranged at different positions. FIG.

【図5】(a)及び(b)は航行中の船体模型の右舷水
面を各カメラで撮影したときの画像である。
FIGS. 5 (a) and (b) are images obtained by photographing the starboard water surface of a hull model during navigation with each camera.

【図6】2つのカメラの画像の位置情報より共通の特定
点の位置を変換式を用いて算出したデータに基づいた立
体図である。
FIG. 6 is a three-dimensional diagram based on data obtained by calculating a position of a common specific point from a position information of images of two cameras using a conversion formula.

【符号の説明】[Explanation of symbols]

10 船体 11 検定格子 13,14 カメラ 10 Hull 11 Calibration grid 13,14 Camera

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−120488(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01C 13/00 G01C 11/00 - 11/34────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-53-120488 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01C 13/00 G01C 11/00-11 / 34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 航行中の船体の周囲に生じる波の波高分
布を測定する波高測定法において、船体の側壁に予め位
置が既知の多数の点をもつ検定格子を取り付け、他方、
その検定格子を異なる位置から撮影する少なくとも2つ
のカメラを船体に設置し、各カメラで検定格子を同時に
撮影し、得られた検定格子の各点の画像上の位置情報を
照合させて解析した後、上記検定格子を船体から除去
し、航行中に上記カメラで撮影した少なくとも2つの海
面の画像より海面上の共通の特定点を求めるとともに、
上記検定格子で得られた画像上の位置情報よりその特定
点の位置を3次元で算出することを特徴とする波高測定
法。
1. A wave height measuring method for measuring a wave height distribution of a wave generated around a hull during navigation, wherein a calibration grid having a number of points whose positions are known in advance is attached to a side wall of the hull.
After installing at least two cameras on the hull for photographing the test grid from different positions, photographing the test grid simultaneously with each camera, collating and analyzing the obtained positional information on the image of each point of the test grid, Removing the test grid from the hull and determining a common specific point on the sea surface from at least two sea surface images taken by the camera during navigation;
A wave height measuring method characterized by calculating a position of a specific point in three dimensions from position information on an image obtained by the test grid.
JP8141708A 1996-06-04 1996-06-04 Wave height measurement method Expired - Lifetime JP2806451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8141708A JP2806451B2 (en) 1996-06-04 1996-06-04 Wave height measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8141708A JP2806451B2 (en) 1996-06-04 1996-06-04 Wave height measurement method

Publications (2)

Publication Number Publication Date
JPH09325027A JPH09325027A (en) 1997-12-16
JP2806451B2 true JP2806451B2 (en) 1998-09-30

Family

ID=15298361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8141708A Expired - Lifetime JP2806451B2 (en) 1996-06-04 1996-06-04 Wave height measurement method

Country Status (1)

Country Link
JP (1) JP2806451B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11741193B2 (en) 2020-12-02 2023-08-29 Yamaha Hatsudoki Kabushiki Kaisha Distance recognition system for use in marine vessel, control method thereof, and marine vessel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076972A1 (en) * 2003-02-27 2004-09-10 Mitsubishi Denki Kabushiki Kaisha Water level measuring system
CN102878985B (en) * 2012-06-27 2015-04-15 上海海事大学 Water surface wave scale monitoring method based on image texture features
CN102721411B (en) * 2012-06-28 2014-07-02 上海海事大学 Wave scale monitoring method based on water wave image
KR102372852B1 (en) * 2015-07-03 2022-03-10 대우조선해양 주식회사 Waveform image analysis device for hull design verification of the vessel
ITUB20159299A1 (en) * 2015-12-14 2017-06-14 Consiglio Nazionale Ricerche METHOD AND APPARATUS FOR SPATIAL MEASUREMENT IN THE TIME OF THE SEA SURFACE FROM MOBILE PLATFORMS
CN105526914B (en) * 2015-12-29 2018-03-16 天津大学 A kind of six degree of freedom aviation oblique photograph simulation system
JP6858415B2 (en) * 2019-01-11 2021-04-14 学校法人福岡工業大学 Sea level measurement system, sea level measurement method and sea level measurement program
CN112880645A (en) * 2021-02-20 2021-06-01 自然资源部第一海洋研究所 Sea wave surface three-dimensional model construction system and method based on three-dimensional mapping mode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11741193B2 (en) 2020-12-02 2023-08-29 Yamaha Hatsudoki Kabushiki Kaisha Distance recognition system for use in marine vessel, control method thereof, and marine vessel

Also Published As

Publication number Publication date
JPH09325027A (en) 1997-12-16

Similar Documents

Publication Publication Date Title
US6193657B1 (en) Image based probe position and orientation detection
CN105841688B (en) A kind of ship auxiliary anchors alongside the shore method and system
CN103971406B (en) Submarine target three-dimensional rebuilding method based on line-structured light
CN107561545B (en) Fish shoal detection method and device and detector
JP2806451B2 (en) Wave height measurement method
CN113436258A (en) Offshore pontoon detection method and system based on fusion of vision and laser radar
JP3558300B2 (en) 3D display device
CN112526490B (en) Underwater small target sonar detection system and method based on computer vision
KR102109814B1 (en) Apparatus and method for registering images
US11948344B2 (en) Method, system, medium, equipment and terminal for inland vessel identification and depth estimation for smart maritime
CN110920824A (en) Ship model attitude measurement system and method based on binocular stereo vision
Greated et al. Particle image velocimetry (PIV) in the coastal engineering laboratory
CN105411624A (en) Ultrasonic three-dimensional fluid imaging and speed measuring method
Kamgar-Parsi et al. Underwater imaging with a moving acoustic lens
CN115077414B (en) Device and method for measuring bottom contour of sea surface target by underwater vehicle
CN113253285B (en) Method for upgrading fixed-point three-dimensional panoramic imaging sonar system into navigation system
CN114136544A (en) Underwater vibration simulation test system and method based on high-speed video measurement
JP2964872B2 (en) Liquid surface position measurement method using image processing
CN116400361A (en) Target three-dimensional reconstruction system and method based on sonar detection
JP7402464B2 (en) Wave analysis system
JP4295892B2 (en) Terrain Survey Unit
JP2013012095A (en) Method for analyzing three-dimensional configuration state of fixed form body group
CN113899737A (en) Method and device for detecting bubbles in seabed, electronic equipment and medium
JP4431486B2 (en) Target identification support system
Del Pizzo et al. A preliminary study on an optical system for nautical and maritime traffic monitoring

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term