JP2801334B2 - In-pipe communication method - Google Patents

In-pipe communication method

Info

Publication number
JP2801334B2
JP2801334B2 JP888590A JP888590A JP2801334B2 JP 2801334 B2 JP2801334 B2 JP 2801334B2 JP 888590 A JP888590 A JP 888590A JP 888590 A JP888590 A JP 888590A JP 2801334 B2 JP2801334 B2 JP 2801334B2
Authority
JP
Japan
Prior art keywords
pipe
center
existing
pipeline
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP888590A
Other languages
Japanese (ja)
Other versions
JPH03215110A (en
Inventor
邦男 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP888590A priority Critical patent/JP2801334B2/en
Publication of JPH03215110A publication Critical patent/JPH03215110A/en
Application granted granted Critical
Publication of JP2801334B2 publication Critical patent/JP2801334B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Cable Installation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はケーブルなどの電力線や光ファイバ、可撓管
などの通信線が既設されている管路内に、新たに布設す
べきケーブルや光ファイバ、可撓管などの新設体を線条
体をガイドとして挿通して通線する管路内通線工法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a cable or light to be newly laid in a conduit in which a power line such as a cable, an optical fiber, and a communication line such as a flexible tube are already provided. The present invention relates to an in-pipe wiring method in which a new body, such as a fiber or a flexible tube, is inserted through the striated body as a guide and passed.

(従来の技術) 従来、管路内に何も布設されていない状態ではFRPロ
ッドやカーボンロッドなどの線条体に電力線や通信線等
の布設体を接続し、同線条体をガイドとして管路の開口
部から挿入して通過させることにより管路内に布設体を
通線していた。
(Prior art) Conventionally, when nothing is laid in a pipeline, a laying body such as an FRP rod or a carbon rod is connected to a laying body such as a power line or a communication line, and the striated body is used as a guide. The laid body was passed through the pipe by inserting it through the opening of the passage and passing it.

また、管路内に電力線や通信線などが既設されている
場合においても前記と同様に、FRPロッドやカーボンロ
ッドなどの線条体に新たに布設すべき新設体を接続し、
同線条体をガイドとして管路口から挿通することにより
管路内に新設体を通線していた。
Also, in the same manner as described above, even when a power line, a communication line, and the like are already installed in the pipeline, a new body to be newly laid on a wire body such as an FRP rod or a carbon rod is connected,
The new body was passed through the conduit by inserting the same striated body through the conduit opening as a guide.

(発明が解決しようとする課題) しかし管路内に既設体が布設されている場合、従来の
ような線条体を挿入したのでは、同線条体が管路の途中
で動かなくなり、新設体を通線することができなかっ
た。
(Problems to be Solved by the Invention) However, when an existing body is laid in a pipeline, if a conventional linear body is inserted, the same linear body does not move in the middle of the pipeline, and a new one is installed. I could not pass through my body.

(発明の目的) 本発明の目的は、既設体が布設されている管路内に新
設体を容易に通線できるようにした管路内通線工法を提
供することにある。
(Object of the Invention) It is an object of the present invention to provide an in-pipe line connection method that allows a new body to be easily passed through a pipe in which an existing body is laid.

(課題を解決するための手段) 本願発明者らは前記諸問題を解決すべき鋭意検討した
ところ、前記線条体の挿通時に、同線条体が管路の曲部
において管路と既設体との隙間に食込み或は嵌り込んで
しまい、そのため三者の摩擦抵抗が増大して同線条体が
動かなくなることを見出した。
(Means for Solving the Problems) The inventors of the present application have conducted intensive studies to solve the above-mentioned problems, and found that when the striated body is inserted, the striated body is connected to the existing part of the pipe at the curved portion of the pipe. Have been found to bite or fit into the gap between the striated body and the striated body.

更に本願発明者らは、この食込み現象が以下のような
理由により発生することをも見出した。
Furthermore, the inventors of the present application have also found that this biting phenomenon occurs for the following reasons.

即ち、第3図のように管路2の曲部10では、線条体3
を管路2内に押込む力(押込み力)Fが同線条体3を同
管路2の曲りの外側に押付ける力(押付け力)F0として
働く。この押付け力F0は第4図のように、線条体1と既
設体3とが接触すると、その接線方向に滑ろうとする力
(接線力)F1と、その法線方向に押そうとする力(抗
力)F2との二つの分力に分けられる。このうち、前記接
線力F1が第4図のように前記管路2と既設体1との隙間
11の狭い方向に向いていると、同線条体3が同隙間11に
食込んでしまうのである。
That is, as shown in FIG.
(Pressing force) F that presses the wire into the pipe 2 acts as a force (pressing force) F 0 that presses the filament 3 out of the bend of the pipe 2. As shown in FIG. 4, when the striated body 1 and the existing body 3 come into contact with each other, the pressing force F 0 is a force (tangential force) F 1 that tends to slide in the tangential direction, and the pressing force F 0 is pressed in the normal direction. force (drag) is divided into two component forces and F 2. Of these, the tangential force F 1 is the clearance between the pipe 2 and the existing body 1 as shown in FIG.
If it is directed in the narrow direction of 11, the same linear body 3 will bite into the gap 11.

一方、前記既設体1は必ずしも前記管路2の最低部に
あるわけではなく、例えば第4図のように最低部より少
しずれた位置にある場合もある。この既設体1の中心A
と管路2の中心Oとを結ぶ直線が同管路2の中心Oを通
る垂線に対してなす角度をθとする。ちなみに、前記の
ような位置ずれは第7図に示すように既設体1に係る張
力FCとその自重Wとの、既設体1と管路2との接線方向
への分力のバランスから生じるものであり、それらは以
下のように示される。
On the other hand, the existing body 1 is not always located at the lowest part of the pipe line 2 and may be at a position slightly shifted from the lowest part, for example, as shown in FIG. Center A of this existing body 1
The angle formed by a straight line connecting the line and the center O of the pipeline 2 to a perpendicular passing through the center O of the pipeline 2 is defined as θ. Incidentally, the displacement as described above is caused by the balance of the component force in the tangential direction between the existing body 1 and the pipeline 2 between the tension F C of the existing body 1 and its own weight W as shown in FIG. And they are shown as follows:

FCcosθ=W|sinθ| ∴|sinθ|/cosθ=FC/W さて、前記接線力F1が前記隙間11の狭い方向に向かな
いためには、少なくとも線条体3の中心Bが既設体1の
中心Aと同じ高さか、より上方にある必要がある。そこ
で第5図のように前記線条体3の中心Bが既設体1の中
心Aと同じ高さにある場合を境界点として線条体3の最
大外径aを以下のように計算する。ここで第5図のよう
に 管路の内径:D0、既設体の外径:D1、 線条体の中心と既設体の中心との距離:AB、 管路の中心と線条体の中心との距離:OB、 同距離OBの水平成分:A′B、 管路の中心と既設体の中心との距離:OA、 同距離OAの水平成分:AA′、 同距離OAの垂直成分:OA′、 とすると、 OB=1/2(D0−a)、 AB=1/2(D1+a)、 OA=1/2(D0−D1)、 AA′=|sinθ|・OA、 OA′=cosθ・OA, となり、ピタゴラスの定理により、 OB2=OA′2+A′B2 =OA′2+AB+AA′) =(cosθ・OA)+(AB+|sinθ|・OA) =cos2θ・OA2+AB2+2|sinθ|・AB・OA +sin2θ・OA2 =(cos2θ+sin2θ)・OA2+2・|sinθ|・AB・OA+AB2 cos2θ+sin2θ=1であるので OB2=OA2+2|sinθ|・AB・OA+AB2 ∴OB2−OA2=2|sinθ|・AB・OA+AB2 ここで同式の左辺は 左辺={1/2(D0−a)}−{1/2(D0−D1)} =1/4[D0 2−2a・D0−a2−D0 2+2D1・D0−D1 2] =1/4[−2a・D0+2D1・D0+a2−D1 2] また同式の右辺は 右辺=2・|sinθ|・{1/2(D0−D1)}・{1/2(D1+a)} +{1/2(D1+a)} =1/4[2・|sinθ|・(D0−D1)・(D1+a)+(D1+a)] =1/4[2・|sinθ|・(D0・D1−D1 2+a・D0−a・D1) +(D1 2+2a・D1・a2)] 従って両辺を4倍して −2a・D0+2D1・D0+a2−D1 2=2・|sinθ|・(D0・D1 −D1 2−a・D0−a・D1)+D1 2+2a・D1+a2 ∴−a・D0+D1・D0=|sinθ|・(D0・D1−D1 2+a・D0 −a・D1)−a・D1+D1 2 ∴−a・D0+D1・D0=D1・|sinθ|・(D0−D1) +a・|sinθ|・(D0−D1) +a・D1+D1 2 −a・D0−a・D1−a・|sinθ|・(D0−D1) =D1・|sinθ|・(D0−D1)−D1・D0 +D1 2a・(D0+D1)+a・|sinθ|・(D0−D1) =D1・(D0−D1)−D1・(D0−D1)・|sinθ| ∴a・{(D0+D1)+|sinθ|・(D0−D1)} =D1・(D0−D1)(1−|sinθ|) ∴a={D1・(D0−D1)(1−|sinθ|)}/{(D0+D1) +|sinθ|・(D0−D1)} 少なくとも線条体3の最大外径aはこれ以上である必
要がある。
F C cosθ = W | sinθ | ∴ | sinθ | / cosθ = F C / W Well, for the tangential force F 1 is not suitable for a narrow direction of said gap 11, at least the center B of the striatum 3 existing It must be at the same height or higher than the center A of the body 1. Then, as shown in FIG. 5, the maximum outer diameter a of the striated body 3 is calculated as follows with the case where the center B of the striated body 3 is at the same height as the center A of the existing body 1 as a boundary point. Here, as shown in Fig. 5, the inner diameter of the pipe: D 0 , the outer diameter of the existing body: D 1 , the distance between the center of the striatum and the center of the existing body: AB, the center of the pipe and the center of the striatum Distance to center: OB, Horizontal component of same distance OB: A'B, Distance between pipeline center and center of existing body: OA, Horizontal component of same distance OA: AA ', Vertical component of same distance OA: OA ′, OB = 1/2 (D 0 −a), AB = 1/2 (D 1 + a), OA = 1/2 (D 0 −D 1 ), AA ′ = | sinθ | · OA OA ′ = cos θ · OA, and according to Pythagorean theorem, OB 2 = OA ′ 2 + A′B 2 = OA ′ 2 + AB + AA ′) 2 = (cos θ · OA) 2 + (AB + | sin θ | · OA) 2 = Cos 2 θ · OA 2 + AB 2 + 2 | sin θ | AB · OA + sin 2 θ · OA 2 = (cos 2 θ + sin 2 θ) · OA 2 + 2 · | sin θ | · AB · OA + AB 2 cos 2 θ + sin 2 θ = Since OB 2 = OA 2 +2 | sin θ | AB · OA + AB 2 ∴OB 2 −OA 2 = 2 | sin θ | AB · OA + AB 2 where the left side of the equation is the left side = {1/2 (D 0 −a)} 2 − {1/2 (D 0 −D 1 )} 2 = 1/4 [D 0 2 −2a · D 0 −a 2 −D 0 2 + 2D 1 · D 0 −D 1 2 ] = 1/4 [-2a · D 0 + 2D 1 · D 0 + a 2 -D 1 2] the same expression on the right is the right side = 2 · | sinθ | · { 1/2 (D 0 -D 1)} · {1 / 2 (D 1 + a) } + {1/2 (D 1 + a)} 2 = 1/4 [2 · | sinθ | · (D 0 -D 1) · (D 1 + a) + (D 1 + a) 2] = 1/4 [2 · | sinθ | · (D 0 · D 1 -D 1 2 + a · D 0 -a · D 1) + (D 1 2 + 2a · D 1 · a 2)] Therefore both sides 4 times to -2a · D 0 + 2D 1 · D 0 + a 2 -D 1 2 = 2 · | sinθ | · (D 0 · D 1 -D 1 2 -a · D 0 -a · D 1) + D 1 2 + 2a · D 1 + a 2 ∴-a · D 0 + D 1 · D 0 = | sinθ | · (D 0 · D 1 -D 1 2 + a · D 0 -a · D 1) -a · D 1 + D 1 2 ∴-a · D 0 + D 1 · D 0 = D 1 · | sinθ | · (D 0 -D 1) + a · | sinθ | · (D 0 -D 1) + a · D 1 + D 1 2 -a · D 0 −a · D 1 −a · | sinθ | · (D 0 −D 1) = D 1 · | sinθ | · (D 0 -D 1) -D 1 · D 0 + D 1 2 a · (D 0 + D 1) + a · | sinθ | · (D 0 -D 1) = D 1・ (D 0 −D 1 ) −D 1・ (D 0 −D 1 ) ・ | sin θ | ∴a ・ {(D 0 + D 1 ) + | sin θ | ・ (D 0 −D 1 )} = D 1・(D 0 −D 1 ) (1− | sin θ |) ∴a = {D 1 · (D 0 −D 1 ) (1− | sin θ |)} / {(D 0 + D 1 ) + | sin θ | · ( D 0 −D 1 )} At least the maximum outer diameter a of the striated body 3 needs to be larger than this.

また、第8図のように前記隙間11の最大値はD0−D1
あるので、線条体3の最大外径aは a<D0−D1 である必要がある。
The maximum value of the gap 11 as shown in Figure 8, so is D 0 -D 1, the maximum outer diameter a of the striatum 3 is required to be a <D 0 -D 1.

以上により本発明の管路2内通線工法は、ケーブルや
光ファイバなどの既設体1が布設されている管路2内
に、ケーブルや光ファイバなどの新設体が接続された線
条体3をガイドとして挿通して新たに通線する管路内通
線工法において、最大外径aが次の条件式を満たす線
条体3を使用することを特徴とするものである。
As described above, according to the in-line construction method of the present invention, the wire body 3 in which a new body such as a cable or an optical fiber is connected is installed in the pipeline 2 on which the existing body 1 such as a cable or an optical fiber is laid. Is used as a guide in the in-pipe wiring method in which a new wire is inserted, characterized by using a filament 3 whose maximum outer diameter a satisfies the following conditional expression.

{D1(D0−D1)(1−|sinθ|)}/{(D0+D1)+|sinθ|(D0−D1)}≦a<(D0-D1) … 但し、a:線条体3の最大外径 D0:管路2の内径 D1:既設体1の外径 θ:管路2の中心Oと既設体1の中心Aを結ぶ
直線が管路2の中心Oを通る垂線に対してなす角度、−
90゜<θ<90゜ (作用) 本発明の管路内通線工法では、使用される線条体3の
最大外径aが条件式、即ち {D1(D0−D1)(1−|sinθ|)}/{(D0+D1)+|sinθ|(D0−D1)}≦a<(D0-D1) … の範囲にあるので、第6図のように線条体3の中心Bが
少なくとも既設体1の中心Aと同じ高さか、または上方
にあるので、同線条体3に働く前記押付け力F0の接線力
F1が、既設体1と管路2との隙間11の狭い方向に向くこ
とはない。従って、線条体3を管路2内に押込んでも同
線条体3が同隙間11に食込んで動かなくなることがな
い。
{D 1 (D 0 −D 1 ) (1− | sin θ |)} / {(D 0 + D 1 ) + | sin θ | (D 0 −D 1 )} ≦ a <(D 0 −D 1 )… , A: maximum outer diameter of the linear body 3 D 0 : inner diameter of the pipe 2 D 1 : outer diameter of the existing body 1 θ: a straight line connecting the center O of the pipe 2 and the center A of the existing body 1 is the pipe 2 To the perpendicular passing through the center O of
90 ° <θ <90 ° (operation) In the in-pipe wiring method according to the present invention, the maximum outer diameter a of the filament 3 used is a conditional expression, that is, {D 1 (D 0 −D 1 ) (1 - | sinθ |)} / { (D 0 + D 1) + | sinθ | ( since D 0 -D 1)} ≦ a <(D 0- D 1) ... in the range of the line as in the Figure 6 Since the center B of the strip 3 is at least as high as or above the center A of the existing body 1, the tangential force of the pressing force F 0 acting on the strip 3 is applied.
F 1 does not face the narrow direction of the gap 11 between the existing body 1 and the pipeline 2. Therefore, even if the striated body 3 is pushed into the pipeline 2, the striated body 3 does not bite into the gap 11 and does not move.

なお、第9図のように既設体1が管路2の最低部にあ
る場合は、前記θ=0゜となり、前記条件式は {D1(D0−D1)(1−|sin0|)}/{(D0+D1)+|sin0|(D0−D1)}≦a<(D0-D1) ∴{D1(D0−D1)}/(D0+D1)≦a<(D0-D1) …′ 但し、a:線条体3の外径 D0:管路2の内径 D1:既設体1外径 と表わされ、前記条件式がこの場合を含蓄することが
分かる。
Note that when the existing body 1 is at the lowest part of the pipeline 2 as shown in FIG. 9, the above θ = 0 °, and the above conditional expression is expressed as {D 1 (D 0 −D 1 ) (1- | sin0 | )} / {(D 0 + D 1) + | sin0 | (D 0 -D 1)} ≦ a <(D 0- D 1) ∴ {D 1 (D 0 -D 1)} / (D 0 + D 1 ) ≦ a <(D 0 −D 1 )... ′, Where a: the outer diameter of the filament 3 D 0 : the inner diameter of the pipe 2 D 1 : the outer diameter of the existing body 1 It can be seen that the case is implied.

(実施例) 本発明の実施例として、既設体1として外径65mmφの
電力ケーブルが布設されている第10図に示すような管路
2に各種の線条体3を挿入・貫通してみた。この管路2
は内径125mmφの鋼管製のものであり、同図に示すよう
に三箇所に直角に湾曲する曲率5mの曲部10を有するもの
である。このとき、同管路2内の既設体(電力ケーブ
ル)1には全く張力が係っておらず、前述した第9図の
ように既設体1が管路2の最低部に位置していた。
(Example) As an example of the present invention, various striated bodies 3 were inserted and penetrated into a pipeline 2 as shown in FIG. 10 in which a power cable having an outer diameter of 65 mm was laid as an existing body 1. . This line 2
Is made of a steel pipe having an inner diameter of 125 mmφ, and has a curved portion 10 having a curvature of 5 m which is bent at right angles at three places as shown in FIG. At this time, no tension was applied to the existing body (power cable) 1 in the pipeline 2 and the existing body 1 was located at the lowest part of the pipeline 2 as shown in FIG. .

従って本発明では前記条件式 {D1(D0−D1)(1−|sinθ|)}/{(D0+D1)+|sinθ|(D0−D1)}≦a<(D0-D1) … に、D0=125mm、D1=65mm、θ=0゜を代入して 20.5mmφ≦a<60mmφ なる条件を得た。Therefore, in the present invention, the conditional expression {D 1 (D 0 −D 1 ) (1− | sin θ |)} / {(D 0 + D 1 ) + | sin θ | (D 0 −D 1 )} ≦ a <(D By substituting D 0 = 125 mm, D 1 = 65 mm, and θ = 0 ° into 0 −D 1 ), the condition 20.5 mmφ ≦ a <60 mmφ was obtained.

そして本発明の実施例1として第1図のような最大外
径a=25mmφ、内径d0=3mmφのFRP製のパイプを線条体
3として使用した。
As Example 1 of the present invention, a FRP pipe having a maximum outer diameter a = 25 mmφ and an inner diameter d 0 = 3 mmφ as shown in FIG.

また本発明の実施例2として第2図に示すように適宜
間隔l(この実施例では2m)毎に最大外径a=22mmφの
大径部21が形成され、その他の部分は外径d=7mmφ、
内径d0=3mmφであるFRP製の線条体3を使用した。
As shown in FIG. 2, a large-diameter portion 21 having a maximum outer diameter a = 22 mmφ is formed at appropriate intervals l (2 m in this embodiment) as shown in FIG. 7mmφ,
An FRP filament 3 having an inner diameter d 0 = 3 mmφ was used.

これらを第10図の矢印z方向から管路2内に挿入した
ところ、前記実施例1の線条体3は管路2内をスムース
に通過することができ、同線条体3に接続された新設体
を管路2内に新たに布設することができた。
When these are inserted into the pipeline 2 from the direction of the arrow z in FIG. 10, the filament 3 of the first embodiment can smoothly pass through the pipeline 2 and is connected to the filament 3. The new body was newly laid in the pipeline 2.

これとは逆に本発明の比較例として最大外径a=3.5m
mφのFRP製のロッドを線条体として使用して、これを前
記と同様に管路2内に挿入したところ、第10図の箇所B
において動かなくなってしまった。
On the contrary, the maximum outer diameter a = 3.5 m as a comparative example of the present invention.
When a rod made of FRP having a diameter of mφ was used as a striatum and was inserted into the pipe line 2 in the same manner as described above, a point B in FIG.
Has stopped working.

また前記実施例2の線条体3も、前記実施例1の線条
体3と同様に管路2内をスムースに通過することがで
き、同線条体3に接続された新設体を管路2内に新たに
布設することができた。
Also, the striated body 3 of the second embodiment can smoothly pass through the inside of the pipe line 2 similarly to the striated body 3 of the first embodiment, and a new body connected to the striated body 3 is piped. Newly laid in Road 2.

この結果から明らかなように、第2図のように線条体
3の長手方向の適宜箇所に、前記条件式を満足する最
大外径aを有する大径部21が形成されていれば、管路2
と既設体1との隙間11への線条体3の食込みが防止さ
れ、三者の摩擦が増大することがない。更に望ましくは
線条体3の挿通時或は新設体の通線時に、前記大径部21
が常時、曲部11に最低一個は位置するように同大径部21
を形成するとよい。
As is apparent from this result, if the large-diameter portion 21 having the maximum outer diameter a satisfying the above-mentioned conditional expression is formed at an appropriate position in the longitudinal direction of the filament 3 as shown in FIG. Road 2
Biting of the striated body 3 into the gap 11 between the wire and the existing body 1 is prevented, and the friction between the three members does not increase. More preferably, the large diameter portion 21 is inserted when the wire 3 is inserted or when a new body is inserted.
However, the large-diameter portion 21 is always
Should be formed.

(発明の効果) 以上のように本発明の管路2内通線工法では、線条体
3の最大外径aが前記条件式を満足しているので、既
設体1と管路2との隙間11に同線条体3が食込み或は嵌
り込むことがなく、従って同線条体3がそれ以上押し込
めなくなることもなく、管路2内に新設体を容易に通線
することが可能となる。
(Effects of the Invention) As described above, according to the inside line 2 construction method of the present invention, since the maximum outer diameter a of the striated body 3 satisfies the conditional expression, the existing body 1 and the line 2 The new linear body can be easily passed through the pipe line 2 without the same linear body 3 being bitten or fitted into the gap 11, so that the same linear body 3 cannot be pushed further. Become.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図は本発明の管路内通線工法に使用される
線条体の各種例を示す側面図、第3図は管路の曲部の説
明図、第4図〜第9図は第3図のA−A断面図であり、
第4図は線条体が既設体と管路との隙間に食込む状態の
説明図、第5図は同隙間に線条体が食込まない境界点の
状態説明図、第6図は同隙間に線条体が食込まない状態
の説明図、第7図は既設体が管路の最低部からずれてい
る場合の状態説明図、第8図は線条体の最大外径の最大
条件を示す説明図、第9図は既設体が管路の最低部にあ
る場合の状態説明図、第10図は本発明の実施例に使用さ
れた管路の全体説明図である。 1は既設体 2は管路 3は線条体 は条件式 aは線条体の最大外径 D0は管路の内径 D1は既設体の外径 θは管路の中心と既設体の中心を結ぶ直線が管路の中心
を通る垂線に対してなす角度
FIGS. 1 and 2 are side views showing various examples of a striated body used in the in-pipe communication method according to the present invention, FIG. 3 is an explanatory view of a curved portion of the pipe, and FIGS. FIG. 9 is a sectional view taken along line AA of FIG.
FIG. 4 is an explanatory view of a state in which the striatum bites into the gap between the existing body and the pipeline, FIG. 5 is an explanatory view of a boundary point where the striatum does not bite into the gap, and FIG. FIG. 7 is an explanatory view of a state in which the striatum does not bite into the gap, FIG. 7 is an explanatory view of a state in which the existing body is displaced from the lowest part of the pipeline, and FIG. 8 is a maximum condition of the maximum outer diameter of the striatum FIG. 9 is an explanatory diagram showing a state where the existing body is at the lowest part of the pipeline, and FIG. 10 is an overall explanatory diagram of the pipeline used in the embodiment of the present invention. 1 is the existing body 2 is the pipeline 3 is the striated body Conditional expression a is the maximum outer diameter of the striated body D 0 is the inner diameter of the pipe D 1 is the outer diameter of the existing body θ is the center of the pipe and the existing body Angle formed by a straight line connecting the centers with respect to a perpendicular passing through the center of the pipeline

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ケーブルや光ファイバなどの既設体1が布
設されている管路2内に、ケーブルや光ファイバなどの
新設体を線条体3をガイドとして挿通して新たに通線す
る管路内通線工法において、最大外径aが次の条件式
を満たす線条体3を使用することを特徴とする管路内通
線工法。 {D1(D0−D1)(1−|sinθ|)}/{(D0+D1)+|sinθ|(D0−D1)}≦a<(D0-D1) …… 但し、a:線条体3の最大外径 D0:管路2の内径 D1:既設体1の外径 θ:管路2の中心Oと既設体1の中心Aを結ぶ直線が管
路2の中心Oを通る垂線に対してなす角度、−90゜<θ
<90゜
1. A pipe through which a new body, such as a cable or an optical fiber, is inserted into a pipeline 2 in which an existing body 1, such as a cable or an optical fiber, is laid, using the striated body 3 as a guide. An in-road line construction method, wherein a wire body 3 having a maximum outer diameter a that satisfies the following conditional expression is used. {D 1 (D 0 −D 1 ) (1− | sin θ |)} / {(D 0 + D 1 ) + | sin θ | (D 0 −D 1 )} ≦ a <(D 0 −D 1 ) Where, a: maximum outer diameter of the filament 3 D 0 : inner diameter of the pipe 2 D 1 : outer diameter of the existing pipe 1 θ: a straight line connecting the center O of the pipe 2 and the center A of the existing pipe 1 is a pipe Angle with respect to a vertical line passing through the center O of -2, -90 ° <θ
<90 ゜
JP888590A 1990-01-18 1990-01-18 In-pipe communication method Expired - Lifetime JP2801334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP888590A JP2801334B2 (en) 1990-01-18 1990-01-18 In-pipe communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP888590A JP2801334B2 (en) 1990-01-18 1990-01-18 In-pipe communication method

Publications (2)

Publication Number Publication Date
JPH03215110A JPH03215110A (en) 1991-09-20
JP2801334B2 true JP2801334B2 (en) 1998-09-21

Family

ID=11705137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP888590A Expired - Lifetime JP2801334B2 (en) 1990-01-18 1990-01-18 In-pipe communication method

Country Status (1)

Country Link
JP (1) JP2801334B2 (en)

Also Published As

Publication number Publication date
JPH03215110A (en) 1991-09-20

Similar Documents

Publication Publication Date Title
EP0727606B1 (en) Synthetic resin corrugated pipe having a concave-convex surface
US4373324A (en) Guide apparatus for flexible elements connected to relatively moving units
JP2801334B2 (en) In-pipe communication method
CA1255482A (en) Method of producing a cable conduit system suitable for the drawing-in of cables
AU657221B2 (en) Cable conduit assembly with at least one cable conduit tube made of thermoplastic plastics
JP3276934B2 (en) Underground buried pipe structure, its protection pipe, and method of connecting cable to the pipe
JP2568746B2 (en) Cable protection tube
JPH0722547Y2 (en) Corrugated composite pipe
JP2583633B2 (en) Cable protection tube
JPH02167906A (en) Structure of pc cable at crooked part
JPH0727795Y2 (en) Pipe for pushing full-hole duct
CZ211892A3 (en) Apparatus for leading cables with at least one cable protective conduit
JPH0331908Y2 (en)
JP2557832Y2 (en) Optical fiber composite cable
JPH073229U (en) Cable protection tube
JPH0583568U (en) Synthetic resin corrugated pipe
FR2400785A1 (en) Plastics flexible conduit tube with corrugated profile - has ridge radius smaller than trough radius for secure fit of sealing ring
JPH0123020Y2 (en)
JP2532844Y2 (en) Split pipe
JPH0724897Y2 (en) Electric wire protection tube
JPS5841693Y2 (en) Flexible tube for cable
JPH1187U (en) Corrugated composite pipe
JPH0426783Y2 (en)
JPH1141772A (en) Protective tube for communication cable
JPS6033704Y2 (en) Reinforcement structure for cable offset inside manhole