JP2799700B2 - Stainless steel wire for spring - Google Patents

Stainless steel wire for spring

Info

Publication number
JP2799700B2
JP2799700B2 JP8181626A JP18162696A JP2799700B2 JP 2799700 B2 JP2799700 B2 JP 2799700B2 JP 8181626 A JP8181626 A JP 8181626A JP 18162696 A JP18162696 A JP 18162696A JP 2799700 B2 JP2799700 B2 JP 2799700B2
Authority
JP
Japan
Prior art keywords
spring
wire
stainless steel
steel wire
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8181626A
Other languages
Japanese (ja)
Other versions
JPH105847A (en
Inventor
幸男 山岡
珠煥 朴
善鐘 李
勝宰 李
Original Assignee
株式会社コースジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16104077&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2799700(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社コースジャパン filed Critical 株式会社コースジャパン
Priority to JP8181626A priority Critical patent/JP2799700B2/en
Priority to KR1019960033261A priority patent/KR100201565B1/en
Publication of JPH105847A publication Critical patent/JPH105847A/en
Application granted granted Critical
Publication of JP2799700B2 publication Critical patent/JP2799700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C9/00Cooling, heating or lubricating drawing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Metal Extraction Processes (AREA)
  • Wire Processing (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Springs (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、コイルばねに用
いられるコイリング成形性の優れたばね用ステンレス鋼
線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel wire for a spring having excellent coil formability used for a coil spring.

【0002】[0002]

【従来の技術】従来から、ばね用ステンレス鋼線がコイ
ルばねに自動成形加工(コイリング加工)される場合、
図1に示すようにワイヤは強制ローラ1により真直化さ
れ、供給ローラ2によってガイドツール3(クイルと呼
ばれる精密ワイヤガイド)に送られ、その後コイリング
ピン4によって塑性加工を受け、圧縮ばねの場合はピッ
チを付けるためピッチピン6によって少し捩り加工を与
えられた後、所定巻数になった時点で心棒5と切断刃7
の剪断によって切断され、1個の圧縮コイルばねが完成
するようにしている。
2. Description of the Related Art Conventionally, when a stainless steel wire for a spring is automatically formed (coiled) into a coil spring,
As shown in FIG. 1, the wire is straightened by a forcing roller 1, sent to a guide tool 3 (a precision wire guide called a quill) by a supply roller 2, then subjected to plastic working by a coiling pin 4, and in the case of a compression spring, After being slightly twisted by the pitch pin 6 to give a pitch, the mandrel 5 and the cutting blade
To complete one compression coil spring.

【0003】このようなコイリングプロセスにおいてワ
イヤ8をスプリングSPに成形時、ワイヤ8と工具であ
るコイリングピン4は、図2に示すように、コイリング
ピン4に彫られたワイヤ8の進行方向にα傾斜した溝41
によって非常に激しい摩擦加工を受けることになり、図
中に示すごとく、工具−ワイヤ間の「潤滑」Lが重要で
ある。そしてこの潤滑の良否はコイルばねの寸法ばらつ
き(例えば、ばね自由長変動)に直接的に影響し、ばね
の不良率の変化となって現われるので、生産能率の上で
も大変重要視されている。
[0003] When the wire 8 is formed into a spring SP in such a coiling process, the wire 8 and the coiling pin 4 as a tool, as shown in FIG. Inclined groove 4 1
As a result, very heavy friction processing is performed, and as shown in the figure, "lubrication" L between the tool and the wire is important. The quality of the lubrication directly affects the dimensional variation of the coil spring (for example, a change in the free length of the spring), and appears as a change in the defective rate of the spring.

【0004】しかし乍ら、JIS G4314 に規定されている
「ばね用ステンレス鋼線」の製造においては、ユーザー
の指定する鋼種(SUS 304, SUS316など)、線径、調質区
分(WPA, WPB)に従って、ワイヤメーカーが独自の製造方
法(伸線用コーティング皮膜、伸線用潤滑剤、ダイス形
状、伸線パス回数、伸線速度など)で製線し、JIS 規定
の偏径差、線径の許容差内に仕上げていた。そして、ば
ねのコイリング成形で重要な要因となるJIS 規格では指
定されていないワイヤコイルの形状(図3のフリーコイ
ル径fd、吊り下げ開きδ)や伸線前に行うニッケルめっ
き皮膜の存在がばねのコイリング寸法のばらつきに多大
の影響を及ぼすことはよく知られているので、各社では
それらの管理に力を注いでいた。
However, in the production of "stainless steel wires for springs" specified in JIS G4314, the steel type (SUS 304, SUS316, etc.), wire diameter, and temper classification (WPA, WPB) specified by the user are required. According to, wire manufacturers make wires using their own manufacturing methods (coating film for drawing, lubricant for drawing, die shape, number of drawing passes, drawing speed, etc.) Finished within tolerance. The shape of the wire coil (free coil diameter fd, hanging open δ in Fig. 3) and the presence of a nickel plating film before wire drawing are not specified in the JIS standard, which are important factors in coiling molding of the spring. It is well known that this has a great effect on the variation in the coiling dimensions of each of them, so each company has been focusing on their management.

【0005】[0005]

【発明が解決しようとする課題】従来の技術のうちで、
ワイヤコイルの形状(図3参照)以外のばねの寸法ばら
つき(成形性)に大きな影響を与えるNi皮膜について
は、27年も前に開発されたステンレス鋼線のニッケル
メッキ皮膜による伸線法(特公昭44-14572号) なる技術
で、ステンレス鋼線にニッケルめっきを施して伸線潤滑
を容易ならしめることが開示されているが、そのNi皮膜
については皮膜厚さ、生地とNi皮膜との相対的強度差
(硬さの比)、伸線によってNi皮膜中に食い込んだ潤滑
剤付着量についてはコイリング性能に関する最適化が行
われておらず、これら3要因を組合せた総合的な解析が
切望されていた。
SUMMARY OF THE INVENTION Among the prior art,
Regarding Ni coating, which greatly affects the dimensional variation (formability) of springs other than the shape of the wire coil (see Fig. 3), the wire drawing method using a nickel-plated stainless steel wire developed 27 years ago was developed. (Japanese Patent Publication No. 44-14572) It is disclosed that a stainless steel wire is nickel-plated to facilitate wire drawing lubrication, but the thickness of the Ni film, the relative thickness between the material and the Ni film, is disclosed. Of the mechanical strength difference (hardness ratio) and the amount of lubricant that penetrated into the Ni coating by wire drawing have not been optimized for coiling performance, and a comprehensive analysis combining these three factors has been eagerly awaited. I was

【0006】ところで、前記図2のように材料と工具で
摩擦加工を行う場合、古くからその摩擦力Fの大小はAm
ontonsの法則(F=A・τ A:真実接触面積、τ:工
具と接触している材料の剪断降伏応力)で表わされるこ
とはよく知られている(バウデン,ティバー著・曽田範
宗訳「固体の摩擦と潤滑」P88,昭36, 丸善) 。ばね用ス
テンレス鋼線にNiめっきした場合のごとく、図4に示す
ように硬質加工物Hの表面に加工物より軟質の金属皮膜
Sを薄く介在させた場合は、皮膜は軟質なためτは小さ
く、生地が硬質のためAも小さく、F=Aτは小さい値
となり、軟質金属皮膜Sの介在しない場合の硬質加工物
HにおけるAが小さくτが大きい場合と異なり、Amonto
nsの法則が成立しなくなる。そして更に、Amontonsの法
則が成立しないこの場合において、軟質金属皮膜S上に
潤滑成分が介在すれば、非常に摩擦力Fは小さくなると
予想される。従来のデータによれば、図4においてFを
もっとも小さくする軟質金属Sの最適厚さは工具鋼の上
にインジウムを1μm コーティングすることが示されて
いるが(前出文献P102) 、インジウムは白金、金にも匹
敵する高価な特殊貴金属であり、ステンレス鋼線上のNi
めっきについては最適値は不明であった。また、この軟
質金属の強度(特に生地加工物との相対的強度比)や工
具−軟質金属皮膜間に介在する潤滑剤付着量について
は、どのような効果があり、どのような最適値が存在す
るかは未知の分野である。
[0006] By the way, when friction processing is performed with a material and a tool as shown in FIG.
It is well known that it can be expressed by ontons' law (F = A · τ A: true contact area, τ: shear yield stress of the material in contact with the tool) (Bauden, Tiber, translated by Norimune Soda, Solid Friction and Lubrication ”, p.88, Showa-36, Maruzen). As shown in FIG. 4, when a metal film S softer than the work is interposed thinly on the surface of the hard work H as in the case of Ni plating on a stainless steel wire for a spring, τ is small because the film is soft. A is small because the material is hard, and F = Aτ is a small value. Unlike the case where A in the hard workpiece H is small and τ is large when the soft metal film S is not interposed,
The law of ns does not hold. Further, in this case where Amontons' law is not satisfied, if a lubricating component is present on the soft metal film S, the frictional force F is expected to be extremely small. According to the conventional data, it is shown in FIG. 4 that the optimum thickness of the soft metal S for minimizing F is to coat indium with 1 μm on the tool steel (P102 mentioned above). , An expensive special precious metal comparable to gold, Ni on stainless steel wire
The optimum value for plating was unknown. In addition, the effect of the soft metal strength (particularly the relative strength ratio with the workpiece) and the amount of the lubricant adhering between the tool and the soft metal film have what effect and what optimum value exists. It is an unknown field to do.

【0007】本発明は前記の点に鑑みてなされたもので
あって、ばね用ステンレス鋼線の製造における該ステン
レス鋼線のコイリング性能に関する最適化技術の開発に
際し、未知の分野であるコイルばねの成形時の自由長な
どの寸法ばらつき(不良率)と、前記Niめっきされたば
ね用ステンレス鋼線におけるNi皮膜厚さ、Ni皮膜と生地
ワイヤとの相対的硬さ、及びNiめっきに食い込んだ潤滑
剤付着量との関係を求め、ばねの寸法不良率を最少にす
るためのこれら3要因の最適化技術を提供することを目
的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned point, and has been developed in order to develop a technology for optimizing the coiling performance of a stainless steel wire in the production of a stainless steel wire for a spring. Dimensional variation (defective rate) such as free length during molding, Ni coating thickness of Ni-plated spring stainless steel wire, relative hardness between Ni coating and fabric wire, and lubricant penetrated into Ni plating An object of the present invention is to provide a technique for optimizing the three factors for obtaining the relationship with the amount of adhesion and minimizing the dimensional defect rate of the spring.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明のニッケルめっきしたばね用ステンレス鋼線
は、前記3要因の最適化技術として、最終伸線後のワイ
ヤのニッケルめっき厚さが0.2〜2μm、めっき層の
母材に対する硬さ比が0.2〜0.83、潤滑剤付着量
が0.05〜0.80g/mの各値であることを特徴
とする。これにより、ばねの成形不良率を低く10%以
下に押えることが可能となる。
In order to achieve the above object, a nickel-plated stainless steel wire for a spring according to the present invention is used as a technique for optimizing the above three factors, as a nickel plating thickness of a wire after final drawing. but 0.2 to 2 .mu.m, hardness ratio matrix of the plating layer is 0.2 to 0.83, the amount of lubricant deposited is characterized in that it is a respective values of 0.05~0.80g / m 2 . This makes it possible to reduce the molding failure rate of the spring to as low as 10% or less.

【0009】この場合、前記3要因の範囲の決定は次の
ようにして行った。先ず、ばね用ステンレス鋼線の基本
的な製造工程を下記に示す。 この製造工程において前記3要因を変化させ、自由長の
不合格率と各要因との関係を調べた。
In this case, the range of the three factors was determined as follows. First, a basic manufacturing process of a stainless steel wire for a spring will be described below. In the manufacturing process, the above three factors were changed, and the relationship between the rejection rate of the free length and each factor was examined.

【0010】 Niめっき皮膜の厚さの変化について。 電流密度やスルファミン酸浴濃度を変えるとめっき皮膜
の性質が変るので、めっき厚さはline speedを変えてめ
っき時間を変化させることによって行った。そして、最
終のばね用ステンレス鋼線のめっき厚さは伸線前の厚さ
より計算で求めた。例えばステンレス鋼線が4φ→2φ
(75%加工)、3φ→1φ(89%加工)の場合、それぞ
れめっき厚さも伸線加工前の厚さの1/2, 1/3になってい
ることが判った。また、この計算値も光学顕微鏡(X100
0)でも測定し確認した。すなわち、この測定で、伸線前
に1.7φ3μm のNiめっきワイヤを0.7φまで伸線(加
工度83%、線径は伸線前の41%まで減少)したときのめ
っき皮膜の厚さ変化については、線径の減少と同じくめ
っき厚さが1.2μm になっていることが認められた。こ
のようにNi皮膜厚さを変化させたばね用ステンレス鋼線
0.7φを板屋製作所製の自動コイリングマシンPC−15を
用いて 線 径 0.7mm 自由長 38.0mm コイル平均値 12.0mm 有効巻数 10.5 ばね指数 17.1 (コイル平均値/線径) のような圧縮コイルばね1500ケを成形した。そして、ば
ね成形中に1ケづつ自由長を自動計測し、自由長の管理
巾を±0.10mmに設定して、この限界を外れるばねの個数
をカウントして、自由長の不合格率を算出し、Niめっき
厚さとの関係を求めた(図6参照)。
[0010] Regarding the change in the thickness of the Ni plating film. When the current density and the concentration of the sulfamic acid bath were changed, the properties of the plating film changed. Therefore, the plating thickness was changed by changing the line speed and changing the plating time. Then, the plating thickness of the final stainless steel wire for spring was obtained by calculation from the thickness before drawing. For example, stainless steel wire is 4φ → 2φ
In the case of (75% processing), 3φ → 1φ (89% processing), it was found that the plating thickness was 1/2 and 1/3 of the thickness before wire drawing, respectively. In addition, this calculated value is also calculated using an optical microscope (X100
It was also measured and confirmed in 0). That is, in this measurement, the thickness of the plating film when a 1.7φ3μm Ni-plated wire was drawn to 0.7φ before drawing (the workability was 83% and the wire diameter was reduced to 41% before drawing). Regarding the change, it was recognized that the plating thickness was 1.2 μm as in the case of the decrease in the wire diameter. Stainless steel wire for spring with Ni film thickness changed in this way
0.7mm diameter using an automatic coiling machine PC-15 manufactured by Itaya Seisakusho Wire diameter 0.7mm Free length 38.0mm Coil average value 12.0mm Effective number of turns 10.5 Spring index 17.1 (Coil average value / wire diameter 1,500 compression coil springs were molded. Then, the free length is automatically measured one by one during spring molding, the free length control width is set to ± 0.10 mm, and the number of springs outside this limit is counted to calculate the free length rejection rate. Then, the relationship with the Ni plating thickness was determined (see FIG. 6).

【0011】 Niめっき皮膜の硬さの変化について。 図4で示したようにAmontonsの法則が成立しないような
Fが小さくなるケースでは厚さの薄い軟質金属皮膜を必
要とするが、「軟質」の定義はなく、ばね用となった強
度の高いステンレス鋼線に対してどの程度の硬さを持つ
とコイリング性が良くなるか全く不明であった。そこ
で、下記のようなスルファミン酸ニッケル浴に炭酸ニッ
ケルを添加して液のPHを1〜5.5に調整してめっき層の
硬さを変化させ、同じめっき厚での自由長不良率を求め
た(図7参照)。 スルファミン酸ニッケル 800g/l 硼 酸 25g/l 臭化ニッケル 6g/l PH 1〜5.5(炭酸ニッケル添加して変化させ る) 電流密度 13A/dm2 ところで、ばね用ステンレス鋼線の伸線加工において、
ニッケルめっき皮膜とステンレス生地の硬さ変化は、め
っき層のビッカース硬さをHV180 からHV510 まで変えワ
イヤを1.7φ→0.7φに伸線し実験した結果から加工度
に対して夫々変化(ステンレス生地の硬さは上昇し、ニ
ッケル皮膜の硬さは下り気味)するが、ばね成形性に関
係するのは、最終伸線加工終了後のステンレス生地とニ
ッケル皮膜との相対的な硬さ比ということになる。な
お、ニッケルめっき層の硬さは、伸線表面(光学顕微鏡
による)の境界潤滑部と呼ばれる白色の平坦部分を選ん
で、ステンレス母材と同じく荷重1gで測定した。
[0011] Change in hardness of Ni plating film. As shown in FIG. 4, in the case where F becomes small such that Amontons' law is not satisfied, a soft metal film having a small thickness is required. However, there is no definition of “soft” and a high strength for a spring is used. It was completely unknown how hard the stainless steel wire should have to improve coilability. Accordingly, nickel carbonate is added to a nickel sulfamate bath as described below to adjust the pH of the solution to 1 to 5.5 to change the hardness of the plating layer, and to determine the free length defect rate at the same plating thickness. (See FIG. 7). Nickel sulfamate 800 g / l Boric acid 25 g / l Nickel bromide 6 g / l PH 1 to 5.5 (changed by adding nickel carbonate) Current density 13 A / dm 2 Wire drawing of stainless steel wire for spring At
The change in hardness between the nickel plating film and the stainless steel material was obtained by changing the Vickers hardness of the plating layer from HV180 to HV510 and drawing the wire from 1.7φ to 0.7φ. Although the hardness of the fabric increases and the hardness of the nickel film tends to decrease, what is related to the spring formability is the relative hardness ratio between the stainless steel material and the nickel film after the final wire drawing. Will be. The hardness of the nickel plating layer was measured at a load of 1 g, as in the case of the stainless steel base material, by selecting a white flat portion called a boundary lubrication portion on the drawn surface (by an optical microscope).

【0012】 潤滑剤付着量の変化について。 図4に示したAmontonsの法則が成立しないケースで、工
具と軟質金属薄膜の間に摩擦係数を低下させる潤滑剤が
介在すれば、前記F=Aτは更に小さくなると考えられ
る。ところで、伸線加工においては鋼種の区別なく伸線
中に粉末潤滑剤Jは図5のようにダイスDに引込まれ、
摩擦・加工熱によって軟化し液状となってダイスDとワ
イヤ8間に介在し、一部がワイヤ8に食い込んで強固に
付着した状態が出現する。このとき、ワイヤ8に潤滑剤
Jが食い込んだ部分を流体潤滑部Lf 、食い込まなかっ
た部分を境界潤滑部Lb という。この状況を光学顕微鏡
を用いて観察すると白い部分の平坦な境界潤滑部Lb
黒い部分の流体潤滑部Lf が不規則に混在している。黒
い部分の流体潤滑部Lf が多いと、そのワイヤには多く
の潤滑剤が食い込んでおり、潤滑剤付着量は多くなる
(川上平次郎:潤滑32巻2号、1986年 P111, Nakamur
a, Y. :Wire Jowrnal13巻6号 1980年 P54) 。この
流体潤滑部に潤滑剤が食い込んでいることは、ばね用ス
テンレス鋼線表面のマイクロアナライザーによる線分析
により、Caの特性X線強度変化から粉末潤滑剤成分のCa
が検出されることからも明らかある。
Regarding the change in the amount of lubricant attached. In the case where the Amontons law shown in FIG. 4 does not hold, if the lubricant that reduces the friction coefficient is interposed between the tool and the soft metal thin film, it is considered that the above-mentioned F = Aτ is further reduced. By the way, in wire drawing, the powder lubricant J is drawn into the die D as shown in FIG.
A state in which the material is softened by the friction and processing heat to be in a liquid state and interposed between the die D and the wire 8, and a part of the material is cut into the wire 8 and strongly adheres appears. At this time, a portion bites lubricant J into the wire 8 fluid lubrication unit L f, can no longer fit bite that boundary lubrication portion L b. Lubrication unit L f of the flat boundary lubrication portion L b and black parts of the white portion when this situation observation using an optical microscope are irregularly mixed. When the fluid lubricant portion L f of the black portions is large, and bite many lubricant to the wire, the lubricant coating weight increases (Heijiro Kawakami: lubricating Vol. 32 No. 2, 1986 P111, Nakamur
a, Y .: Wire Jowrnal Vol. 13, No. 6, 1980, p. 54). The fact that the lubricant has penetrated into the fluid lubrication part can be confirmed by the line analysis of the stainless steel wire for spring by a microanalyzer.
It is clear from the fact that is detected.

【0013】そこで、ニッケルめっき厚さ、ステンレス
母材とめっき皮膜の硬さ比を一定として、ダイス角度を
7〜18°、伸線スピードを50〜300m/分,圧着ローラ使
用などの条件を組合せてワイヤの潤滑剤付着量を変化さ
せ(流体潤滑部が変化する)、ばね成形時の不良率との
関係を求めた(図8参照)。なお、潤滑剤付着量の測定
は、第1段としてアセトン中で超音波加振により3時間
脱脂処理し、その後、ノルマルヘキサン中に20時間浸漬
し、重量変化を測って、g/m2で表示した。
Therefore, the conditions such as the nickel plating thickness, the hardness ratio between the stainless steel base material and the plating film are fixed, the die angle is 7 to 18 °, the drawing speed is 50 to 300 m / min, and the conditions such as the use of a pressure roller are combined. Thus, the amount of lubricant attached to the wire was changed (the fluid lubricating portion was changed), and the relationship with the defect rate during spring molding was determined (see FIG. 8). Incidentally, the measurement of the amount of the lubricant attached was performed in the first stage by degreased by ultrasonic vibration in acetone for 3 hours, and then immersed in normal hexane for 20 hours, and the change in weight was measured to obtain g / m 2 . displayed.

【0014】以上のテストより得られた3要因とばね自
由長不良率との関係を示すと次のようになる。 ばねの不良率におよぼすニッケルめっき厚さの影響 図7に示すごとく、めっき厚さが薄い場合と厚い場合は
不良率が高くなり、中間の値で不良率が小さくなる傾向
がある。0.8μm 〜1.0μm ぐらいが良好である。 ばねの不良率に及ぼすステンレス鋼線母材とニッケ
ルめっきとの硬さ比の影響 図7に示すごとく、硬さ比は非常に強い依存性があり、
めっきは軟かくても堅くても不良率は高いが、特に硬す
ぎるめっきは悪影響を及ぼす。 ばねの不良率に及ぼす潤滑剤付着量の影響 図8に示すごとく、付着量は少ない場合も多い場合も不
良率は高くなるが、付着量が特に多い場合には、図2に
示すワイヤガイドの溝径は、線径dの1.01〜1.015 倍ぐ
らいの太さで非常に精密に作られているので、潤滑剤が
目づまりを起し、コイリング停止などの事故が発生する
ので良くない。
The relationship between the three factors obtained from the above test and the spring free length defect rate is as follows. Influence of Nickel Plating Thickness on Spring Failure Rate As shown in FIG. 7, the failure rate tends to increase when the plating thickness is small and when the plating thickness is large, and tends to decrease at an intermediate value. A good range is about 0.8 μm to 1.0 μm. Effect of hardness ratio between stainless steel wire base material and nickel plating on spring failure rate As shown in FIG. 7, the hardness ratio has a very strong dependence,
The defective rate is high whether the plating is soft or hard, but plating that is too hard has an adverse effect. Effect of Lubricant Adhesion Amount on Spring Defect Rate As shown in FIG. 8, the defect rate is high when the adhesion amount is small or large, but when the adhesion amount is particularly large, the wire guide shown in FIG. Since the groove diameter is very precisely made with a thickness of about 1.01 to 1.015 times the wire diameter d, it is not good because the lubricant is clogged and an accident such as coiling stop occurs.

【0015】これらの結果より不良率が10%以下(合
格率90%以上)になる前記3要因の範囲は、 ニッケルめっき厚さ:0.2〜2.0μm 硬 さ 比 :0.20〜0.83 潤滑剤付着量 :0.05〜0.80g/m 不良率5%以下(合格率95%以上)になる範囲は、 ニッケルめっき厚さ:0.3〜1.6μm 硬 さ 比 :0.30〜0.81 潤滑剤付着量 :0.1〜0.70g/m となる。
From these results, the defect rate is 10% or less (total
(The rating is 90% or more) The range of the above three factors is: Nickel plating thickness: 0.2 to 2.0 μm Hardness ratio: 0.20 to 0.83 Lubricant adhesion amount: 0.05 to 0.80 g / M2  The range in which the defective rate is 5% or less (the pass rate is 95% or more) is as follows: Nickel plating thickness: 0.3 to 1.6 μm Hardness ratio: 0.30 to 0.81 Lubricant adhesion amount: 0.1 to 0 .70 g / m2  Becomes

【0016】[0016]

【発明の実施の形態】本発明の実施の形態を以下の実施
例に基づいて説明する。先ず、Fe−0.07%C−18.72
%Cr −8.51%Ni−1.20%Mn −0.40%Si の成分を持
つSUS304ステンレス鋼線材5.5φを1120℃で加熱し、急
冷したのち、酸洗コーティングを行った。その後、連続
伸線機でスピード200m/分,7回伸・加工度79%で2.5
φまで伸線した。続いてアンモニア分解ガスを用いた光
輝焼鈍炉で1130℃に加熱して固溶化焼鈍処理を行ったの
ち、コーティングして、1.7φまで200m/分のスピード
で5回伸、53.8%の加工を実施した。そして、最後の工
程として、ばね用ステンレス鋼線に仕上げるため下記の
工程で製線し、製品のニッケルめっき皮膜厚さ、硬
さ比、潤滑剤付着量を変化させて、比較材と本発明品
との性能対比を行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on the following examples. First, Fe-0.07% C-18.72
% Of C r -8.51% Ni-1.20% M n -0.40% S i SUS304 stainless steel wire 5.5φ with ingredients were heated at 1120 ° C., After quenching was performed pickling coating. After that, with continuous wire drawing machine, speed 200m / min.
Wire was drawn to φ. Then, it is heated to 1130 ° C in a bright annealing furnace using ammonia decomposition gas to perform solution annealing treatment, then coated, stretched 5 times at a speed of 200m / min to 1.7φ, and processed 53.8%. Carried out. Then, as a final step, wire is formed in the following steps to finish the stainless steel wire for spring, and the thickness of the nickel plating film, the hardness ratio, and the amount of lubricant attached are changed, and the comparative material and the product of the present invention are changed. And performance comparison.

【0017】 ニッケルめっき皮膜厚さの変化 めっき液組成、メッキ条件は下記のとおりである。 スルファミン酸ニッケル 809g/l 炭酸ニッケル 29g/l 硼 酸 25g/l 臭化ニッケル 5.8g/l 電流密度 12A/dm2 炉 長 26m PH 3.8 浴 温 室温 厚さの変化は線速を1〜12m/分に変化させて変えた。
伸線前のめっき厚さの変化は伸線加工に伴う線径の変化
と同じ比率であったが、光学顕微鏡で実測した。めっき
厚さ0.5μm 以下は斜め切断法によってめっき層を決定
した。
Changes in Nickel Plating Film Thickness The plating solution composition and plating conditions are as follows. Nickel sulfamate 809 g / l Nickel carbonate 29 g / l Boric acid 25 g / l Nickel bromide 5.8 g / l Current density 12 A / dm 2 Furnace length 26 m PH 3.8 Bath temperature Room temperature It was changed to 12 m / min.
The change in plating thickness before wire drawing was the same ratio as the change in wire diameter due to wire drawing, but was measured with an optical microscope. For a plating thickness of 0.5 μm or less, a plating layer was determined by an oblique cutting method.

【0018】 硬さ比の変化 めっきの硬さを変化させるため、前記ニッケルめっき浴
の炭酸ニッケル添加量を変化させてPH1〜5.5に変え
た。ニッケルの場合、PH4.8以上でめっき硬さは急激に
上昇する。
Change in Hardness Ratio In order to change the hardness of the plating, the amount of nickel carbonate added to the nickel plating bath was changed to PH1 to 5.5. In the case of nickel, the plating hardness sharply increases at PH 4.8 or more.

【0019】 潤滑剤付着量の変化 潤滑剤はCa系潤滑剤を使用した。潤滑剤付着量を変える
ため (a) ダイス角(全角)を7°〜18°、 (b) 伸線スピード50〜300m/分に変化 (c) 圧着ローラ(ルブリケータ)の使用枚数の増減(最
大で全ダイスローラ使用) (d) 伸線上り前3ダイスのダイスボックス内の粉末潤滑
剤使用の有無(最大上り3枚のダイスボックスの潤滑剤
なし) 以上の条件を組合せて種々の付着量のワイヤを製作し、
コイリングテストを行った。
Changes in Lubricant Adhesion The lubricant used was a Ca-based lubricant. (A) Die angle (full angle) changed from 7 ° to 18 ° to change lubricant adhesion amount, (b) Wire drawing speed changed from 50 to 300m / min. (C) Increase / decrease in the number of pressure rollers (lubricator) used (maximum) (D) Use of powder lubricant in the die box of three dies before drawing (no lubricant in the three die boxes up to three). Make wires,
A coiling test was performed.

【0020】コイリング性(成形性)を評価するために
加工したばね諸元は下記のとおりある。 線 径 : 0.7mm 自由長 :28.0mm コイル平均径 :12.0mm 有効巻数 : 8.5 ばね指数 :17.1 自由長管理巾 :±0.10mm コイリングスピード:20ケ/分 (機械は板屋製作所製自動コイリングマシンPC−15を使用。) コイリング中は自由長をばね1個毎に自動計測し、管理
巾を外れるばねは別ルートで個数がカウントできるよう
になっているので、全成形ばね個数2000個に対する不良
率として算出し、そのばね線の成形性指標とした。
The specifications of the spring processed to evaluate the coilability (formability) are as follows. Wire diameter: 0.7mm Free length: 28.0mm Coil average diameter: 12.0mm Effective number of turns: 8.5 Spring index: 17.1 Free length control width: ± 0.10mm Coiling speed: 20 pieces / min. It uses an automatic coiling machine PC-15 manufactured by Itaya Seisakusho.) During coiling, the free length is automatically measured for each spring, and the number of springs outside the control width can be counted by another route. It was calculated as a defective rate for 2000 springs and used as a formability index of the spring wire.

【0021】コイリングテスト結果を表1に示す。No
1〜17は本発明品、No18〜26は比較材である。
本発明品は不良率が低く、非常に優れた成形性を示して
いる。
Table 1 shows the results of the coiling test. No
Nos. 1 to 17 are products of the present invention, and Nos. 18 to 26 are comparative materials.
The product of the present invention has a low rejection rate and shows very excellent moldability.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】請求項1記載の本発明のばね用ステンレ
ス鋼線によれば、従来、ばね用ステンレス鋼線の製造に
おいて行われていた引張強さ,線径,コイルぐせといっ
た点に重点を置いた管理をより進めたもので、ワイヤの
具備すべき特性を更に詳細に管理することができ、特に
今回明らかになった3要因、すなわちニッケルめっき
皮膜の厚さ、めっき厚の母材に対する硬さ比、潤滑
剤付着量を管理し、それぞれ目標の範囲の値を達成する
ようにすれば、ばねのコイリングの能率向上に多大の貢
献をすることができる。
According to the stainless steel wire for a spring according to the first aspect of the present invention, emphasis is placed on points such as tensile strength, wire diameter, and coil creep which have been conventionally performed in the production of a stainless steel wire for a spring. It is possible to control the characteristics of the wire in more detail, especially the three factors that have been clarified this time, namely the thickness of the nickel plating film and the hardness of the plating thickness relative to the base metal. By controlling the ratio and the amount of lubricant adhering to achieve the respective target range values, it is possible to make a great contribution to improving the efficiency of coiling of the spring.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来から行われているコイリング機構図であ
る。
FIG. 1 is a diagram showing a conventional coiling mechanism.

【図2】ワイヤとツール(コイリングピン)との摩擦加
工状況を示す説明図である。
FIG. 2 is an explanatory diagram showing a state of friction processing between a wire and a tool (coiling pin).

【図3】ワイヤコイルの形状の説明図である。FIG. 3 is an explanatory diagram of a shape of a wire coil.

【図4】表面に軟質金属皮膜を有する硬質加工物と工具
との接触状況を示す説明図である。
FIG. 4 is an explanatory view showing a state of contact between a hard workpiece having a soft metal film on a surface and a tool.

【図5】ワイヤの伸線加工時の潤滑の状況を示す説明図
である。
FIG. 5 is an explanatory diagram showing a state of lubrication during wire drawing.

【図6】ばねの不良率に及ぼすニッケルめっき厚さの影
響を示すグラフである。
FIG. 6 is a graph showing an effect of a nickel plating thickness on a defective rate of a spring.

【図7】ばねの不良率に及ぼすステンレス鋼線母材とニ
ッケルめっきとの硬さ比の影響を示すグラフである。
FIG. 7 is a graph showing the effect of the hardness ratio between the stainless steel wire base material and the nickel plating on the failure rate of the spring.

【図8】ばねの不良率に及ぼす潤滑剤付着量の影響を示
すグラフである。
FIG. 8 is a graph showing an effect of a lubricant adhesion amount on a spring failure rate.

【符号の説明】[Explanation of symbols]

3…ガイドツール(ワイヤガイド)、 4…コイリング
ピン(工具)、6…ピッチピン、 8…ワイヤ、 fd…
フリーコイル径、 δ…吊り下げ開き、F…摩擦力、
A…真実接触面積、 τ…材料の剪断降伏応力、 L…
潤滑、J…粉末潤滑材、 Lb …境界潤滑部、 Lf
流体潤滑部。
3 Guide tool (wire guide), 4 Coiling pin (tool), 6 Pitch pin, 8 Wire, fd
Free coil diameter, δ: hanging open, F: frictional force,
A: True contact area, τ: Shear yield stress of material, L:
Lubrication, J: powder lubricant, Lb : boundary lubrication part, Lf :
Fluid lubrication unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 李 勝宰 大阪市西区北堀江1丁目3番3号 株式 会社コースジャパン内 (56)参考文献 特開 平6−226330(JP,A) 特開 平4−17616(JP,A) 特開 平3−51537(JP,A) (58)調査した分野(Int.Cl.6,DB名) B21C 1/00 B21C 9/00 B21F 35/00────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Lee Katsuzai 1-3-3 Kitahorie, Nishi-ku, Osaka-shi Within Course Japan Co., Ltd. (56) References JP-A-6-226330 (JP, A) JP-A Heihei 4-17616 (JP, A) JP-A-3-51537 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B21C 1/00 B21C 9/00 B21F 35/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ニッケルめっきしたばね用ステンレス鋼線
であって、最終伸線後ニッケルめっき厚さが0.2〜
2μm、めっき層の母材に対する硬さ比が0.2〜0.
83、潤滑剤付着量が0.05〜0.80g/mの各
であることを特徴とするばね用ステンレス鋼線。
1. A stainless steel wire for a nickel-plated spring
And the nickel plating thickness after the final drawing is 0.2 to
2 μm, and the hardness ratio of the plating layer to the base material is 0.2 to 0.1.
83, spring stainless steel wire, wherein the amount lubricant deposited is each value of 0.05~0.80g / m 2.
JP8181626A 1996-06-20 1996-06-20 Stainless steel wire for spring Expired - Fee Related JP2799700B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8181626A JP2799700B2 (en) 1996-06-20 1996-06-20 Stainless steel wire for spring
KR1019960033261A KR100201565B1 (en) 1996-06-20 1996-08-09 Stainless steel wire for spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8181626A JP2799700B2 (en) 1996-06-20 1996-06-20 Stainless steel wire for spring

Publications (2)

Publication Number Publication Date
JPH105847A JPH105847A (en) 1998-01-13
JP2799700B2 true JP2799700B2 (en) 1998-09-21

Family

ID=16104077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8181626A Expired - Fee Related JP2799700B2 (en) 1996-06-20 1996-06-20 Stainless steel wire for spring

Country Status (2)

Country Link
JP (1) JP2799700B2 (en)
KR (1) KR100201565B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585108B2 (en) * 2000-11-29 2010-11-24 日本精線株式会社 Coated stainless steel wire and its manufacturing method
JP4944527B2 (en) * 2006-07-21 2012-06-06 日本精線株式会社 Stainless steel wire for spring

Also Published As

Publication number Publication date
KR980002296A (en) 1998-03-30
JPH105847A (en) 1998-01-13
KR100201565B1 (en) 1999-06-15

Similar Documents

Publication Publication Date Title
KR101848100B1 (en) A method of manufacturing a stainless steel product
US3997099A (en) Method of producing composite material for bearings or sliding members
EP0647725B1 (en) Steel wire coated with Fe-Zn-A1 alloy and method for producing the same
JP2799700B2 (en) Stainless steel wire for spring
JP2836607B2 (en) Stainless steel wire and its manufacturing method
JPH06226330A (en) Steel wire for automatic coiling and manufacture thereof
JP3053789B2 (en) Stainless steel wire for spring
JP2769842B2 (en) Manufacturing method of alloy plated steel wire
JP4107692B2 (en) Plating steel wire excellent in wire drawing workability and manufacturing method thereof
JPH0679535A (en) Composite electrode wire for wire-cut electric discharge machining and its manufacture
JP3303575B2 (en) Steel wire excellent in precision workability and its manufacturing method
JP3653258B2 (en) Fastening part manufacturing method and fastening part
JPS58138513A (en) Production of steel wire having excellent spring workability
JP2891683B2 (en) Manufacturing method of stainless steel wire
JP3053292B2 (en) Titanium clad steel wire
JP4585108B2 (en) Coated stainless steel wire and its manufacturing method
JPH034632B2 (en)
RU2324598C2 (en) Bimetal strip
JPS63274796A (en) Plated wire and production thereof
JP2502058B2 (en) Manufacturing method of NiTi alloy
JPH05337560A (en) Thin plate excellent in drawing formability for press
JP5343056B2 (en) Stainless steel wire for cold heading
JPH06179997A (en) Production of aluminum material excellent in press formability
JPS6333592A (en) Steel sheet having excellent press formability, resistance to die scuffing or sharpness after coating
JP2016222993A (en) Method for producing high carbon steel wire for spring, and high carbon steel wire for spring

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees