JP2796846B2 - Low NOx combustor - Google Patents
Low NOx combustorInfo
- Publication number
- JP2796846B2 JP2796846B2 JP1196403A JP19640389A JP2796846B2 JP 2796846 B2 JP2796846 B2 JP 2796846B2 JP 1196403 A JP1196403 A JP 1196403A JP 19640389 A JP19640389 A JP 19640389A JP 2796846 B2 JP2796846 B2 JP 2796846B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- exhaust gas
- zeolite
- boiler
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Combustion Of Fluid Fuel (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は所謂低NOxボイラ等の改良に係り、燃焼器内
部の接触伝熱部の適宜箇所に還元触媒を配設し、燃焼排
ガス内のNOをN2とO2に直接分解する様にした低NOx燃焼
器に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to an improvement of a so-called low NOx boiler and the like. the NO relates low NOx combustor was set to direct decomposition to N 2 and O 2.
(従来の技術) ボイラ等の燃焼器の燃焼排ガス内に含まれる窒素酸化
物(NOx)の低減法としては、従前から排ガス再循環法
や自己ガス再循環法、蒸気又は水添加燃焼法、エマルジ
ョン燃焼法等の各種方法が開発されている。(Prior art) As a method for reducing nitrogen oxides (NOx) contained in flue gas of a combustor such as a boiler, there have been conventional exhaust gas recirculation methods, self-gas recirculation methods, steam or water addition combustion methods, emulsions. Various methods such as a combustion method have been developed.
また、ボイラ等のNOxの固定発源に於いては、所謂接
触還元法と呼ばれるアンモニヤ還元プロセスによりNOを
除去する方策が、従前より広く利用されている。Further, in a fixed source of NOx such as a boiler, a method of removing NO by an ammonia reduction process called a so-called catalytic reduction method has been more widely used than before.
しかし、前記排ガス再循環法等のNOx低減法を採用し
た場合には、燃焼器そのものの構造が複雑化すると共に
燃焼器の製造コストが上昇するという難点があるうえ、
小型の燃焼器の場合には、構造上その適用が難しいとい
う問題がある。However, when the NOx reduction method such as the exhaust gas recirculation method is employed, there is a problem that the structure of the combustor itself becomes complicated and the manufacturing cost of the combustor increases.
In the case of a small combustor, there is a problem that its application is difficult due to its structure.
また、接触還元法によりNOx低減を図る場合には、ア
ンモニヤ消費に伴なうランニングンコストの上昇の問題
があり、経済性に欠けると云う難点がある。Further, in the case of reducing NOx by the catalytic reduction method, there is a problem that the running-on cost is increased due to consumption of ammonia, and there is a disadvantage that it is not economical.
(発明が解決しようとする課題) 本発明は従前のボイラ等燃焼器の低NOx化に於ける上
述の如き問題、即ち、燃焼器の製造コストが大幅に上
昇すること、燃焼器のランニングコストが上昇するこ
と、NO除去率が相対的に低いこと等の問題を解決せん
とするものであり、NOを直接N2とO2とに分解する還元触
媒を燃焼器内部の接触伝熱部の適宜箇所へ配設し、還元
触媒をその最高触媒活性温度下で燃焼排ガスと接触させ
ることにより、NOを経済的にしかも高除去率で除去し得
るようにした低NOx燃焼器を提供するものである。(Problems to be Solved by the Invention) The present invention has the above-mentioned problems in reducing the NOx of a conventional combustor such as a boiler, that is, the manufacturing cost of the combustor increases significantly, and the running cost of the combustor decreases. rising it, which NO removal rate is St solve problems such as relatively low, the direct N 2, O 2, and the decomposing reduction catalyst a suitable combustor internal contact heat transfer unit NO The present invention provides a low NOx combustor that is disposed at a location and makes it possible to remove NO economically and at a high removal rate by bringing a reduction catalyst into contact with combustion exhaust gas at the highest catalyst activation temperature. .
(課題を解決する為の手段) 本件発明は、燃焼排ガス内のNOを還元触媒を用いて直
接N2とO2に分解除去せんとするもので本発明は、煙管式
ボイラの煙管内のガス温度か400〜550℃となる位置の煙
管径を大きくし、当該煙管径の拡径部の内方に銅を担持
したゼオライトより成る還元触媒を配設すると共に、前
記還元触媒の前・後の少なくとも一方の煙管内部に伝熱
片を配設し、燃焼排ガス内のNOを直接N2とO2に分解する
ようにしたことを発明の基本構成とするものである。(Means for Solving the Problems) The present invention is to directly decompose and remove NO in combustion exhaust gas into N 2 and O 2 using a reduction catalyst. The diameter of the smoke tube at the position where the temperature becomes 400 to 550 ° C. is increased, and a reduction catalyst made of zeolite supporting copper is provided inside the enlarged portion of the diameter of the smoke tube. The basic configuration of the present invention is to dispose a heat transfer piece inside at least one of the subsequent flue tubes to directly decompose NO in combustion exhaust gas into N 2 and O 2 .
(作用) 接触伝熱部へ流入した高温の燃焼排ガス(約900〜110
0℃)は、接触伝熱によ順次冷却されつつガス排出口へ
向って進行する。(Action) High-temperature flue gas flowing into the contact heat transfer section (about 900 to 110
0 ° C.) proceeds toward the gas outlet while being sequentially cooled by contact heat transfer.
排ガス温度が400〜550℃まで下降した位置には、銅を
担持したゼオライトから成る還元触媒が配設されてお
り、且つ当該還元触媒は400〜550℃の温度に於いてその
触媒活性が最高になっている。At the position where the exhaust gas temperature has dropped to 400 to 550 ° C., a reduction catalyst made of zeolite supporting copper is disposed, and the reduction catalyst has the highest catalytic activity at a temperature of 400 to 550 ° C. Has become.
燃焼排ガスが還元触媒と接触することにより、NO→N2
/2+O2/2で表わされるNOの直接分解反応が起生し、NOが
N2とO2に分解除去される。NO → N 2 by the flue gas coming into contact with the reduction catalyst
/ 2 + O 2/2 direct decomposition of NO represented by is Okoshisei, NO is
Decomposed and removed into N 2 and O 2 .
(実施例) 以下、第1図乃至第9図に基づいて本発明の実施例を
説明する。Embodiment An embodiment of the present invention will be described below with reference to FIGS.
第1図は本発明の第1実施例に係る低NOxボイラの縦
断面概要図であり、所謂3パス型単管貫流式ボイラを示
すものである。FIG. 1 is a schematic longitudinal sectional view of a low NOx boiler according to a first embodiment of the present invention, which shows a so-called three-pass single-tube once-through boiler.
図に於いて、1aは内側水管、1bは外側水管、2はボイ
ラ外壁、3はバーナ、4は排ガス出口、5は排ガス、6
は還元触媒、7a,7bは接触伝熱部、8は燃焼室、9は燃
焼室出口、10は耐火材であり、給水並びに蒸気取出し系
統は省略されている。In the figure, 1a is an inner water pipe, 1b is an outer water pipe, 2 is a boiler outer wall, 3 is a burner, 4 is an exhaust gas outlet, 5 is an exhaust gas, 6
Is a reduction catalyst, 7a and 7b are contact heat transfer sections, 8 is a combustion chamber, 9 is a combustion chamber outlet, 10 is a refractory material, and a water supply and steam extraction system is omitted.
前記3パス型単管貫流式ボイラそのものは公知であ
り、本発明に於いては、燃焼排ガス内のNOを直接N2とO2
とに分解する還元触媒6を、排ガス5が流通する接触伝
熱部7内の適宜位置、即ち排ガス温度が約400℃〜550℃
になる箇所へ配設した点に特徴がある。The three-pass single-tube once-through boiler itself is known, and in the present invention, NO in the flue gas is directly converted into N 2 and O 2.
An appropriate position in the contact heat transfer section 7 through which the exhaust gas 5 flows, that is, when the exhaust gas temperature is about 400 ° C. to 550 ° C.
There is a characteristic in that it is arranged at the location where
前記還元触媒6には銅を担持したゼオライト(以下銅
−ゼオライトと略称する)が使用されている。本実施例
に於いては、鉱物ゼオライトを酢酸銅溶液中に浸漬し、
ゼオライト内部に含まれているナトリウムイオンを銅イ
オンに置換せしめて形成した銅−ゼオライトが使用され
ている。A zeolite supporting copper (hereinafter abbreviated as copper-zeolite) is used for the reduction catalyst 6. In this example, the mineral zeolite was immersed in a copper acetate solution,
A copper-zeolite formed by replacing sodium ions contained in zeolite with copper ions is used.
当該銅−ゼオライト触媒は、元から存在するナトリウ
ムイオンよりも多い数の銅イオンが入り込んだ状態、即
ち銅置換率が100%以上(望ましくは120〜130%位い)
の状態に形成されており、且つその触媒活性は排ガス温
度450℃〜500℃に於いて最高値を示す。The copper-zeolite catalyst has a state in which a larger number of copper ions than the originally existing sodium ions have entered, that is, the copper substitution rate is 100% or more (preferably about 120 to 130%).
And its catalytic activity shows the maximum value at an exhaust gas temperature of 450 ° C. to 500 ° C.
また、当該銅−ゼオライト触媒は、排ガス内の酸素に
よってその触媒活性が殆んど低下せず、安定した触媒活
性を長期に亘って発揮する。The catalyst activity of the copper-zeolite catalyst hardly decreases due to oxygen in the exhaust gas, and the copper-zeolite catalyst exhibits stable catalytic activity for a long time.
更に、当該銅−ゼオライト触媒は、ガス燃焼排ガスや
油燃焼排ガス、都市ごみ燃焼排ガス等の全ての燃焼排ガ
スに対して同等の触媒活性を示すが、硫黄分の少ない燃
料の方がより長期に亘って高触媒活性を持続することが
出来る。Further, the copper-zeolite catalyst exhibits the same catalytic activity for all combustion exhaust gases such as gas combustion exhaust gas, oil combustion exhaust gas, and municipal waste combustion exhaust gas, but the fuel containing less sulfur has a longer life. And high catalyst activity can be maintained.
具体的には、前記銅−ゼオライト触媒は所謂ハニカム
形状に加工されており、支持枠体内へ挿入された後、触
媒伝熱部7b内へ変換自在に挿着されている。Specifically, the copper-zeolite catalyst is processed into a so-called honeycomb shape, inserted into the support frame, and then inserted into the catalyst heat transfer portion 7b so as to be freely convertible.
尚、本実施例では銅−ゼオライトをハニカム形状に成
形加工しているが、銅−ゼオライトを小球等のペレット
状に加工し、これを金網若しくはパンチングメタル製等
の多孔性容器内に収納した形態としても良い。In this example, copper-zeolite was formed into a honeycomb shape, but copper-zeolite was processed into pellets such as small balls and stored in a porous container such as a wire mesh or punched metal. It is good also as a form.
前記接触伝熱部7bの銅−ゼオライト触媒6を挿着する
部分は、ボイラ外壁2を拡径して、所定の触媒通過ガス
流速が得られるように形成されていることは勿論であ
る。The portion of the contact heat transfer section 7b into which the copper-zeolite catalyst 6 is inserted is, of course, formed so that the outer wall 2 of the boiler is enlarged so that a predetermined catalyst passing gas flow rate can be obtained.
次に、本発明に係る低NOx燃焼器の作動について説明
する。バーナー3の燃焼作動によって燃焼室8内に発生
した高温燃焼排ガス5は、燃焼室出口9から両水管1a,1
b間の接触伝熱部7aを通って上昇し、反転した後水管1b
とボイラ外壁2間の接触伝熱部7bを下降し、排ガス出口
4より外部へ導出される。Next, the operation of the low NOx combustor according to the present invention will be described. The high-temperature combustion exhaust gas 5 generated in the combustion chamber 8 by the combustion operation of the burner 3 flows from the combustion chamber outlet 9 to the two water pipes 1a, 1a.
The water pipe 1b rises through the contact heat transfer part 7a between b and turns over.
The heat is transferred down the contact heat transfer portion 7b between the boiler outer wall 2 and the exhaust gas 4 to the outside.
前記燃焼排ガス5は接触伝熱部7a,7b間を流通する間
に冷却され、還元触媒6と接触する位置に於いては略40
0℃〜550℃の温度に降下している。また、還元触媒6の
作用によってNOを分解除去された燃焼排ガス5は、約20
0〜300℃に冷却された後、排ガス出口4から外部へ導出
されて行く。The combustion exhaust gas 5 is cooled while flowing between the contact heat transfer sections 7a and 7b, and is approximately 40 at the position where it comes into contact with the reduction catalyst 6.
It has dropped to a temperature between 0 ° C and 550 ° C. Further, the combustion exhaust gas 5 from which NO has been decomposed and removed by the action of the reduction catalyst 6 is approximately 20%.
After being cooled to 0 to 300 ° C., it is led out from the exhaust gas outlet 4 to the outside.
銅−ゼオライト触媒6に燃焼排ガスが接触すると、NO
→N2/2+O2/2で表わされるNOの直接分解反応が起生し、
NOがN2とO2に分解除去される。燃焼排ガスが400〜550℃
に於いて分解反応が最も活性となる。When the combustion exhaust gas comes into contact with the copper-zeolite catalyst 6, NO
→ N 2/2 + O 2 /2 direct decomposition of NO represented by is Okoshisei,
NO is decomposed and removed into N 2 and O 2 . Combustion exhaust gas is 400 ~ 550 ℃
In this case, the decomposition reaction is most active.
より具体的には、Cu+NO→Cu2・−NO-2Cu2・−NO-→2
Cu+N2+O2の反応機構で示されるサイクルでNOの分解が
進行するものと想定されている。More specifically, Cu + NO → Cu 2 · -NO - 2Cu 2 · -NO - → 2
It is assumed that the decomposition of NO proceeds in the cycle indicated by the reaction mechanism of Cu + N 2 + O 2 .
また、銅−ゼオライト触媒6にNOの触媒分解活性が発
現するのは、ゼオライトのイオン交換特性のために銅
イオンが細孔内に分散担持されること、銅イオンがゼ
オライトの細孔構造のために凝集し難いこと、酸素が
触媒活性を毒することなく反応系外へ容易に脱離りする
こと及び銅イオンCuが比較的安定に存在できること等
の各要因が、適宜に組み合わさっているからと想定され
る。In addition, the catalytic decomposition activity of NO is expressed in the copper-zeolite catalyst 6 because the copper ions are dispersed and supported in the pores due to the ion-exchange properties of the zeolite, and the copper ions are dispersed in the pore structure of the zeolite. Factors that are difficult to coagulate, that oxygen is easily desorbed out of the reaction system without poisoning the catalytic activity, and that copper ions Cu can be relatively stably present are appropriately combined. Is assumed.
本実施例に係る3パス型単管貫流式ボイラ(重油燃
焼)を用いた低NOx化試験の結果によれば、燃焼排ガス
内のNO除去率は55〜60%となる。当該NOx除去率は、排
ガス再循環方式の場合のNO除去率20〜40%、エマルジョ
ン燃焼方式の場合のNO除去率10〜20%、水又は蒸気添加
燃焼方式の場合のNO除去率20〜40%及び2段燃焼方式の
場合のNO除去率10〜20%に比較して極めて高い値であ
り、本件発明の実用的効用は顕著なものがある。According to the result of the NOx reduction test using the three-pass single pipe once-through boiler (heavy oil combustion) according to the present embodiment, the NO removal rate in the combustion exhaust gas is 55 to 60%. The NOx removal rate is 20 to 40% for the exhaust gas recirculation system, 10 to 20% for the emulsion combustion system, and 20 to 40 for the water or steam addition combustion system. % And the NO removal rate in the case of the two-stage combustion method is extremely high as compared with the NO removal rate of 10 to 20%, and the practical utility of the present invention is remarkable.
第2図は本件発明の第2実施例を示すものであり、所
謂2パス型単管貫流式ボイラの水管1とボイラ外壁2間
の接触伝熱部7b内へ、銅−ゼオライト触媒6を配設する
ようにした構成の低NOxボイラである。FIG. 2 shows a second embodiment of the present invention, in which a copper-zeolite catalyst 6 is disposed in a contact heat transfer portion 7b between a water tube 1 and a boiler outer wall 2 of a so-called two-pass single-tube once-through boiler. This is a low NOx boiler with a configuration to be installed.
第3図は本発明の第3実施例を示すものであり、平行
流ガス流し方式の3パス型多管貫流式ボイラの外側水管
1bとボイラ外壁2間の接触伝熱部7b内へ銅−ゼオライト
触媒を配設したものである。FIG. 3 shows a third embodiment of the present invention, in which an outer water pipe of a three-pass multi-tube once-through boiler of a parallel flow gas flow system is used.
A copper-zeolite catalyst is provided in a contact heat transfer section 7b between the boiler outer wall 2 and 1b.
第4図は本発明の第4実施例を示すものであり、平行
流ガス流し方式の2パス型多管貫流式ボイラに銅−ゼオ
ライト触媒6を配設したものである。FIG. 4 shows a fourth embodiment of the present invention, in which a copper-zeolite catalyst 6 is provided in a two-pass, multi-tube, once-through boiler of a parallel gas flow system.
第5図は本発明の第5実施例を示すものであり、直交
流ガス流し方式の多管貫流式ボイラの内側水管1aと外側
水管1b間に縦長状の銅−ゼオライト触媒を配置したもの
である。FIG. 5 shows a fifth embodiment of the present invention, in which a vertically long copper-zeolite catalyst is arranged between an inner water pipe 1a and an outer water pipe 1b of a cross-flow gas boiler of a cross flow gas flow system. is there.
第6図(a)及び第6図(b)は本発明の第6実施例
を示すものであり、水管式パッケージボイラの燃焼室仕
切壁1eとボイラ外壁2の間に、水管群1dと平行に縦長状
の銅−ゼオライト触媒6を配置したものである。尚、図
に於いて、10は上部ドラム、11は下部ドラムである。FIGS. 6 (a) and 6 (b) show a sixth embodiment of the present invention, in which a water pipe group 1d is disposed between a combustion chamber partition wall 1e and a boiler outer wall 2 of a water pipe type package boiler. In which a vertically long copper-zeolite catalyst 6 is disposed. In the drawing, reference numeral 10 denotes an upper drum, and 11 denotes a lower drum.
第7図は本発明の第7実施例を示すものであり、3パ
ス型炉筒煙管式ボイラの前部伝熱部7aと後部伝熱部7bの
中間ガスダクト内に銅−ゼオライト触媒6を配設したも
のである。尚、図に於いて12はモータ、13は炉筒、14は
煙管である。FIG. 7 shows a seventh embodiment of the present invention, in which a copper-zeolite catalyst 6 is disposed in an intermediate gas duct of a front heat transfer section 7a and a rear heat transfer section 7b of a three-pass type flue tube boiler. It was established. In the drawing, 12 is a motor, 13 is a furnace tube, and 14 is a smoke tube.
第8図は本発明の第8実施例を示すものであり、2パ
ス型炉筒煙管式ボイラの煙管14内に触媒6を配設したも
のである。FIG. 8 shows an eighth embodiment of the present invention, in which a catalyst 6 is provided in a smoke tube 14 of a two-pass type furnace tube boiler.
尚、銅−ゼオライト触媒6を煙管14内に設置するため
に煙管径を大きくする必要がある場合には、触媒6の前
・後の少なくとも一方の煙管内部に、旋回羽根やフィン
若しくは密封をした中空管等の伝熱片(図示省略)を設
け、伝熱効率を向上するようにしてもよい。When it is necessary to increase the diameter of the flue tube in order to install the copper-zeolite catalyst 6 in the flue tube 14, a swirl vane, a fin, or a seal is provided inside at least one of the flue tubes before and after the catalyst 6. A heat transfer piece (not shown) such as a hollow tube may be provided to improve the heat transfer efficiency.
又、当該実施例は、吸収式冷凍機の高温再生器として
もそのまま適用できることは勿論である。In addition, it is needless to say that this embodiment can be applied as it is to a high temperature regenerator of an absorption refrigerator.
第9図は本発明の第9実施例を示すものであり、竪型
煙管式ボイラの煙管14内に銅−ゼオライト触媒6を設け
たものである。尚、本実施例の場合に於いても、煙管14
を太径とする場合には、その内部にフィン等の伝熱片を
設けるのが望ましい。FIG. 9 shows a ninth embodiment of the present invention, in which a copper-zeolite catalyst 6 is provided in a smoke tube 14 of a vertical fire tube type boiler. Note that, in the case of this embodiment, too,
When a large diameter is used, it is desirable to provide a heat transfer piece such as a fin therein.
(発明の効果) 本発明に於いては、銅を担持したゼオライトから成る
還元触媒を、燃焼排ガスが流通する接触伝熱部の排ガス
温度が400℃〜550℃となる位置に配設し、排ガス内のNO
を直接N2とO2に分解除去する構成としているため、燃焼
器自体の設備費やランニングコストの上昇を招くことな
く、しかも55〜60%の高除去率で燃焼排ガス内のNOを除
去することが出来る。(Effect of the Invention) In the present invention, a reduction catalyst made of zeolite supporting copper is disposed at a position where the exhaust gas temperature of the contact heat transfer section through which the combustion exhaust gas flows is 400 ° C to 550 ° C, NO within
Is directly decomposed and removed into N 2 and O 2 , so that NO in the combustion exhaust gas is removed at a high removal rate of 55 to 60% without increasing the equipment cost and running cost of the combustor itself. I can do it.
また、本発明は銅−ゼオライトから成る触媒に固有の
特性により、燃焼排ガス内の酸素濃度が上昇してもNO除
去率が殆んど変化せず、長期に亘って高いNO除去率を保
持することが出来る。In addition, according to the present invention, the NO removal rate hardly changes even when the oxygen concentration in the combustion exhaust gas increases, and the high NO removal rate is maintained over a long period of time due to the characteristics inherent to the catalyst made of copper-zeolite. I can do it.
更に、銅−ゼオライトから成る触媒は、極めて容易に
接触伝熱部の適宜位置へ着脱自在に配設することが出
来、燃焼器の構造が特に複雑化することも無い。その結
果、自己排ガス循環方式や2段燃焼方式等の低NOx化構
造を採用することが困難な小容量の燃焼器へも容易に適
用することができ、しかも大幅な低NOx化を図ることが
出来る。Further, the catalyst made of copper-zeolite can be very easily and detachably disposed at an appropriate position of the contact heat transfer section, and the structure of the combustor is not particularly complicated. As a result, it can be easily applied to a small-capacity combustor where it is difficult to adopt a low NOx structure such as a self-exhaust gas circulation system or a two-stage combustion system. I can do it.
本発明は上述の通り優れた実用的効用を有するもので
ある。The present invention has excellent practical utility as described above.
第1図は、本発明の第1実施例を示す縦断面概要図であ
る。 第2図、第3図、及び第4図は、本発明の第2、第3及
び第4実施例を示す縦断面概要図である。 第5図は本発明の第5実施例を示す横断面概要図であ
る。 第6図(a)及び第6図(b)は本発明の第6実施例を
示す横断面概要図及び縦断面概要図である。 第7図、第8図及び第9図は、本発明の第7、第8及び
第9実施例を示す縦断面概要図である。 1a,1b……水管 2……ボイラ外壁 4……燃焼排ガス出口 5……燃焼排ガス 6……還元触媒 7……接触伝熱部 8……燃焼室 9……燃焼室出口FIG. 1 is a schematic longitudinal sectional view showing a first embodiment of the present invention. FIGS. 2, 3, and 4 are schematic longitudinal sectional views showing second, third, and fourth embodiments of the present invention. FIG. 5 is a schematic cross-sectional view showing a fifth embodiment of the present invention. 6 (a) and 6 (b) are a schematic cross-sectional view and a schematic vertical sectional view showing a sixth embodiment of the present invention. 7, 8, and 9 are schematic cross-sectional views showing the seventh, eighth, and ninth embodiments of the present invention. 1a, 1b Water pipe 2 Boiler outer wall 4 Combustion exhaust gas outlet 5 Combustion exhaust gas 6 Reduction catalyst 7 Contact heat transfer section 8 Combustion chamber 9 Combustion chamber outlet
Claims (1)
50℃となる位置の煙管径を大きくし、当該煙管径の拡径
部の内方に銅を担持したゼオライトより成る還元触媒を
配設すると共に、前記還元触媒の前・後の少なくとも一
方の煙管内部に伝熱片を配設し、燃焼排ガス内のNOを直
接N2とO2に分解する構成としたことを特徴とする低NOx
燃焼器。1. The gas temperature in a smoke tube of a fire tube type boiler is 400 to 5
The diameter of the smoke tube at the position where the temperature becomes 50 ° C. is increased, and a reduction catalyst made of zeolite carrying copper is disposed inside the enlarged portion of the diameter of the smoke tube, and at least one of before and after the reduction catalyst is provided. low NOx which the fire tubes therein disposed heat transfer piece, characterized in that the decomposing arrangement of NO in the flue gas directly N 2 and O 2
Combustor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1196403A JP2796846B2 (en) | 1989-07-28 | 1989-07-28 | Low NOx combustor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1196403A JP2796846B2 (en) | 1989-07-28 | 1989-07-28 | Low NOx combustor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0359302A JPH0359302A (en) | 1991-03-14 |
JP2796846B2 true JP2796846B2 (en) | 1998-09-10 |
Family
ID=16357284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1196403A Expired - Fee Related JP2796846B2 (en) | 1989-07-28 | 1989-07-28 | Low NOx combustor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2796846B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105987376B (en) * | 2015-02-11 | 2018-01-19 | 李根钧 | A kind of fuel clean combustion and the combustion apparatus of purification discharge |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS578911Y2 (en) * | 1980-11-27 | 1982-02-20 | ||
JPS618502A (en) * | 1984-06-23 | 1986-01-16 | 三浦工業株式会社 | Combustion chamber structure of multitubular once-through boiler |
JPS6397013U (en) * | 1986-12-09 | 1988-06-23 | ||
JP2555637B2 (en) * | 1987-10-07 | 1996-11-20 | 東ソー株式会社 | Method for producing copper-containing zeolite |
JPH0181403U (en) * | 1987-11-16 | 1989-05-31 |
-
1989
- 1989-07-28 JP JP1196403A patent/JP2796846B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0359302A (en) | 1991-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106949446B (en) | It is matched in the high temperature and pressure denitration waste heat boiler of catalytic cracking unit | |
CN208990564U (en) | A kind of integrated fume denitration heat exchanger loading denitrating catalyst | |
CN105457488A (en) | Catalyst unified plasma nitric oxide removing device and method | |
KR102607313B1 (en) | Method and system for removing hazardous compounds from flue gas using SCR catalyst | |
KR101165646B1 (en) | Energy reducing system of nox reducing apparatus using waste-heat and steam type gas heater | |
JP2796846B2 (en) | Low NOx combustor | |
CN219913090U (en) | VOCs burner | |
CN205517269U (en) | SCR denitrification facility suitable for two economizers, air preheater staggered arrangement | |
CN201776085U (en) | Heating type denitration device | |
CN1167813A (en) | Engineering and apparatus for purifying and regenerating coal gas by active carbon desulfurization | |
CN109078495A (en) | A kind of integrated fume denitrification apparatus loading denitrating catalyst and catalyst coat | |
CN111836997A (en) | Heat production method of power device | |
CN212157194U (en) | Novel RTO exhaust-gas treatment device | |
CN211650288U (en) | High-efficient catalytic combustion equipment | |
CN106994301A (en) | The efficient SCR denitration structures and methods of sulfur dioxide/sulphur trioxide conversion rate can be reduced | |
CN107191956B (en) | Flue gas purifying system | |
CN209415770U (en) | A kind of integrated room combustion hot-water boiler of horizontal condensation | |
CN207169372U (en) | A kind of flue gas purification system | |
CN207745694U (en) | A kind of denitrating flue gas desulfurization process system | |
CN221858597U (en) | Waste heat recovery CO catalytic incinerator | |
CN215333062U (en) | Catalytic conversion device for tail gas of special mining vehicle | |
CN104879761A (en) | Catalytic combustion device suitable for treating organic waste gas as well as waste gas treatment process | |
CN105318327A (en) | Gas boiler | |
CN109210779A (en) | A kind of large capacity horizontal water pipe burner hearth fire tube convection heating surface room-fired boiler | |
CN218763382U (en) | Combustion furnace structure and natural gas combustion tail gas purifying equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |