JP2795703B2 - Melting method of Ni-Fe alloy - Google Patents

Melting method of Ni-Fe alloy

Info

Publication number
JP2795703B2
JP2795703B2 JP8522785A JP28211389A JP2795703B2 JP 2795703 B2 JP2795703 B2 JP 2795703B2 JP 8522785 A JP8522785 A JP 8522785A JP 28211389 A JP28211389 A JP 28211389A JP 2795703 B2 JP2795703 B2 JP 2795703B2
Authority
JP
Japan
Prior art keywords
melting
furnace
alloy
base material
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8522785A
Other languages
Japanese (ja)
Other versions
JPH03146624A (en
Inventor
孝 向井
民也 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8522785A priority Critical patent/JP2795703B2/en
Publication of JPH03146624A publication Critical patent/JPH03146624A/en
Application granted granted Critical
Publication of JP2795703B2 publication Critical patent/JP2795703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主として大型テレビのブラウン管などに用
いられるアンバーシャドウマスク用36Ni−Fe系合金の溶
製方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for melting a 36Ni—Fe alloy for an amber shadow mask mainly used for a cathode ray tube of a large-sized television.

〔従来の技術〕[Conventional technology]

従来、代表的なシャドウマスク用材料の36Ni−Fe系合
金に関しては、極低Sの材料を出発原料とし、これを冷
材から真空誘導炉で溶解して消耗電極を溶製し、VAR炉
にて再溶解することによって、36Ni−Fe系合金を溶製し
ていた。なお、シャドウマスク用36Ni−Fe系合金は極低
Sにすることによって、キヌ目(シャドウマスクとして
の機能を阻害する品質要素)を防止することができる。
Conventionally, with regard to 36Ni-Fe-based alloy as a typical shadow mask material, an extremely low S material is used as a starting material, which is melted from a cold material in a vacuum induction furnace to melt a consumable electrode, and the VAR furnace is manufactured. By re-melting, the 36Ni-Fe alloy was melted. By setting the 36Ni-Fe alloy for shadow masks to have an extremely low S, it is possible to prevent the cucumber (a quality factor that impairs the function as a shadow mask).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の冷材から真空誘導炉にて、例えば36Ni−Fe系合
金を溶製する場合には、真空誘導炉に、脱硫の機能がな
いため、非常に値段の高い極低Sの電解鉄とNiを材料と
しなければならず鋼塊コストが高かった。そこで、まず
値段の安い高Sの工場内リターン屑および鉄源を材料と
し、アーク炉および取鍋精錬炉で脱硫して極低Sの母材
を溶製し、次いで前記母材をアーク炉で溶解した溶湯を
真空誘導炉に移して精錬することによって、コストの低
減を実現することを目的とした。
For example, when melting a 36Ni-Fe alloy from a conventional cold material in a vacuum induction furnace, since the vacuum induction furnace does not have a desulfurization function, a very expensive ultra-low S electrolytic iron and Ni And the cost of the steel ingot was high. Therefore, first, the inexpensive high S factory return scrap and iron source are used as materials, and then desulfurized in an arc furnace and a ladle refining furnace to melt a very low S base material, and then the base material is processed in an arc furnace. The purpose was to reduce the cost by transferring the melt to a vacuum induction furnace and refining it.

〔課題を解決するための手段〕[Means for solving the problem]

本発明のうちの第1発明は、不純物元素が低いNi−Fe
系合金を溶製する方法において、脱硫を主目的とする溶
解でSが20ppm以下のNi−Fe系合金の母材を造塊する第
1の工程と、前記母材を用いて脱炭を主目的とする消耗
電極を溶製する第2の工程および前記消耗電極を用いて
真空アーク再溶解する第3の工程からなることを特徴と
するNi−Fe系合金の溶製方法であり、第2発明は、第1
の工程がアーク炉溶解後に取鍋精錬を行なう第1発明に
記載のNi−Fe系合金の溶製方法であり、第3発明は第2
の工程がアーク炉溶解した溶湯を真空誘導溶解炉に移し
て精錬を行なう第1または第2発明に記載のNi−Fe系合
金の溶製方法である。
The first invention of the present invention is a Ni-Fe alloy having a low impurity element.
In the method for producing a base alloy, a first step of ingoting a base material of a Ni-Fe based alloy having S of 20 ppm or less by melting mainly for desulfurization, and mainly performing decarburization using the base material. A method for melting a Ni-Fe alloy, comprising: a second step of melting an intended consumable electrode; and a third step of remelting a vacuum arc using the consumable electrode. The invention is the first
Is a method of melting a Ni-Fe alloy according to the first invention, in which ladle refining is performed after melting of the arc furnace.
Is the method for producing a Ni-Fe alloy according to the first or second invention, wherein the molten metal obtained by melting the arc furnace is transferred to a vacuum induction melting furnace for refining.

代表的なシャドウマスク用36Ni−Fe合金の組成はシャ
ドウマスクとしての熱膨張性、穴加工性、エッチング性
等の関係から、例えばC≦0.0040%、Si≦0.04%、Mn=
0.25〜0.35%、P≦0.005%、S≦0.0020%、Ni=35.8
〜36.5%、Al≦0.050%,O≦20ppmである。C,Siを極度に
下げ、かつOを下げる必要があるため、従来冷材から真
空誘導溶解炉にて、C,Siを下げ、さらにVAR炉にて、O
を下げて溶製されていた。しかし、真空誘導溶解炉にお
いては、P,Sを下げることができないため、極低S,極低
Pの電解鉄や純鉄などの鉄源Niを材料としなければなら
なかった。この極低S,極低Pの電解鉄や純鉄などの鉄源
は、非常にコストが高いため、コスト低減を目的とし
て、コストの安い、高Sの工場内リターン屑や、鉄を用
いる本発明の方法を見出した。本発明における実施例を
述べると、予め高S鉄源(S≒0.020%)を用いて、ア
ーク炉および取鍋精錬炉で脱硫を行ない極低Sし、母材
とする。その後この母材を、アーク炉で再度溶解し、C
を下げ、VIF−HOT炉にて、さらに低Cとし、VAR用の消
耗電極とする。この消耗電極をVAR炉にて、再溶解する
ことによって36Ni−Fe合金の鋼塊を造塊する。
The composition of a typical 36Ni-Fe alloy for a shadow mask is, for example, C ≦ 0.0040%, Si ≦ 0.04%, and Mn =
0.25-0.35%, P ≦ 0.005%, S ≦ 0.0020%, Ni = 35.8
336.5%, Al ≦ 0.050%, O ≦ 20 ppm. Since it is necessary to extremely lower C and Si and O, it is necessary to lower C and Si from cold materials in a vacuum induction melting furnace, and further reduce O in a VAR furnace.
Had been melted down. However, in a vacuum induction melting furnace, since P and S cannot be reduced, an iron source Ni such as electrolytic iron or pure iron having extremely low S and extremely low P must be used as a material. Iron sources such as extremely low S and very low P electrolytic iron and pure iron are very expensive, and for the purpose of cost reduction, low-cost, high-S factory return debris and a book using iron The method of the invention has been found. According to an embodiment of the present invention, desulfurization is performed in an arc furnace and a ladle refining furnace by using a high S iron source (S ≒ 0.020%) in advance, and ultra low S is used as a base material. Thereafter, the base material was melted again in an arc furnace, and C
And in the VIF-HOT furnace, further reduce the C to make it a consumable electrode for VAR. The consumable electrode is remelted in a VAR furnace to form a 36Ni-Fe alloy ingot.

シャドウマスク用3Ni−Fe系化合物においては、Cを
極度に下げなければならずアーク炉でCを下げた状態で
Sを0.0020%にすることは極めて難しい。なぜなら、脱
酸反応は、Cが高く、Oの低い状態でなければ、進行し
にくいからである。そのため、予めアーク炉および取鍋
精錬炉にて、Cの高い状態にて、Sを0.0020%以下にま
で下げた母材を溶製するのが本発明の特徴である。
In a 3Ni-Fe compound for a shadow mask, C must be extremely reduced, and it is extremely difficult to reduce S to 0.0020% in a state where C is reduced in an arc furnace. This is because the deoxidation reaction does not easily proceed unless C is high and O is low. Therefore, it is a feature of the present invention that a base material in which S is reduced to 0.0020% or less in an arc furnace and a ladle refining furnace in advance in a high C state is melted.

本発明では、極低S化した母材をアーク炉で溶解し、
溶湯を真空誘導炉に移して、さらに精錬することによっ
て、低CFで脱硫しにくいアーク炉の欠点を補うことがで
き、かつアーク炉本来の脱リン機能、スラグによる脱酸
機能も十分活かすことができる。また、溶湯を真空誘導
炉に移して精錬することができ、極低Cでかつ、低Oの
消耗電極を溶製することができる。
In the present invention, an extremely low S base material is melted in an arc furnace,
By transferring the molten metal to a vacuum induction furnace and refining it, it is possible to make up for the drawbacks of the arc furnace, which is difficult to desulfurize with low CF, and to make full use of the arc furnace's original dephosphorization function and slag deoxidation function. it can. Further, the molten metal can be transferred to a vacuum induction furnace for refining, and consumable electrodes having extremely low C and low O can be produced.

なお、本発明でいうNi−Fe系合金とは、Fe基の合金で
少なくともNiが20ないし60%含まれているものであり、
その鋼帯がシャドウマスク用に使用されるものに限定さ
れる。但しNiが上記の範囲にあれば、合金の脱酸や強化
のために添加される、例えばSi,Mn,Cr,Mo,Vなどのほか
の元素が含まれていても良いものである。
Incidentally, the Ni-Fe alloy according to the present invention is an Fe-based alloy containing at least 20 to 60% of Ni,
The steel strip is limited to those used for shadow masks. However, if Ni is in the above range, other elements such as Si, Mn, Cr, Mo, and V, which are added for deoxidation and strengthening of the alloy, may be included.

〔実施例〕〔Example〕

アーク炉にて、高Sの鉄源とNiを溶解精錬後、ASEA−
SKF炉にて、さらに脱硫処理をすることによって、極低
Sの母材を溶製し、その母材をアーク炉にて溶解精錬
し、この溶湯を真空誘導炉で脱炭処理し極低Cとし、消
耗電極を作り、それをVAR炉にて、再溶解することによ
って、必要な組織の鋼塊を造塊したが、その場合のCと
Sの推移を第1図に示した。
After melting and refining a high S iron source and Ni in an arc furnace, ASEA-
In the SKF furnace, by further desulfurizing, a very low S base material is melted, the base material is melted and refined in an arc furnace, and this molten metal is decarbonized in a vacuum induction furnace to obtain a very low carbon content. A consumable electrode was made, and was remelted in a VAR furnace to form a steel ingot with a required structure. The transition of C and S in this case is shown in FIG.

材料のCは0.10%以上で、かつSも0.012%である
が、高C下の低O状態で強烈に脱硫を行ない、S=3ppm
の母材を溶製した。その母材を再度アーク炉で溶解し、
脱炭処理を施し、C=0.01%にまで下げた。なお、Sは
炉材等から8ppmにまで上昇する。さらに、この溶湯を真
空誘導炉に移して脱炭し、C=0.003%にまで下げた。
この方法によれば、C,S,Oのいずれも十分満たす鋼塊を
安価に作ることができる。
The C content of the material is 0.10% or more and the S content is 0.012%. Desulfurization is performed intensely in a low O state under high C, and S = 3 ppm
Was melted. The base material was melted again in an arc furnace,
A decarburization treatment was performed to reduce C to 0.01%. Note that S rises to 8 ppm from furnace materials and the like. Further, the molten metal was transferred to a vacuum induction furnace to be decarbonized, and was reduced to C = 0.03%.
According to this method, a steel ingot that sufficiently satisfies all of C, S, and O can be produced at low cost.

〔発明の効果〕〔The invention's effect〕

本発明によれば、従来の非常に値段の高い極低Sの材
料を使わなくても、シャドウマスク用36Ni−Fe系合金の
厳しい成分規格、特に、C,S,Oの相反する成分(すなわ
ち、極低Cにもかかわらず、極低S,極低Oであること)
規格を十分満足する鋼塊を造塊することができ、極めて
工業的価値が大きい。
According to the present invention, the strict component specifications of the 36Ni-Fe alloy for the shadow mask, particularly the incompatible components of C, S, O (ie, , Despite extremely low C, extremely low S and extremely low O)
A steel ingot that sufficiently satisfies the standard can be made, and has extremely high industrial value.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明でのS,Cの推移を示す図である。 FIG. 1 is a diagram showing transition of S and C in the present invention.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】不純物元素が低いNi−Fe系合金を溶製する
方法において、脱硫を主目的とする溶解でSが20ppm以
下のNi−Fe系合金の母材を造塊する第1の工程と、前記
母材を用いて脱炭を主目的とする消耗電極を溶製する第
2の工程および前記消耗電極を用いて真空アーク再溶解
する第3の工程からなることを特徴とするNi−Fe系合金
の溶製方法。
In a method for producing a Ni-Fe alloy having a low impurity element, a first step of ingoting a base material of a Ni-Fe alloy containing 20 ppm or less of S by melting mainly for desulfurization. And a second step of melting a consumable electrode whose main purpose is decarburization using the base material and a third step of remelting a vacuum arc using the consumable electrode. Melting method for Fe-based alloys.
【請求項2】第1の工程がアーク炉溶解後に取鍋精錬を
行なう請求項1に記載のNi−Fe系合金の溶製方法。
2. The method according to claim 1, wherein the ladle refining is performed after the melting of the arc furnace in the first step.
【請求項3】第2の工程がアーク炉溶解した溶湯を真空
誘導溶解炉に移して精錬を行なう請求項1または2に記
載のNi−Fe系合金の溶製方法。
3. The method according to claim 1, wherein in the second step, the molten metal obtained by melting the arc furnace is transferred to a vacuum induction melting furnace for refining.
JP8522785A 1989-10-30 1989-10-30 Melting method of Ni-Fe alloy Expired - Fee Related JP2795703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8522785A JP2795703B2 (en) 1989-10-30 1989-10-30 Melting method of Ni-Fe alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8522785A JP2795703B2 (en) 1989-10-30 1989-10-30 Melting method of Ni-Fe alloy

Publications (2)

Publication Number Publication Date
JPH03146624A JPH03146624A (en) 1991-06-21
JP2795703B2 true JP2795703B2 (en) 1998-09-10

Family

ID=17648299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8522785A Expired - Fee Related JP2795703B2 (en) 1989-10-30 1989-10-30 Melting method of Ni-Fe alloy

Country Status (1)

Country Link
JP (1) JP2795703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912152A (en) * 2012-09-19 2013-02-06 攀钢集团江油长城特殊钢有限公司 Vacuum arc remelting method for inhibiting macrosegregation of high-temperature alloy with high content of Nb

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111074041A (en) * 2019-12-17 2020-04-28 陕西斯瑞新材料股份有限公司 Method for improving purity of 304L stainless steel
CN115449582B (en) * 2022-09-01 2023-08-15 陕西斯瑞新材料股份有限公司 Preparation method of high-purity iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912152A (en) * 2012-09-19 2013-02-06 攀钢集团江油长城特殊钢有限公司 Vacuum arc remelting method for inhibiting macrosegregation of high-temperature alloy with high content of Nb

Also Published As

Publication number Publication date
JPH03146624A (en) 1991-06-21

Similar Documents

Publication Publication Date Title
US4484946A (en) Method of producing iron-, nickle-, or cobalt-base alloy with low contents of oxygen, sulphur, and nitrogen
US20080156144A1 (en) Method for reducing to metallic chromium the chromium oxide in slag from stainless steel processing
JP2013049908A (en) Method for producing high-purity steel by electroslag remelting method
CN105603312A (en) Manufacturing method of ultra-purity industrial pure iron
JP2795703B2 (en) Melting method of Ni-Fe alloy
TW200502404A (en) Method for recovering metallic elements, especially metallic chromium, from slag containing metal oxides in electric-arc furnace
US3728101A (en) Process for making stainless steel
JP2002161308A (en) Production method for high strength, high fatigue resistant steel for use in structural application
JP3563463B2 (en) Method and apparatus for manufacturing stainless steel
JP6410311B2 (en) Stainless steel refining method
WO2023184811A1 (en) Method for producing steel by using waste low-grade ore instead of rich iron ore as raw material
JP2004169147A (en) Refining process for clean steel containing extremely low amount of non-metallic inclusion
CN1023610C (en) Special smelting process "electroslag induction refining"
US3607227A (en) Production of spheroidal graphite irons
JPH10140227A (en) Production of high alloy steel by joining two molten steels
CN106636859B (en) The smelting process of high cleanliness bearing steel
US4184869A (en) Method for using flux and slag deoxidizer in ESR process
US2458651A (en) Processes for producing low carbon chromium steels
JPH08225820A (en) Production of high carbon silicon killed steel
US1710446A (en) Process of preparing low-carbon alloys
JPH04318118A (en) Production of steel with extremely low carbon and extremely low sulfur
JPH0520486B2 (en)
JP3840096B2 (en) Method for producing Fe-Ni alloy for low thermal expansion shadow mask with excellent rust resistance
JP3684445B2 (en) Manufacturing method of high purity high Ni steel
JPH11279622A (en) Production of molten stainless steel with electric furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees