JP2795216B2 - Mold for molding, molding method, molding material, and molded product - Google Patents

Mold for molding, molding method, molding material, and molded product

Info

Publication number
JP2795216B2
JP2795216B2 JP10828895A JP10828895A JP2795216B2 JP 2795216 B2 JP2795216 B2 JP 2795216B2 JP 10828895 A JP10828895 A JP 10828895A JP 10828895 A JP10828895 A JP 10828895A JP 2795216 B2 JP2795216 B2 JP 2795216B2
Authority
JP
Japan
Prior art keywords
molding
mold
temperature
softening temperature
vicat softening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10828895A
Other languages
Japanese (ja)
Other versions
JPH08276434A (en
Inventor
康仁 伊藤
光芳 熊本
幸知 柴田
文夫 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP10828895A priority Critical patent/JP2795216B2/en
Publication of JPH08276434A publication Critical patent/JPH08276434A/en
Application granted granted Critical
Publication of JP2795216B2 publication Critical patent/JP2795216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • B29C49/4823Moulds with incorporated heating or cooling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂の成形用
金型、ブロー成形方法、射出成形方法、熱可塑性樹脂材
料、及び、成形品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for molding a thermoplastic resin, a blow molding method, an injection molding method, a thermoplastic resin material, and a molded product.

【0002】[0002]

【従来の技術】樹脂成形品を得る方法として、射出成形
法やブロ−成形法がある。射出成形法は、溶融樹脂を密
閉された金型内に高圧(200〜1000kg/cm
2 )で射出して、金型の成形面を樹脂に転写する方式で
ある。高圧であるため、成形面の転写が正確に行われ
る。このため、鏡面やしぼ面を有する成形品を得るのに
は適している。しかし、高圧に耐える金型が必要なた
め、金型の構造が複雑化してコスト高となり、多品種少
量生産等には不適である。また、中空品の成形には特別
な工夫が必要なため、生産工程が複雑化する。ブロ−成
形法は、パリソン(溶融・軟化状態の中空円筒形状の樹
脂)を金型間に供給した後に型締し、その中空部に流体
を圧送することでパリソンの外面を金型の成形面に押し
つけて転写する方式である。流体の圧力で押しつけるた
め、比較的低圧(4〜10kg/cm2 )であり、この
ため、成形面が綺麗に転写されず、鏡面やしぼ面を有す
る成形品を得るのには不適である。しかし、中空品の大
量生産には適しているため、広く行われている。特開昭
58−102734号公報には、薄肉の成形用内型と、
該成形用内型に接触/隔離できる冷却用外型を備えた中
空成形用金型が開示されている。この金型では、中空成
形品の表面光沢を改善する目的でパリソンの供給前に成
形用内型を加熱しておくとともに、パリソンが成形用内
型の成形面に接触された後は、冷却用外型の内面を成形
用内型の外面に接触させることで該成形用内型を速やか
に冷却して、成形品を得ている。特開平4−77231
号公報には、パリソンを成形型の成形面に接触させて成
形する際に、該成形型の温度を、パリソンの結晶化速度
が最大となる温度近傍から融点までの間に保持すること
により、ダイラインやウエルドラインが成形品の表面に
残留することを防止するとともに、成形中のパリソンの
中空部に冷媒を循環させることにより、成形のサイクル
タイムの長時間化を防止するようにしたブロ−成形方法
が開示されている。特公平6−73903号公報には、
容器状の金型枠に、伝熱性が良好で多数の導通孔を有す
る蓋体を固着して該蓋体から成る金型表面部域と、その
背後の中間層とを形成し、該中間層内に伝熱性の低い樹
脂又は金属を充填するか、導通孔を備えた補強リブを設
けた成形用金型が開示されている。
2. Description of the Related Art As a method for obtaining a resin molded product, there are an injection molding method and a blow molding method. In the injection molding method, the molten resin is placed in a closed mold at a high pressure (200 to 1000 kg / cm).
In this method, the molding surface of the mold is transferred to resin by injection in 2 ). Because of the high pressure, the transfer of the molding surface is performed accurately. Therefore, it is suitable for obtaining a molded product having a mirror surface or a grained surface. However, since a mold that can withstand high pressure is required, the structure of the mold is complicated and the cost is high, which is not suitable for high-mix low-volume production. In addition, since a special device is required for molding a hollow product, the production process is complicated. In the blow molding method, a parison (a hollow cylindrical resin in a melted and softened state) is supplied between molds, the mold is clamped, and a fluid is pressure-fed to the hollow portion so that the outer surface of the parison is a molding surface of the mold. This is a method of transferring the image by pressing it onto Since it is pressed by the pressure of the fluid, the pressure is relatively low (4 to 10 kg / cm 2 ), so that the molding surface is not transferred cleanly, which is not suitable for obtaining a molded product having a mirror surface or a grain surface. However, it is widely used because it is suitable for mass production of hollow articles. JP-A-58-102732 discloses a thin inner mold for molding,
A hollow molding die provided with a cooling outer die capable of contacting / isolating the inner molding die is disclosed. In this mold, the inner mold for molding is heated before the parison is supplied for the purpose of improving the surface gloss of the hollow molded article, and after the parison is brought into contact with the molding surface of the inner mold for cooling, it is cooled. By bringing the inner surface of the outer mold into contact with the outer surface of the inner mold for molding, the inner mold for molding is rapidly cooled to obtain a molded product. JP-A-4-77231
In the gazette, when the parison is brought into contact with the molding surface of the mold, the temperature of the mold is maintained between a temperature near the maximum crystallization speed of the parison and a melting point. Blow molding that prevents die lines and weld lines from remaining on the surface of the molded product and circulates refrigerant through the hollow part of the parison during molding to prevent a prolonged molding cycle time. A method is disclosed. In Japanese Patent Publication No. 6-73903,
A lid having good heat conductivity and a large number of through-holes is fixed to a container-like mold frame to form a mold surface area including the lid and an intermediate layer behind the mold, and the intermediate layer is formed. There is disclosed a molding die in which a resin or metal having low heat conductivity is filled, or a reinforcing rib provided with a conduction hole is provided.

【0003】[0003]

【発明が解決しようとする課題】比較的簡易な構造の金
型を用いて鏡面やしぼ面を有する樹脂成形品を得たいと
いう要請がある。また、鏡面やしぼ面を有する中空の樹
脂成形品(例:自動車のエアスポイラ−)を、簡易な工
程で生産したいという要請もある。前記特開昭58−1
02734号公報の中空成形用金型では、成形用内型を
加熱することで成形面を綺麗に転写しているが、成形用
内型を冷却用外型に対して相対変位させて接触させるこ
とで樹脂を冷却しているため、金型の構造が複雑となっ
て脆弱化する恐れがあり、また、冷却時間も長時間化す
る。また、樹脂成形品の表面を綺麗にし、且つ、成形の
全サイクルタイムを短くするのに最適な加熱温度や冷却
温度の範囲についての言及もない。前記特開平4−77
231号公報のブロ−成形方法では、成形型の温度を前
記の温度に加熱保持することで成形面を綺麗にしている
が、冷却時にも該温度に加熱保持しているため、冷却時
間の短縮効果は、あまり大きくない。また、冷媒を循環
させることでパリソンを内側から冷却しているため、成
形型の温度を前記の温度に加熱保持するための温度制御
が複雑となる。前記特公平6−73903号公報の装置
では、成形面の加熱・冷却を、該成形面が形成されてい
る蓋体(金型表面部域)の内部又は裏面に設けた多数の
導通孔に加熱・冷却媒体を通すことで行っており、さら
に、成形面の背後の中間層内に加熱・冷却媒体を送り込
むことでも行っているが、この装置の場合、中間層内で
の伝熱は緩やかであるため、サイクルタイムを短くする
ことは困難である。本発明は、良好な鏡面やしぼ面を有
する樹脂成形品を比較的短いサイクルタイムで生産する
ことを目的とする。また、良好な鏡面やしぼ面を有する
樹脂成形品を比較的簡単な工程で生産することを目的と
する。また、成形面を構成する型体が比較的薄いため機
械的強度を十分に大きくできなくとも、溶融樹脂によっ
て成形面に加わる圧力に十分に耐えることができ、型体
の寿命が十分に長く耐久性に優れた成形用金型を提供す
ることを目的とする。また、この金型を用いて、寸法安
定性の良い、精度の高い成形品を得ることを目的とす
る。
There is a demand for obtaining a resin molded product having a mirror surface or a grain surface using a mold having a relatively simple structure. There is also a demand for producing a hollow resin molded product having a mirror surface or a grain surface (eg, an air spoiler of an automobile) by a simple process. JP-A-58-1
In the mold for hollow molding disclosed in Japanese Patent No. 027334, the molding surface is clearly transferred by heating the molding inner mold. However, the molding inner mold is relatively displaced and brought into contact with the cooling outer mold. Since the resin is cooled by the method, the structure of the mold may be complicated and weakened, and the cooling time may be prolonged. Further, there is no mention of the optimum range of the heating temperature and the cooling temperature for cleaning the surface of the resin molded product and shortening the entire cycle time of the molding. JP-A-4-77
In the blow molding method of JP-A-231-231, the molding surface is cleaned by heating and maintaining the temperature of the mold at the above-mentioned temperature. The effect is not very large. Further, since the parison is cooled from the inside by circulating the refrigerant, temperature control for heating and maintaining the temperature of the mold at the above-mentioned temperature becomes complicated. In the apparatus disclosed in Japanese Patent Publication No. Hei 6-73903, heating and cooling of a molding surface are performed by heating a large number of conduction holes provided inside or on the back surface of a lid (mold surface area) on which the molding surface is formed.・ It is performed by passing a cooling medium, and also by sending a heating / cooling medium into the intermediate layer behind the molding surface, but in this device, the heat transfer in the intermediate layer is slow. Therefore, it is difficult to shorten the cycle time. An object of the present invention is to produce a resin molded product having a good mirror surface or grain surface in a relatively short cycle time. It is another object of the present invention to produce a resin molded product having a good mirror surface or grain surface in a relatively simple process. In addition, even if mechanical strength cannot be increased sufficiently because the mold forming the molding surface is relatively thin, it can sufficiently withstand the pressure applied to the molding surface by the molten resin, and the mold has a sufficiently long service life. An object of the present invention is to provide a molding die having excellent properties. It is another object of the present invention to obtain a molded product having good dimensional stability and high accuracy by using this mold.

【0004】[0004]

【課題を解決するための手段及び作用】請求項1の発明
は、溶融状態の熱可塑性樹脂を成形面に押圧して密着さ
せて固化させるための成形面を備えた型体を、該成形面
の裏面との間に空間(B) を確保して金型本体によって支
持して成り: (a)前記成形面を当該熱可塑性樹脂のビカット軟化温
度(T)℃以上の温度まで加熱するべく前記空間内へ体
積弾性係数が1×104 〜4.5×104[kg/cm2] の加
熱流体を供給して封入する手段; (b)前記成形面を(ビカット軟化温度(T)−10)
℃以下の温度まで冷却する冷却手段;の各構成要件を有
する成形用金型である。上記(a)の加熱手段は、例え
ば、前記成形面30の裏面側の空間B 内へ加熱オイルを供
給する機構70,71 と、空間B 内にオイルが満たされた
後、該空間B に連通している流路を閉鎖する機構(バル
ブ)72,77 で構成できる。体積弾性係数が1×104
4.5×104[kg/cm2] の流体とは、いわゆる非圧縮性
(但し、現実には微小な圧縮は生ずる)の流体(液体)
である。この流体が空間B 内に満たされて封入された後
は、型体3 の成形面30の側に加わる溶融樹脂の圧力(ブ
ロー圧力,射出圧力)に対して、金型本体4 と流体と型
体3 とが一体の剛体として作用する。このため、型体3
自体は比較的薄く脆弱な場合でも、上記溶融樹脂の圧力
に十分に抗することができ、成形面30の変形等の不具合
を防止できる。また、この流体は加熱媒体でもあるた
め、上記空間B 内へ供給されることで上記成形面30をビ
カット軟化温度(T)℃以上まで加熱する。このため、
上記成形面30が樹脂の表面に綺麗に転写され、シボ面や
鏡面の転写が良好となる。上記(b)の冷却手段は、例
えば、型体3 の成形面30の裏面31に冷却空気や冷却オイ
ル等の冷却媒体を噴射し、もしくは、空間B 内へ冷却媒
体を封入する機構70,71,72によって構成できる。空間B
に封入する冷却媒体としては、例えば、体積弾性係数が
1×104 〜4.5×104[kg/cm2] の流体を好適に用
いることができる。冷却手段(b)により成形面30が
(ビカット軟化温度(T)−10)℃以下まで速やかに
冷却されるため、成形品を型から速やかに取り出すこと
ができ、成形サイクルを短縮できる。また、本成形用金
型の成形面30は、水を成分とする媒体で加熱・冷却され
る場合があるため、金型本体4 や型体3 には、必要に応
じて防錆対策が施される。この対策としては、金型の材
質として錆難いステンレス鋼、銅合金、セラミックス、
アルミ合金等を用いることが挙げられる。好ましくはス
テンレス鋼が用いられる。また、他の対策としては、金
属表面の不導態化処理(例えば、窒化処理)、防錆塗料
の塗布、シリコーン系ゾルゲルタイプ塗料の塗布等が挙
げられる。
According to the first aspect of the present invention, there is provided a mold having a molding surface for pressing a molten thermoplastic resin against a molding surface so that the thermoplastic resin adheres to and solidifies the molded resin. (A) the molding surface is heated to a temperature not lower than the Vicat softening temperature (T) ° C. of the thermoplastic resin. Means for supplying and enclosing a heating fluid having a bulk modulus of 1 × 10 4 to 4.5 × 10 4 [kg / cm 2 ] into the space; (b) forming the molding surface at (Vicat softening temperature (T) − 10)
A cooling means for cooling to a temperature of not more than ℃. The heating means (a) includes, for example, mechanisms 70 and 71 for supplying heating oil into the space B on the back surface side of the molding surface 30 and a communication with the space B after the space B is filled with oil. A mechanism (valve) 72,77 for closing the flow channel that is being used. Bulk modulus is 1 × 10 4 or more
A 4.5 × 10 4 [kg / cm 2 ] fluid is a so-called incompressible fluid (however, in practice, a slight compression occurs).
It is. After the fluid is filled and sealed in the space B, the mold body 4 and the fluid and the mold are exposed to the pressure (blow pressure, injection pressure) of the molten resin applied to the molding surface 30 of the mold body 3. The body 3 acts as an integral rigid body. Therefore, type 3
Even when the resin itself is relatively thin and brittle, it can sufficiently withstand the pressure of the molten resin, and problems such as deformation of the molding surface 30 can be prevented. Since this fluid is also a heating medium, it is supplied into the space B to heat the molding surface 30 to a Vicat softening temperature (T) ° C. or higher. For this reason,
The molding surface 30 is clearly transferred to the surface of the resin, and the transfer of the textured surface and the mirror surface is improved. The cooling means of the above (b) is, for example, a mechanism for injecting a cooling medium such as cooling air or cooling oil onto the back surface 31 of the molding surface 30 of the mold body 3 or for sealing the cooling medium into the space B. , 72. Space B
For example, a fluid having a bulk modulus of 1 × 10 4 to 4.5 × 10 4 [kg / cm 2 ] can be suitably used as a cooling medium to be sealed in the container. Since the molding surface 30 is rapidly cooled to (Vicat softening temperature (T) -10) ° C. or lower by the cooling means (b), the molded product can be quickly removed from the mold, and the molding cycle can be shortened. In addition, since the molding surface 30 of the molding die may be heated and cooled by a medium containing water as a component, the mold body 4 and the molding body 3 are provided with rust prevention measures as necessary. Is done. As a countermeasure, mold materials such as stainless steel, copper alloy, ceramics,
Use of an aluminum alloy or the like may be used. Preferably, stainless steel is used. Other measures include passivation treatment of the metal surface (for example, nitriding treatment), application of a rust preventive paint, and application of a silicone-based sol-gel type paint.

【0005】請求項2の発明は、請求項1の発明に、さ
らに、 (c)前記型体の周辺の被支持部と該被支持部に対応す
る前記金型本体の支持部とを遊びを持たせて緩やかに嵌
め合わせ、熱膨張によって前記被支持部と支持部とに生
ずる相対変位を前記遊びによって吸収するように、前記
被支持部と前記支持部とに設けられた嵌合部材; (d)前記嵌合部材の前記遊びの部分に設けられたシー
ル部材(9);という構成要件を付加した成形用金型であ
る。上記(c)の嵌合部材は、例えば、型体3 の周辺の
凸部36を金型本体4 の対応する部分の凹部46内に遊びを
持って緩やかに嵌め入れる機構や、逆に、型体3 の周辺
の凹部(不図示)内に金型本体4 の対応する部分の凸部
(不図示)を遊びを持って緩やかに嵌め入れる機構であ
る。この機構は、型体3 の周辺の全域又は一部に設け
る。遊びを持って緩やかに嵌め入れているため、型体3
と金型本体4 とに熱膨張による相対的な変位が生じた場
合でも、その差を吸収して歪や損壊等の不具合を防止で
きる。請求項2の発明では、型体3 と金型本体4 の連結
部分が遊びを有する状態で緩やかに嵌め合わせられてい
るため、前記空間B 内に封入する加熱流体と型体3 と金
型本体4 とを一体の剛体として機能させて成形面30側か
ら加わる溶融樹脂の圧力に抗させるためには、上記連結
部分を確実にシールして該連結部分から加熱流体が漏れ
出すことを防止する必要がある。このため、上記(d)
のシール部材を設けている。このシール部材としては、
Oリング9 、オイルシール、合成ゴム、金属、フェル
ト、皮、コルク等を用いることができる。このシール部
材により型体3 と金型本体4 の連結部をシールできるた
め、前記空間B 内に満たされる加熱オイル或いは冷却空
気や冷却水が、型体3 と金型本体4 の連結部から漏れ出
すことを防止できる。また、加熱オイルを前記空間内B
に所望の圧力で密閉できるため、該空間B 内を所望の圧
力に設定することができる。なお、このシール部材9
は、成形面30がビカット軟化温度(T)℃以上まで加熱
されることから、この温度での耐久性を有する材料であ
ることが要求される。
According to a second aspect of the present invention, in addition to the first aspect of the present invention, there is further provided (c) a play between the supported portion around the mold and the support portion of the mold body corresponding to the supported portion. A fitting member provided between the supported portion and the support portion so that the play allows the relative displacement generated between the supported portion and the support portion due to thermal expansion to be absorbed by the holding portion and loosely fitted; d) A molding die to which a component such as a seal member (9) provided in the play portion of the fitting member is added. The fitting member (c) is, for example, a mechanism that loosely fits the convex portion 36 around the mold 3 with play into the concave portion 46 of the corresponding portion of the mold body 4, This is a mechanism for loosely fitting a convex portion (not shown) of a corresponding portion of the mold body 4 into a concave portion (not shown) around the body 3 with play. This mechanism is provided in the whole area or a part of the periphery of the mold 3. Since it is loosely fitted with play,
Even when relative displacement occurs due to thermal expansion between the mold and the mold body 4, the difference can be absorbed to prevent problems such as distortion and damage. According to the second aspect of the invention, since the connecting portion between the mold 3 and the mold body 4 is loosely fitted with play, the heating fluid sealed in the space B, the mold 3 and the mold body 4 to function as an integral rigid body to withstand the pressure of the molten resin applied from the molding surface 30 side, it is necessary to reliably seal the above-mentioned connecting portion and prevent the heating fluid from leaking from the connecting portion. There is. Therefore, the above (d)
Is provided. As this sealing member,
O-ring 9, oil seal, synthetic rubber, metal, felt, leather, cork, etc. can be used. Since the joint between the mold 3 and the mold body 4 can be sealed by this seal member, the heating oil or cooling air or cooling water filled in the space B leaks from the joint between the mold 3 and the mold body 4. Can be prevented. In addition, the heating oil is supplied into the space B
The interior of the space B can be set to a desired pressure because the interior can be sealed at a desired pressure. The sealing member 9
Since the molding surface 30 is heated to the Vicat softening temperature (T) ° C. or higher, it is required that the material be durable at this temperature.

【0006】請求項3の発明は、請求項2の発明に、さ
らに、 (e)前記型体の被支持部と前記金型本体の支持部との
間に設けられた、熱伝導率が0.001〜1[kcal/mh
℃] で、且つ、縦弾性係数が0.1×104 〜100×
104[kg/cm2] の断熱支持部材(1); (f)前記空間に面する前記金型本体の内面に設けられ
た、熱伝導率が0.001〜1[kcal/mh℃] の断熱部材
(2);という構成要件を付加した成形用金型である。上記
(e)の断熱支持部材1 は、熱伝導率が0.001〜1
[kcal/mh℃] 、好ましくは0.005〜0.8[kcal/mh
℃] 、更に好ましくは0.01〜0.5[kcal/mh℃]
で、且つ、縦弾性係数が0.1×104 〜100×10
4[kg/cm2] 、好ましくは0.2×104 〜40×10
4[kg/cm2] 、更に好ましくは1×104〜20×104[k
g/cm2] の材料を用いて構成してもよく、また、熱伝導
率が0.001〜1[kcal/mh℃] 、好ましくは0.00
5〜0.8[kcal/mh℃] 、更に好ましくは0.01〜
0.5[kcal/mh℃] の材料と、縦弾性係数が0.1×1
4〜100×104[kg/cm2] 、好ましくは0.2×1
4 〜40×104[kg/cm2]、更に好ましくは1×10
4 〜20×104[kg/cm2] の材料を用いた積層構造とし
て構成してもよい。つまり、型体3 と金型本体4 とを断
熱でき、且つ、型体3側から金型本体4 側へ加わる押圧
力に抗して型体3 を金型本体4 によってガタツキ無く確
実に支持できればよい。なお、上記断熱支持部材の熱伝
導率として上記の如き範囲が示されている理由は、熱伝
導率が0.001[kcal/mh℃] 未満では特殊な材料が必
要となって実用的で無くなり、1[kcal/mh℃] を越える
と所望の断熱効果が得られないためである。また、上記
断熱支持部材の縦弾性係数として上記の如き範囲が示さ
れている理由は、縦弾性係数が0.1×104[kg/cm2]
未満では剛性が不足してシールが十分で無くなり、10
0×104[kg/cm2] を越えると断熱支持部の加工が困難
となるためである。熱伝導率が0.001〜1[kcal/mh
℃] で、縦弾性係数が0.1×104 〜100×10
4[kg/cm2] の材料としては、ポリアリレート、ポリエー
テルエーテルケトン、ポリフェニレンオキサイド、変性
ポリフェニレンオキサイド、ポリアミド、アセタール樹
脂、四フッ化エチレン系樹脂、セラミックス、PC、フ
ェノール樹脂、ユリア、メラミン、ガラス、不飽和ポリ
エステル等がある。好ましくはフェノール樹脂、ユリア
樹脂、メラミン、不飽和ポリエステルであり、更に好ま
しくはフェノール樹脂である。上記(f)の断熱部材2
は、前記空間内に供給される加熱オイル等を金型本体4
から断熱することにより、加熱オイル等の温度低下を防
止するものである。断熱部材2 の材料としては、ポリア
リレート、ポリエーテルエーテルケトン、ポリフェニレ
ンオキサイド、変性ポリフェニレンオキサイド、ポリア
ミド、アセタール樹脂、四フッ化エチレン系樹脂、セラ
ミックス、PC、フェノール樹脂、ユリア、メラミン、
ガラス、不飽和ポリエステル等、アスベスト、硬質ウレ
タンフォーム、ロックウール、グラスウール、けい酸カ
ルシウム、ポリスチレンフォーム、はっ水性パーライ
ト、コルク、木材(杉)、ゴム、石英ガラス、発泡ビー
ズ等、及び、これらの2種以上の組み合わせを用いるこ
とができる。好ましくは、フェノール樹脂、ユリア、メ
ラミン、不飽和ポリエステル、アスベスト、硬質ウレタ
ンフォーム、発泡ビーズを用いることができる。
According to a third aspect of the present invention, in addition to the second aspect of the present invention, there is further provided: (e) a thermal conductivity provided between the supported portion of the mold body and the support portion of the mold main body is zero. .001 to 1 [kcal / mh
° C] and the modulus of longitudinal elasticity is 0.1 × 10 4 -100 ×
10 4 [kg / cm 2] heat-insulating supporting member (1) of; (f) provided on the inner surface of the mold body facing the space, thermal conductivity 0.001~1 [kcal / mh ℃] Heat insulation material
(2); a molding die to which the structural requirement of (1) is added. The heat insulating support member 1 of (e) has a thermal conductivity of 0.001 to 1
[kcal / mh ° C], preferably 0.005 to 0.8 [kcal / mh
° C], more preferably 0.01 to 0.5 [kcal / mh ° C]
And the longitudinal elastic modulus is 0.1 × 10 4 to 100 × 10
4 [kg / cm 2 ], preferably 0.2 × 10 4 to 40 × 10
4 [kg / cm 2 ], more preferably 1 × 10 4 to 20 × 10 4 [k
g / cm 2 ] and may have a thermal conductivity of 0.001 to 1 [kcal / mh ° C.], preferably 0.00
5 to 0.8 [kcal / mh ° C], more preferably 0.01 to
0.5 [kcal / mh ℃] material and longitudinal elastic modulus 0.1 × 1
0 4 to 100 × 10 4 [kg / cm 2 ], preferably 0.2 × 1
0 4 to 40 × 10 4 [kg / cm 2 ], more preferably 1 × 10 4
It may be configured as a laminated structure using a material of 4 to 20 × 10 4 [kg / cm 2 ]. In other words, if the mold 3 and the mold body 4 can be thermally insulated, and the mold 3 can be reliably supported by the mold body 4 without backlash against the pressing force applied from the mold body 3 to the mold body 4 side. Good. The reason why the above range is indicated as the thermal conductivity of the heat-insulating support member is that if the thermal conductivity is less than 0.001 [kcal / mh ° C], a special material is required and the material becomes impractical. If it exceeds 1 [kcal / mh ° C], the desired heat insulating effect cannot be obtained. The reason why the above range is indicated as the longitudinal elastic modulus of the heat insulating support member is that the longitudinal elastic modulus is 0.1 × 10 4 [kg / cm 2 ].
If it is less than 10, the rigidity is insufficient and the seal is insufficient, and
If it exceeds 0 × 10 4 [kg / cm 2 ], it becomes difficult to process the heat insulating support. Thermal conductivity 0.001 to 1 [kcal / mh
° C] and the longitudinal elastic modulus is 0.1 × 10 4 to 100 × 10
4 [kg / cm 2 ] materials include polyarylate, polyetheretherketone, polyphenylene oxide, modified polyphenylene oxide, polyamide, acetal resin, ethylene tetrafluoride resin, ceramics, PC, phenolic resin, urea, melamine, Glass, unsaturated polyester, and the like. Preferred are phenol resins, urea resins, melamine, and unsaturated polyesters, and more preferred are phenol resins. Heat insulation member 2 of (f) above
The heating oil or the like supplied into the space is
By insulating the heating oil, the temperature of the heating oil or the like is prevented from lowering. Materials for the heat insulating member 2 include polyarylate, polyether ether ketone, polyphenylene oxide, modified polyphenylene oxide, polyamide, acetal resin, tetrafluoroethylene resin, ceramics, PC, phenolic resin, urea, melamine,
Glass, unsaturated polyester, etc., asbestos, rigid urethane foam, rock wool, glass wool, calcium silicate, polystyrene foam, water-repellent pearlite, cork, wood (cedar), rubber, quartz glass, foam beads, etc., and these Two or more combinations can be used. Preferably, phenolic resin, urea, melamine, unsaturated polyester, asbestos, rigid urethane foam, foam beads can be used.

【0007】請求項4の発明は、請求項1、請求項2、
請求項3の発明に、さらに、 (g)前記成形面を当該熱可塑性樹脂のビカット軟化温
度(T)℃以上の温度まで加熱するべく前記空間内であ
って前記成形面の裏面に対向する位置に設けられて前記
裏面を輻射加熱する輻射加熱手段(5);という構成要件を
付加した成形用金型である。上記(g)の輻射加熱手段
5 は、例えば、型体3 の成形面30の裏面31に対向するよ
うに、ハロゲンヒーター5 を設けることで構成できる。
溶融樹脂が押圧して密着される成形面30が、空間B 内に
封入される加熱流体に加えて、ハロゲンヒーター5 から
輻射される熱によっても加熱されてビカット軟化温度
(T)℃以上まで昇温されるため、成形面30を樹脂の表
面に綺麗に転写でき、シボ面や鏡面の転写が良好とな
る。なお、空間B 内に封入される流体を、ハロゲンラン
プ5 によって加熱するようにしてもよい。
[0007] The invention of claim 4 is the invention of claim 1, claim 2,
The invention according to claim 3, further comprising: (g) a position in said space for heating said molding surface to a temperature equal to or higher than a Vicat softening temperature (T) ° C. of said thermoplastic resin and facing a back surface of said molding surface. And a radiant heating means (5) for radiantly heating the back surface. Radiation heating means of the above (g)
5 can be configured, for example, by providing a halogen heater 5 so as to face the back surface 31 of the molding surface 30 of the mold 3.
The molding surface 30 to which the molten resin is pressed and adhered is heated not only by the heating fluid sealed in the space B but also by the heat radiated from the halogen heater 5 to rise to the Vicat softening temperature (T) ° C. or higher. Since the molding surface 30 is heated, the molding surface 30 can be clearly transferred to the surface of the resin, and the transfer of the grained surface and the mirror surface is improved. The fluid sealed in the space B may be heated by the halogen lamp 5.

【0008】請求項5の発明は、請求項1〜請求項4の
成形用金型の前記成形面間に(ビカット軟化温度(T)
+100)℃に於ける縦弾性係数が0.01〜10[kg/
cm2]の範囲、好ましくは0.05〜2[kg/cm2]の範囲、
更に好ましくは0.1〜1[kg/cm2]の範囲にある熱可塑
性樹脂を用いた中空パリソンを供給し、前記中空パリソ
ンの外表面を前記成形面に100[kg/cm2]以下、好まし
くは1〜10[kg/cm2]の圧力で押圧して密着させ、その
際、好ましくは、前記パリソン外表面と前記成形面の密
着を更に良好にして転写性を更に向上させる目的で前記
パリソンと前記成形面の間の空気を例えば前記成形面に
設けた微細な隙間を通して真空吸引等によって外部へ排
出し、前記成形面をビカット軟化温度(T)℃以上、好
ましくは(ビカット軟化温度(T)+10)℃以上、更
に好ましくは(ビカット軟化温度(T)+20)℃以上
まで加熱し、その後、前記成形面を(ビカット軟化温度
(T)−10)℃以下、好ましくは(ビカット軟化温度
(T)−20)℃以下、更に好ましくは(ビカット軟化
温度(T)−40)℃以下の温度まで冷却して成形品を
得る、ブロー成形方法である。なお、上記熱可塑性樹脂
の(ビカット軟化温度(T)+100)℃に於ける縦弾
性係数として上記の如き範囲が示されている理由は、縦
弾性係数が0.01[kg/cm2]未満の場合はパリソンのド
ローダウンが生じてしまって安定な成形を行えないため
であり、一方、縦弾性係数が10[kg/cm2]を越えるとパ
リソンの形成に大きな成形圧力が必要になるとともにパ
リソンを膨らませて成形面に押圧するのに非常に大きな
ブロー圧力が必要になるためである。この成形方法に適
した成形材料、即ち、(ビカット軟化温度+100)℃
での縦弾性係数が0.01〜10[kg/cm2]の範囲にある
熱可塑性樹脂としては、例えば、AS樹脂、ポリスチレ
ン、ハイインパクトポリスチレン、アクリロニトリル−
ブタジエン系ゴム−スチレンから成るグラフト共重合体
(ABS樹脂)、アクリロニトリル−ブタジエン系ゴム
−スチレン−αメチルスチレンから成るグラフト共重合
体(耐熱ABS樹脂)、アクリロニトリル−エチレン−
プロピレン系ゴム−スチレン及び/又はメタクリル酸メ
チルから成るグラフト共重合体(AES樹脂)、アクリ
ロニトリル−水添ジエン系ゴム−スチレン及び/又はメ
タクリル酸メチルから成るグラフト共重合体、アクリロ
ニトリル−シリコーンゴム−スチレン及び/又はメタク
リル酸メチルから成るグラフト共重合体、ポリエチレ
ン、ポリプロピレン、ポリカ−ボネ−ト、ポリフェニレ
ンエ−テル、ポリオキシメチレン、ナイロン、メタクリ
ル酸メチル系重合体、ポリエ−テルスルホン、ポリアリ
レ−ト、塩化ビニル、マレイミド化合物−スチレン及び
/又はアクリロニトリル及び/又はα−メチルスチレン
からなる共重合体、ゴム状重合体−マレイミド化合物−
スチレン及び/又はアクリロニトリル及び/又はメタク
リル酸メチル及び/又はα−メチルスチレンからなるグ
ラフト共重合体等、及びこれらの複合物と、これらに充
填剤を添加した樹脂が挙げられる。この成形方法により
好適に成形される成形品としては、例えば、ハウジン
グ、スポーツ用製品、遊具、車両用製品、家具用製品、
サニタリー製品、建材用製品、厨房用製品であり、さら
に、前記成形品が発泡層を中空部に有する成形品、前記
成形品が多層ブロー成形法により製作される成形品、前
記成形品がメッキ、スパッタ、蒸着、塗装された成形品
である。これらの成形品の具体例としては、ハウジング
としては、例えば、クーラーボックス、TV、オーディ
オ機器、プリンタ、FAX、複写機、ゲーム機、洗濯
機、エアコン、冷蔵庫、掃除機、アタッシュケース、楽
器ケース、工具箱、コンテナ、カメラケース等がある。
スポーツ用製品としては、例えば、スイミングボード、
サーフボード、ウインドサーフィン、スキー、スノーボ
ード、スケートボード、アイスホッケースティック、カ
ーリングボール、ゲートボールラケット、テニスラケッ
ト、カヌー、ボート等がある。遊具としては、例えば、
バット、ブロック、積木、釣り具ケース、パチンコ台枠
等がある。車両用製品としては、例えば、エアースポイ
ラー、ドアー、バンパー、フェンダー、ボンネット、サ
ンルーフ、リアゲート、ホイールキャップ、インパネ、
グローブボックス、コンソールボックス、アームレス
ト、ヘッドレスト、燃料タンク、運転席カバー、トラン
ク工具ボックス等がある。家具用製品としては、例え
ば、引き出し、机天板、ベッド天板・底板、鏡台枠板、
げた箱板・前扉、椅子背板・底板、盆・トレー、傘立
て、花瓶、薬箱、ハンガー、化粧箱、収納箱板、本立
て、事務机天板、OA机天板、OAラック等がある。サ
ニタリー製品としては、例えば、シャワーヘッド、便
座、便板、排水パン、貯水槽蓋、洗面化粧台扉、浴室ド
ア等がある。建材用製品としては、例えば、天井板、床
板、壁板、窓枠、ドア、ベンチ等がある。厨房用製品と
しては、例えば、まな板、キッチン扉等がある。発泡層
を中空部に有する成形品としては、例えば、冷蔵庫前面
扉、クーラーボックス等がある。多層ブロー成形法によ
り製作される成形品としては、例えば、燃料タンク等が
ある。成形品がメッキ、スパッタ、蒸着、塗装された成
形品としては、例えば、車両外装部品、電子機器ハンジ
ング等がある。なお、これらは例示であり、これら以外
の成形品も好適に成形され得る。
According to a fifth aspect of the present invention, there is provided a method according to any one of the first to fourth aspects of the present invention, further comprising the steps of:
+100) The modulus of longitudinal elasticity at ℃ is 0.01 to 10 [kg /
cm 2 ], preferably in the range of 0.05 to 2 [kg / cm 2 ],
More preferably, a hollow parison using a thermoplastic resin in the range of 0.1 to 1 [kg / cm 2 ] is supplied, and the outer surface of the hollow parison is 100 [kg / cm 2 ] or less on the molding surface. It is preferably pressed and adhered at a pressure of 1 to 10 [kg / cm 2 ], and in this case, preferably, for the purpose of further improving the transferability by further improving the adhesion between the outer surface of the parison and the molding surface. The air between the parison and the molding surface is discharged to the outside by, for example, vacuum suction or the like through a fine gap provided in the molding surface, and the molding surface is heated to a Vicat softening temperature (T) ° C. or higher, preferably (Vicat softening temperature (T). T) +10) ° C. or higher, more preferably (Vicat softening temperature (T) +20) ° C. or higher, and then the molding surface is heated to (Vicat softening temperature (T) −10) ° C. or lower, preferably (Vicat softening temperature). (T) -20) C or lower More preferably to obtain a molded article was cooled to (Vicat softening temperature (T) -40) ° C. temperature below a blow molding process. The reason that the above range is indicated as the longitudinal elastic modulus at (Vicat softening temperature (T) +100) ° C. of the thermoplastic resin is that the longitudinal elastic modulus is less than 0.01 [kg / cm 2 ]. In the case of (1), drawdown of the parison occurs and stable molding cannot be performed. On the other hand, if the longitudinal elastic modulus exceeds 10 [kg / cm 2 ], a large molding pressure is required for forming the parison. This is because a very large blow pressure is required to inflate the parison and press it against the molding surface. Molding material suitable for this molding method, that is, (Vicat softening temperature + 100) ° C
Examples of the thermoplastic resin having a modulus of elasticity in the range of 0.01 to 10 [kg / cm 2 ] include AS resin, polystyrene, high impact polystyrene, and acrylonitrile-
Graft copolymer of butadiene rubber-styrene (ABS resin), graft copolymer of acrylonitrile-butadiene rubber-styrene-α-methylstyrene (heat-resistant ABS resin), acrylonitrile-ethylene-
Graft copolymer (AES resin) composed of propylene rubber-styrene and / or methyl methacrylate, graft copolymer composed of acrylonitrile-hydrogenated diene rubber-styrene and / or methyl methacrylate, acrylonitrile-silicone rubber-styrene And / or a graft copolymer of methyl methacrylate, polyethylene, polypropylene, polycarbonate, polyphenylene ether, polyoxymethylene, nylon, methyl methacrylate polymer, polyether sulfone, polyarylate, chloride Vinyl, maleimide compound-copolymer and rubbery polymer composed of styrene and / or acrylonitrile and / or α-methylstyrene-maleimide compound-
Examples include graft copolymers of styrene and / or acrylonitrile and / or methyl methacrylate and / or α-methylstyrene, and composites thereof, and resins obtained by adding a filler to these. Examples of molded articles suitably molded by this molding method include, for example, housings, sports products, playground equipment, vehicle products, furniture products,
Sanitary products, building material products, kitchen products, furthermore, the molded product is a molded product having a foam layer in the hollow portion, the molded product is manufactured by a multilayer blow molding method, the molded product is plated, This is a molded product that has been sputtered, deposited, and painted. Specific examples of these molded articles include, as a housing, a cooler box, a TV, an audio device, a printer, a facsimile, a copier, a game machine, a washing machine, an air conditioner, a refrigerator, a vacuum cleaner, an attache case, a musical instrument case, and a tool. There are boxes, containers, camera cases, etc.
Sports products include, for example, swimming boards,
Surfboards, windsurfing, skiing, snowboarding, skateboarding, ice hockey sticks, curling balls, gateball rackets, tennis rackets, canoes, boats and the like. As playground equipment, for example,
There are bats, blocks, blocks, fishing tackle cases, pachinko underframes, and the like. Products for vehicles include, for example, air spoilers, doors, bumpers, fenders, bonnets, sunroofs, rear gates, wheel caps, instrument panels,
There are glove box, console box, armrest, headrest, fuel tank, driver's seat cover, trunk tool box, etc. Furniture products include, for example, drawers, desk tops, bed tops / bottoms, mirror frame plates,
There are a box box, a front door, a chair back plate, a bottom plate, a tray, a tray, an umbrella stand, a vase, a medicine box, a hanger, a makeup box, a storage box plate, a book stand, an office desk top plate, an OA desk top plate, and an OA rack. . Sanitary products include, for example, shower heads, toilet seats, toilet plates, drain pans, water tank lids, vanity doors, bathroom doors, and the like. Examples of building material products include ceiling boards, floor boards, wall boards, window frames, doors, benches, and the like. Examples of kitchen products include cutting boards and kitchen doors. Examples of the molded article having the foam layer in the hollow portion include a refrigerator front door and a cooler box. Examples of the molded article manufactured by the multilayer blow molding method include a fuel tank and the like. Examples of the molded product on which the molded product is plated, sputtered, vapor-deposited, and painted include, for example, vehicle exterior parts and electronic equipment soldering. In addition, these are illustrations, and molded articles other than these can also be suitably molded.

【0009】請求項6の発明は、請求項1〜請求項4の
成形用金型の前記空間内に体積弾性係数が1×104
4.5×104[kg/cm2] の範囲、好ましくは1×104
〜3×104 [kg/cm2]の範囲、さらに好ましくは1×1
4 〜2×104 [kg/cm2]の範囲にある加熱流体を供給
して封入し、前記成形面間の密閉型内に溶融状態の熱可
塑性樹脂を射出し、前記成形面をビカット軟化温度
(T)℃以上、好ましくは(ビカット軟化温度(T)+
10)℃以上、更に好ましくは(ビカット軟化温度
(T)+20)℃以上まで加熱し、その後、前記成形面
を(ビカット軟化温度(T)−10)℃以下、好ましく
は(ビカット軟化温度(T)−20)℃以下、更に好ま
しくは(ビカット軟化温度(T)−40)℃以下の温度
まで冷却して成形品を得る、射出成形方法である。上記
に於いて、体積弾性係数が1×104 〜4.5×10
4[kg/cm2] の範囲にある加熱流体としては、マシン油、
ギヤー油、冷凍機油、内燃機関用潤滑油、軸受油、切削
油、錆止め油、タービン油等を用いることができる。ま
た、(ビカット軟化温度+100)℃での縦弾性係数が
0.01〜10[kg/cm2]の範囲にある熱可塑性樹脂とし
ては、例えば、AS樹脂、ポリスチレン、ハイインパク
トポリスチレン、アクリロニトリル−ブタジエン系ゴム
−スチレンから成るグラフト共重合体(ABS樹脂)、
アクリロニトリル−ブタジエン系ゴム−スチレン−αメ
チルスチレンから成るグラフト共重合体(耐熱ABS樹
脂)、アクリロニトリル−エチレン−プロピレン系ゴム
−スチレン及び/又はメタクリル酸メチルから成るグラ
フト共重合体(AES樹脂)、アクリロニトリル−水添
ジエン系ゴム−スチレン及び/又はメタクリル酸メチル
から成るグラフト共重合体、SX、ポリエチレン、ポリ
プロピレン、ポリカ−ボネ−ト、ポリフェニレンエ−テ
ル、ポリオキシメチレン、ナイロン、メタクリル酸メチ
ル系重合体、ポリエ−テルスルホン、ポリアリレ−ト、
塩化ビニル、マレイミド化合物−スチレン及び/又はア
クリロニトリル及び/又はα−メチルスチレンからなる
共重合体、ゴム状重合体−マレイミド化合物−スチレン
及び/又はアクリロニトリル及び/又はメタクリル酸メ
チル及び/又はα−メチルスチレンからなるグラフト共
重合体等、及びこれらの複合物とこれらに充填剤を添加
した樹脂等が挙げられる。
According to a sixth aspect of the present invention, in the molding die according to any of the first to fourth aspects, the bulk modulus of elasticity is 1 × 10 4 or more in the space.
In the range of 4.5 × 10 4 [kg / cm 2 ], preferably 1 × 10 4 [kg / cm 2 ]
Kg3 × 10 4 [kg / cm 2 ], more preferably 1 × 1
A heating fluid in the range of 0 4 to 2 × 10 4 [kg / cm 2 ] is supplied and sealed, a molten thermoplastic resin is injected into a closed mold between the molding surfaces, and the molding surface is vicated. Softening temperature (T) ° C or higher, preferably (Vicat softening temperature (T) +
10) C. or higher, more preferably to (Vicat softening temperature (T) +20) .degree. C. or higher, and then the molding surface is heated to (Vicat softening temperature (T) -10) .degree. C. or lower, preferably (Vicat softening temperature (T)). This is an injection molding method in which a molded product is obtained by cooling to a temperature of -20) C or lower, more preferably (Vicat softening temperature (T) -40) C or lower. In the above, the bulk modulus is 1 × 10 4 to 4.5 × 10
Heating fluids in the range of 4 [kg / cm 2 ] include machine oil,
Gear oil, refrigerating machine oil, lubricating oil for internal combustion engines, bearing oil, cutting oil, rust preventive oil, turbine oil and the like can be used. Examples of the thermoplastic resin having a modulus of longitudinal elasticity at (Vicat softening temperature +100) ° C of 0.01 to 10 [kg / cm 2 ] include, for example, AS resin, polystyrene, high-impact polystyrene, acrylonitrile-butadiene. Graft copolymer (ABS resin) composed of rubber-styrene
Graft copolymer of acrylonitrile-butadiene rubber-styrene-α-methylstyrene (heat-resistant ABS resin), graft copolymer of acrylonitrile-ethylene-propylene rubber-styrene and / or methyl methacrylate (AES resin), acrylonitrile -Hydrogenated diene rubber-graft copolymer comprising styrene and / or methyl methacrylate, SX, polyethylene, polypropylene, polycarbonate, polyphenylene ether, polyoxymethylene, nylon, methyl methacrylate polymer , Polyethersulfone, polyarylate,
Copolymer of vinyl chloride, maleimide compound-styrene and / or acrylonitrile and / or α-methylstyrene, rubbery polymer-maleimide compound-styrene and / or acrylonitrile and / or methyl methacrylate and / or α-methylstyrene And a resin obtained by adding a filler to these composites and the like.

【0010】[0010]

【実施例】【Example】

第1の実施例 図1の(a)は第1の実施例を示す。また、図3は各実
施例の成形用金型のコーナー部分の取付構造を示し、各
成形用金型は、成形面30を有する型体3 と該型体3 を支
持する金型本体4 とを有する。なお、型体3 と金型本体
4は、何れもステンレス鋼製である。図3に示すよう
に、型体3 の周辺に張り出されている被支持板36が、該
被支持板36に対応するように金型本体4 に設けられてい
る溝46内に、遊びA を持たせて緩やかに嵌め入れられて
おり、これにより、型体3 が金型本体4 によって支持さ
れている。なお、溝46は、張出部400aを有する本体板40
0 を本体部401 にボルト403 で取付けることで構成され
ている。また、図3の(a)のように、成形面30の上面
視で方形に配設された4枚の各本体板400 の隅部には、
隣接する本体板400 との間に、略0.1[mm]の隙間S が
設けられている。また、溝46の対向する両壁部の表面に
は、厚さ10[mm]のフェノール樹脂製の断熱層(断熱支
持部材)1が設けられており、さらに、被支持板36と溝46
との間隙には、Oリング9 が嵌められている。このた
め、溶融樹脂成形時の熱で型体3 と金型本体4 とが熱膨
張して前記被支持板36と前記溝46とに相対的なズレが生
じた場合でも、該ズレは上記遊びA により吸収されて、
悪影響(型体3 の撓み、歪、寿命が短くなること等)は
防止される。また、精密な成形品を得ることができる。
また、型体3 は本発明の条件(縦弾性係数が0.1×1
4 〜100×104[kg/cm2] の材料)を満たすフェノ
ール樹脂の断熱層1 を介して金型本体に支持されている
ため、ガタツキ等の不具合は防止される。また、型体3
の背面側と金型本体4 との間に形成される空間B が前記
Oリング9 によって密閉されるため、バルブ72、配管7
1、ノズル70を通って加熱時に空間B に供給されて封入
される加熱オイルや、冷却時に同様に空間B に封入され
る冷却オイルが、型体3 と金型本体4 の連結部(型体3
を金型4 によって支持している部分=被支持板36と溝46
の部分)から漏れ出ることや、その場合に発生する空間
B 内の圧力の低下や、該低下によって生ずる成形面30の
撓みが防止される。なお、空間B 内に噴射された加熱オ
イル/冷却オイルは、配管76、バルブ77を通って排出さ
れる。また、上記空間B に面する金型本体4 の内面に
は、図3の(b)に示すように、厚さ10[mm]のフェノ
ール樹脂層22と厚さ2[mm]のアスベスト層21から成る断
熱層(断熱部材)2が設けられているため、空間B 内の加
熱媒体の熱が金型本体4を通って逃げたり、外部の熱が
金型本体4 を通って空間B 内の冷却水に伝えられるとい
う不具合が防止される。このため、上記空間B 内に供給
された加熱オイルの温度低下が防止されて、成形面の転
写性や寸法安定性が向上する。本第1の実施例では、熱
可塑性樹脂材料としてABS45A(日本合成ゴム
(株)社製・ビカット軟化温度105℃)、205℃で
の縦弾性係数が0.3[kg/cm2])を用い、ブロー成形機
としてIPB−EP−55(石川島播磨重工業(株)社
製)を用いて、下記の条件で、図4のタイミングでブロ
ー成形を行った。即ち、条件は、 (1)押出機温度 :220℃ (2)型締め力 :15ton (3)パリソン吹き込み圧力:6kg/cm2 (4)成形面30の加熱 空間B に封入する加熱用機械油の圧力:6kg/cm2 成形面30の最終到達温度 :140〜150
℃ 成形面30の加熱保持時間 :10sec (5)成形面30の冷却 空間B に封入する冷却用機械油の圧力:6kg/cm2 成形面30の最終冷却温度 :70℃ 成形面30の冷却保持時間 :60sec 全工程時間:150sec である。なお、加熱用及び冷却用の機械油としては、出
光興産(株)製・ダフニーサーミックオイル32を用い
た。このようにして成形した成形品(実施例品)と、上
記で (4)空間B内に加熱オイルを封入する加熱を行わな
いで成形した成形品(比較例品)を比較すると、実施例
品の表面光沢度は95%でコーナー部分のRは0.5以
下で変形もなかったのに対して、比較例品の表面光沢度
は20%以下でコーナー部分のRは0.5以上で変形が
あった。即ち、実施例品の方が、成形面の転写が良好
で、従来のブロー成形では得られないコーナー部分のR
が小さな成形品を精度良く成形でき、寸法安定性も優れ
ていた。 なお、金型外寸法:460(L) ×560(W) ×720
(H)[mm] 成形品寸法:120(L) ×40(W) ×480(H)[mm] で
ある。
First Embodiment FIG. 1A shows a first embodiment. FIG. 3 shows a mounting structure of a corner portion of a molding die of each embodiment. Each molding die includes a mold body 3 having a molding surface 30 and a mold body 4 supporting the mold body 3. Having. The mold 3 and the mold body 4 are both made of stainless steel. As shown in FIG. 3, a supported plate 36 projecting around the periphery of the mold body 3 has a play A in a groove 46 provided in the mold body 4 so as to correspond to the supported plate 36. , So that the mold 3 is supported by the mold body 4. Note that the groove 46 is provided in the main body plate 40 having the overhang portion 400a.
0 is attached to the main body 401 with bolts 403. Also, as shown in FIG. 3A, corners of four main body plates 400 arranged in a rectangular shape in a top view of the molding surface 30 are provided at the corners.
A gap S of approximately 0.1 [mm] is provided between adjacent main body plates 400. A heat insulating layer (heat insulating support member) 1 made of phenol resin having a thickness of 10 [mm] is provided on the surfaces of both opposing walls of the groove 46.
An O-ring 9 is fitted in the gap. For this reason, even when the mold 3 and the mold body 4 are thermally expanded by the heat during the molding of the molten resin, and the relative displacement between the supported plate 36 and the groove 46 occurs, the displacement is caused by the play. Absorbed by A,
The adverse effects (bending, distortion, shortening of life, etc. of the mold 3) are prevented. Moreover, a precise molded product can be obtained.
Further, the mold body 3 meets the conditions of the present invention (the modulus of longitudinal elasticity is 0.1 × 1).
0 4 ~100 × 10 4 through the insulation layer 1 of phenolic resin that satisfies the material) of [kg / cm 2] because it is supported on the die body, the problem of rattling or the like is prevented. Also, type 3
Since the space B formed between the back side of the mold and the mold body 4 is sealed by the O-ring 9, the valve 72 and the pipe 7
1. Heating oil supplied to and enclosed in the space B at the time of heating through the nozzle 70 and cooling oil similarly enclosed in the space B at the time of cooling are connected to the connecting portion (mold) of the mold 3 and the mold body 4. Three
Supported by the mold 4 = supported plate 36 and groove 46
Part) and the space generated in that case
The pressure in B is prevented from lowering, and the molding surface 30 is prevented from bending due to the lowering. The heating oil / cooling oil injected into the space B is discharged through the pipe 76 and the valve 77. As shown in FIG. 3B, a phenol resin layer 22 having a thickness of 10 [mm] and an asbestos layer 21 having a thickness of 2 [mm] are provided on the inner surface of the mold body 4 facing the space B. Is provided, the heat of the heating medium in the space B escapes through the mold body 4 and the external heat passes through the mold body 4 The problem of being transmitted to the cooling water is prevented. Therefore, the temperature of the heating oil supplied into the space B is prevented from lowering, and the transferability and dimensional stability of the molding surface are improved. In the first embodiment, ABS45A (Vicat softening temperature 105 ° C., manufactured by Nippon Synthetic Rubber Co., Ltd.) having a modulus of longitudinal elasticity at 205 ° C. of 0.3 [kg / cm 2 ] was used as the thermoplastic resin material. Using IPB-EP-55 (manufactured by Ishikawajima-Harima Heavy Industries, Ltd.) as a blow molding machine, blow molding was performed at the timing of FIG. 4 under the following conditions. That is, the conditions are as follows: (1) Extruder temperature: 220 ° C. (2) Mold clamping force: 15 ton (3) Parison blowing pressure: 6 kg / cm 2 (4) Heating machine oil sealed in heating space B of molding surface 30 Pressure: 6 kg / cm 2 Final temperature of molding surface 30: 140-150
℃ Heating and holding time of molding surface 30: 10 sec (5) Cooling of molding surface 30 Pressure of cooling machine oil filled in space B: 6 kg / cm 2 Final cooling temperature of molding surface 30: 70 ℃ Cooling and holding of molding surface 30 Time: 60 sec Total process time: 150 sec. The heating and cooling machine oil used was Daphne Thermic Oil 32 manufactured by Idemitsu Kosan Co., Ltd. Comparing the molded product (Example product) molded in this way with the molded product (Comparative product) molded without heating (4) enclosing the heating oil in the space B above (Example product) Has a surface gloss of 95% and a corner R of 0.5 or less and has no deformation, whereas the comparative product has a surface gloss of 20% or less and a corner R of 0.5 or more and is deformed. was there. In other words, the product of Example has a better transfer of the molding surface, and the corner portion R which cannot be obtained by the conventional blow molding is obtained.
However, a small molded product could be molded with high accuracy, and the dimensional stability was excellent. The outside dimensions of the mold: 460 (L) x 560 (W) x 720
(H) [mm] Molded product size: 120 (L) x 40 (W) x 480 (H) [mm].

【0011】第2の実施例 図1の(b)は、第2の実施例を示す。以下、第1の実
施例と異なる構成を説明し、第1の実施例と同じ構成に
関する説明は省略する。第2の実施例では、加熱手段と
して、空間B 内に封入した機械油を空間B 内に設けたハ
ロゲンランプ5 加熱する構成を用いた。このハロゲンラ
ンプ5 の総出力は60[kW](片側30[kW]) であり、成
形面30の最終到達温度は前記第1の実施例と同じであ
る。本第2の実施例の場合も、第1の実施例の場合と同
じ効果を得られた。
Second Embodiment FIG. 1B shows a second embodiment. Hereinafter, a configuration different from the first embodiment will be described, and a description of the same configuration as the first embodiment will be omitted. In the second embodiment, as the heating means, a configuration was used in which the machine oil sealed in the space B was heated in the halogen lamp 5 provided in the space B. The total output of the halogen lamp 5 is 60 [kW] (30 [kW] on one side), and the ultimate temperature of the molding surface 30 is the same as that of the first embodiment. Also in the case of the second embodiment, the same effect as in the case of the first embodiment was obtained.

【0012】第3の実施例 図1の(a)と同等の模式図として表される成形用金型
を用いて射出成形を行った。即ち、熱可塑性樹脂材料と
してABS15(日本合成ゴム(株)社製・ビカット軟
化温度100℃)、200℃での縦弾性係数が0.2[k
g/cm2])を用い、射出成形機としてIS170FA3−
5A((株)東芝製)を用いて、下記の条件で射出成形
を行った。即ち、条件は、 (1)シリンダ温度 :210℃ (2)ゲート :サイドゲート2箇所 (3)成形面30の加熱 空間B に封入する加熱用機械油の圧力:6kg/cm2 成形面30の最終到達温度 :140〜150
℃ (4)成形面30の冷却 空間B に封入する冷却用機械油の圧力:6kg/cm2 成形面30の最終冷却温度 :50℃ である。なお、加熱用及び冷却用の機械油としては、出
光興産(株)製・ダフニーサーミックオイル32を用い
た。このようにして成形した成形品(実施例品)と、上
記で (3)成形面30の加熱オイルの封入による加熱を行わ
ずに成形した成形品(比較例品)を比較すると、実施例
品の表面光沢度は95%でウエルドは認められず変形も
なかったのに対して、比較例品の表面光沢度は85%で
ウエルドが見られ変形があった。即ち、実施例品の方が
成形面の転写が良好で、ウエルドの防止についても優
れ、寸法安定性も良好であった。 なお、金型外寸法:400(L) ×400(W) ×350
(H)[mm] 成形品寸法:50(L) ×3.2(W) ×80(H)[mm] であ
る。
Third Example Injection molding was performed using a molding die represented as a schematic diagram equivalent to FIG. 1A. That is, as a thermoplastic resin material, ABS15 (Vicat softening temperature of 100 ° C. manufactured by Japan Synthetic Rubber Co., Ltd.) and a longitudinal elastic modulus at 200 ° C. of 0.2 [k]
g / cm 2 ]) and the injection molding machine IS170FA3-
Using 5A (manufactured by Toshiba Corporation), injection molding was performed under the following conditions. The conditions are as follows: (1) Cylinder temperature: 210 ° C. (2) Gate: Two places of side gates (3) Heating of molding surface 30 Pressure of heating machine oil sealed in space B: 6 kg / cm 2 Final temperature: 140-150
° C (4) Cooling of the molding surface 30 Pressure of the cooling machine oil sealed in the space B: 6 kg / cm 2 Final cooling temperature of the molding surface 30: 50 ° C. The heating and cooling machine oil used was Daphne Thermic Oil 32 manufactured by Idemitsu Kosan Co., Ltd. A comparison between the molded product (Example product) molded in this way and the molded product (Comparative product) molded without heating by enclosing the heating oil in the molding surface 30 (Comparative product) in the above (3) The surface glossiness of the sample was 95% and no weld was observed and there was no deformation. On the other hand, the surface glossiness of the comparative example was 85% and the weld was observed and deformed. That is, the example product had better transfer of the molding surface, was superior in preventing weld, and had good dimensional stability. The outside dimensions of the mold: 400 (L) x 400 (W) x 350
(H) [mm] Molded product dimensions: 50 (L) x 3.2 (W) x 80 (H) [mm].

【0013】他の実施例 図2の(a)は前記図1の(a)の構造に於いて、型体
3 の背面側と金型本体4 の内面(型体3 の背面31と対向
する面)との間に複数本の棒状の補強リブ6 を設け、こ
の補強リブ6 によって型体3 の背面側を支える構造であ
る。また、図2の(b)は前記図1の(b)の構造に於
いて、型体3 の背面側と金型本体4 の内面(型体3 の背
面31と対向する面)との間に複数本の棒状の補強リブ6
を設け、この補強リブ6 によって型体3 の背面側を支え
る構造である。このように、本他の実施例では補強リブ
6 を設けているため、バルブ72、配管71、ノズル70を通
り空間B に供給されて封入される加熱用機械油/冷却用
機械油の圧力が、型体3 の成形面30側から加えられる圧
力(パリソン吹き込み圧力/射出圧力)より小さくなっ
た場合でも、型体3 を支えることができ、成形面30の撓
みによる成形品の変形を防止することができる。
Another Embodiment FIG. 2A shows a structure of the structure shown in FIG.
A plurality of rod-shaped reinforcing ribs 6 are provided between the back side of the mold 3 and the inner surface of the mold body 4 (the surface facing the back 31 of the mold 3). It is a supporting structure. Further, FIG. 2B shows the structure between the back side of the mold 3 and the inner surface of the mold body 4 (the surface facing the back 31 of the mold 3) in the structure of FIG. 1B. Multiple bar-shaped reinforcing ribs 6
The reinforcing rib 6 is used to support the back side of the mold 3. Thus, in the other embodiment, the reinforcing rib
6, the pressure of the heating machine oil / cooling machine oil supplied to and enclosed in the space B through the valve 72, the pipe 71, and the nozzle 70 is applied from the molding surface 30 side of the mold body 3. Even when the pressure is lower than the pressure (parison blowing pressure / injection pressure), the mold body 3 can be supported, and deformation of the molded product due to bending of the molding surface 30 can be prevented.

【0014】[0014]

【発明の効果】本発明によると、良好な鏡面やしぼ面を
有する樹脂成形品を比較的短いサイクルタイムで生産で
きる。また、比較的簡単な工程で生産できる。また、成
形面を構成する型体が比較的薄いため機械的強度を十分
に大きくできなくとも、溶融樹脂によって成形面に加わ
る圧力に十分に耐えることができ、型体の寿命が十分に
長く、耐久性に優れた成形用金型を得られる。また、こ
の金型を用いて、寸法安定性の良い、精度の高い成形品
を得られる。
According to the present invention, a resin molded article having a good mirror surface or grain surface can be produced in a relatively short cycle time. In addition, it can be produced by a relatively simple process. Also, even if the mechanical strength cannot be sufficiently increased because the mold forming the molding surface is relatively thin, it can sufficiently withstand the pressure applied to the molding surface by the molten resin, and the life of the mold is sufficiently long. A molding die with excellent durability can be obtained. In addition, a molded product with good dimensional stability and high accuracy can be obtained using this mold.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の金型を示す模式図であり、(a)は第
1の実施例、(b)は第2の実施例を示す。
FIGS. 1A and 1B are schematic diagrams showing a mold according to an embodiment, wherein FIG. 1A shows a first embodiment and FIG. 1B shows a second embodiment.

【図2】他の実施例の金型を示す模式図であり、(a)
は第1の実施例に対応する他の実施例、(b)は第2の
実施例に対応する他の実施例を示す。
FIG. 2 is a schematic view showing a mold according to another embodiment, and FIG.
Shows another embodiment corresponding to the first embodiment, and (b) shows another embodiment corresponding to the second embodiment.

【図3】実施例の各成形用金型のコーナー部分の取付け
構造を示し、(a)は成形面30側から見た図、(b)は
(a)のイ−イ線断面図。
3A and 3B show a mounting structure of a corner portion of each molding die of the embodiment, wherein FIG. 3A is a view as viewed from the molding surface 30 side, and FIG. 3B is a sectional view taken along the line II of FIG.

【図4】実施例のブロー成形方法の工程を示すタイミン
グチャート。
FIG. 4 is a timing chart showing steps of a blow molding method according to an embodiment.

【符号の説明】[Explanation of symbols]

1 断熱層(断熱支持部材) 2 断熱層(断熱部材) 3 型体 30 成形面 4 金型本体 5 ハロゲンランプ 6 棒状補強リブ DESCRIPTION OF SYMBOLS 1 Heat insulation layer (heat insulation support member) 2 Heat insulation layer (heat insulation member) 3 Mold 30 Molding surface 4 Mold main body 5 Halogen lamp 6 Bar-shaped reinforcing rib

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29L 22:00 (72)発明者 栗原 文夫 東京都中央区築地二丁目11番24号 日本 合成ゴム株式会社内 (56)参考文献 特開 昭61−19327(JP,A) 特開 平6−328549(JP,A) 特開 平2−88216(JP,A) 特開 平7−1459(JP,A) 特開 昭62−130762(JP,A) 特表 平4−505294(JP,A) (58)調査した分野(Int.Cl.6,DB名) B29C 33/02,33/38,45/26,45/73,49/00──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI B29L 22:00 (72) Inventor Fumio Kurihara 2-11-24 Tsukiji, Chuo-ku, Tokyo Japan Synthetic Rubber Co., Ltd. (56) Reference Document JP-A-61-19327 (JP, A) JP-A-6-328549 (JP, A) JP-A-2-88216 (JP, A) JP-A-7-1459 (JP, A) JP-A-62 130762 (JP, A) Tokuhyo Hei 4-505294 (JP, A) (58) Fields surveyed (Int. Cl. 6 , DB name) B29C 33 / 02,33 / 38,45 / 26,45 / 73, 49/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶融状態の熱可塑性樹脂を成形面に押圧
して密着させて固化させるための成形面を備えた型体
を、該成形面の裏面との間に空間を確保して金型本体に
よって支持して成り、下記(a)(b)の各構成要件を
有する成形用金型: (a)前記成形面を当該熱可塑性樹脂のビカット軟化温
度(T)℃以上の温度まで加熱するべく前記空間内へ体
積弾性係数が1×104 〜4.5×104[kg/cm2] の加
熱流体を供給して封入する手段; (b)前記成形面を(ビカット軟化温度(T)−10)
℃以下の温度まで冷却する冷却手段。
1. A mold provided with a molding surface for pressing and adhering a molten thermoplastic resin to a molding surface so as to be adhered and solidified, and a mold is provided by securing a space between the molding surface and the back surface of the molding surface. A molding die supported by a main body and having the following components (a) and (b): (a) heating the molding surface to a temperature equal to or higher than the Vicat softening temperature (T) ° C. of the thermoplastic resin. Means for supplying a heating fluid having a bulk modulus of 1 × 10 4 to 4.5 × 10 4 [kg / cm 2 ] into the space so as to fill the space; (b) setting the molding surface to (Vicat softening temperature (T -10)
Cooling means for cooling to a temperature of not more than ° C.
【請求項2】 請求項1に於いて、さらに、下記(c)
(d)の各構成要件を有する成形用金型: (c)前記型体の周辺の被支持部と該被支持部に対応す
る前記金型本体の支持部とを遊びを持たせて緩やかに嵌
め合わせ、熱膨張によって前記被支持部と支持部とに生
ずる相対変位を前記遊びによって吸収するように、前記
被支持部と前記支持部とに設けられた嵌合部材; (d)前記嵌合部材の前記遊びの部分に設けられたシー
ル部材。
2. The method according to claim 1, further comprising:
(D) a molding die having the respective constituent requirements: (c) a supported portion around the mold and a supporting portion of the die body corresponding to the supported portion are gently provided with play. A fitting member provided on the supported portion and the support portion so that a relative displacement generated between the supported portion and the support portion due to the fitting and thermal expansion is absorbed by the play; A sealing member provided at the play portion of the member.
【請求項3】 請求項2に於いて、さらに、下記(e)
(f)の各構成要件を有する成形用金型: (e)前記型体の被支持部と前記金型本体の支持部との
間に設けられた、熱伝導率が0.001〜1[kcal/mh
℃] で、且つ、縦弾性係数が0.1×104 〜100×
104[kg/cm2] の断熱支持部材; (f)前記空間に面する前記金型本体の内面に設けられ
た、熱伝導率が0.001〜1[kcal/mh℃] の断熱部
材。
3. The method according to claim 2, further comprising:
(F) a molding die having the respective constituent requirements: (e) a thermal conductivity provided between the supported portion of the die and the support portion of the die body, wherein the thermal conductivity is 0.001 to 1 [ kcal / mh
° C] and the modulus of longitudinal elasticity is 0.1 × 10 4 -100 ×
10 4 heat-insulating supporting member [kg / cm 2]; ( f) provided on the inner surface of the mold body facing the space, the heat insulating member of the heat conductivity 0.001~1 [kcal / mh ℃] .
【請求項4】 請求項1、請求項2、又は請求項3に於
いて、さらに、下記(g)の構成要件を有する成形用金
型: (g)前記成形面を当該熱可塑性樹脂のビカット軟化温
度(T)℃以上の温度まで加熱するべく前記空間内であ
って前記成形面の裏面に対向する位置に設けられて前記
裏面を輻射加熱する輻射加熱手段。
4. The molding die according to claim 1, further comprising the following component (g): (g) a vicat of said thermoplastic resin with said molding surface. Radiation heating means provided in the space and at a position facing the back surface of the molding surface to heat the back surface to a temperature equal to or higher than the softening temperature (T) ° C. for radiantly heating the back surface.
【請求項5】 請求項1〜請求項4の成形用金型の前記
成形面間に(ビカット軟化温度(T)+100)℃に於
ける縦弾性係数が0.01〜10[kg/cm2]の熱可塑性樹
脂を用いた中空パリソンを供給し、 前記中空パリソンの外表面を前記成形面に100[kg/cm
2]以下の圧力で押圧して密着させ、 前記成形面をビカット軟化温度(T)℃以上まで加熱
し、 その後、前記成形面を(ビカット軟化温度(T)−1
0)℃以下の温度まで冷却して成形品を得るブロー成形
方法。
5. The modulus of longitudinal elasticity between the molding surfaces of the molding die according to claim 1 at (Vicat softening temperature (T) +100) ° C. is from 0.01 to 10 kg / cm 2. ], A hollow parison using a thermoplastic resin is supplied, and the outer surface of the hollow parison is set to 100 [kg / cm] on the molding surface.
2 ] The molded surface is heated to a temperature higher than or equal to the Vicat softening temperature (T) ° C. by pressing under the following pressure, and then the molded surface is heated to (Vicat softening temperature (T) −1).
0) A blow molding method in which a molded product is obtained by cooling to a temperature of not more than ° C.
【請求項6】 請求項1〜請求項4の成形用金型の前記
空間内に体積弾性係数が1×104 〜4.5×104[kg
/cm2] の加熱流体を供給して封入し、 前記成形面間の密閉型内に溶融状態の熱可塑性樹脂を射
出し、 前記成形面をビカット軟化温度(T)℃以上まで加熱
し、 その後、前記成形面を(ビカット軟化温度(T)−1
0)℃以下の温度まで冷却して成形品を得る射出成形方
法。
6. The molding die according to claim 1, wherein a bulk modulus of elasticity is 1 × 10 4 to 4.5 × 10 4 [kg] in said space.
/ cm 2 ] by supplying a heating fluid and injecting a molten thermoplastic resin into a closed mold between the molding surfaces, heating the molding surface to a Vicat softening temperature (T) ° C. or higher, and thereafter , And the molding surface is (Vicat softening temperature (T) -1)
0) An injection molding method in which a molded product is obtained by cooling to a temperature of not more than ° C.
【請求項7】 請求項1〜請求項4の成形用金型の前記
成形面間に中空パリソンとして供給され、前記成形面に
100[kg/cm2]以下の圧力で密着されてビカット軟化温
度(T)℃以上まで加熱された後、(ビカット軟化温度
(T)−10)℃以下の温度まで冷却されて成形品とさ
れる、(ビカット軟化温度(T)+100)℃での縦弾
性係数が0.01〜10[kg/cm2]である熱可塑性樹脂材
料。
7. A vicat softening temperature which is supplied as a hollow parison between the molding surfaces of the molding die according to claim 1 and is adhered to the molding surface at a pressure of 100 [kg / cm 2 ] or less. After being heated to (T) ° C. or higher, it is cooled to a temperature of (Vicat softening temperature (T) −10) ° C. or lower to obtain a molded article. The longitudinal elastic modulus at (Vicat softening temperature (T) +100) ° C. Is a thermoplastic resin material of 0.01 to 10 [kg / cm 2 ].
【請求項8】 請求項1〜請求項4の成形用金型の前記
成形面間に、(ビカット軟化温度(T)+100)℃に
於ける縦弾性係数が0.01〜10[kg/cm2]である熱可
塑性樹脂材料を用いた中空パリソンを供給し、前記成形
面に[kg/cm2]以下の圧力で密着させてビカット軟化温度
(T)℃以上まで加熱した後、(ビカット軟化温度
(T)−10)℃以下の温度まで冷却して得られる成形
品。
8. A modulus of longitudinal elasticity at (Vicat softening temperature (T) +100) ° C. of 0.01 to 10 [kg / cm] between the molding surfaces of the molding die according to any one of claims 1 to 4. 2 ], a hollow parison using a thermoplastic resin material is supplied, and is adhered to the molding surface at a pressure of not more than [kg / cm 2 ] and heated to a Vicat softening temperature (T) ° C. or higher. Temperature (T) -10) A molded article obtained by cooling to a temperature of not more than 10 ° C.
JP10828895A 1995-04-06 1995-04-06 Mold for molding, molding method, molding material, and molded product Expired - Lifetime JP2795216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10828895A JP2795216B2 (en) 1995-04-06 1995-04-06 Mold for molding, molding method, molding material, and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10828895A JP2795216B2 (en) 1995-04-06 1995-04-06 Mold for molding, molding method, molding material, and molded product

Publications (2)

Publication Number Publication Date
JPH08276434A JPH08276434A (en) 1996-10-22
JP2795216B2 true JP2795216B2 (en) 1998-09-10

Family

ID=14480873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10828895A Expired - Lifetime JP2795216B2 (en) 1995-04-06 1995-04-06 Mold for molding, molding method, molding material, and molded product

Country Status (1)

Country Link
JP (1) JP2795216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102497340B1 (en) * 2021-09-02 2023-02-06 동의대학교 산학협력단 Molding device to which cooling oil is supplied

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800716B2 (en) * 1997-04-08 2006-07-26 Jsr株式会社 Blow molding method
JP4897389B2 (en) * 2006-03-08 2012-03-14 小野産業株式会社 Airbag cover and manufacturing method thereof
JP5107417B2 (en) * 2010-12-24 2012-12-26 株式会社キャップ Molding apparatus and molding method using the molding apparatus
KR101245830B1 (en) * 2012-03-21 2013-03-20 이승욱 Plane cooling type high speed cooling and heating mold device
GB201214336D0 (en) * 2012-08-10 2012-09-26 Surface Generation Ltd Mould tool
GB201312441D0 (en) * 2013-07-11 2013-08-28 Surface Generation Ltd Mould Tool
CN107584736A (en) * 2017-10-30 2018-01-16 南京汇龙五金工具制造有限公司 A kind of hardware plastic cement integration mold
CN115431194A (en) * 2022-08-29 2022-12-06 济南国益生物科技有限公司 Locking type medical instrument auxiliary device for medical instrument quality detection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102497340B1 (en) * 2021-09-02 2023-02-06 동의대학교 산학협력단 Molding device to which cooling oil is supplied

Also Published As

Publication number Publication date
JPH08276434A (en) 1996-10-22

Similar Documents

Publication Publication Date Title
KR100295719B1 (en) Molding apparatus and molding process using it
JP2795216B2 (en) Mold for molding, molding method, molding material, and molded product
JPH10193449A (en) Die for molding
JP3252819B2 (en) Pressure control equipment and blow molding equipment
JP2798061B2 (en) Mold for molding and molding method
JP3186590B2 (en) Mold for molding and molding method
JP3267100B2 (en) Mold for molding, molding method, molding material, and molded product
JP3381451B2 (en) Mold for molding, molding method, molding material, and molded product
JP2900829B2 (en) Mold for molding, molding method, molding material, and molded product
JP3186727B2 (en) Pressure control equipment and blow molding equipment
JP4154808B2 (en) Mold for molding
JP2900866B2 (en) Blow molding method
JP4120091B2 (en) Mold for molding
JP3780557B2 (en) Mold for blow molding
JP4186314B2 (en) Molding method
JP3800716B2 (en) Blow molding method
JPH0999478A (en) Mold, molding method, molding material and molding
JPH1016042A (en) Blow-molded article and molding method
JPH10329185A (en) Method for molding crystal thermoplastic molded body
JPH0999476A (en) Blow molding method
JP2000238104A (en) Method and apparatus for injection-molding thermoplastic resin and molding
JP3433563B2 (en) Blow molding method
JP3404989B2 (en) Blow molding method
JP3794138B2 (en) Method for producing multilayer blow molded product
JPH10100239A (en) Method for blow molding

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term