JP2794975B2 - Transformer core - Google Patents

Transformer core

Info

Publication number
JP2794975B2
JP2794975B2 JP8710991A JP8710991A JP2794975B2 JP 2794975 B2 JP2794975 B2 JP 2794975B2 JP 8710991 A JP8710991 A JP 8710991A JP 8710991 A JP8710991 A JP 8710991A JP 2794975 B2 JP2794975 B2 JP 2794975B2
Authority
JP
Japan
Prior art keywords
core
leg
iron
upper yoke
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8710991A
Other languages
Japanese (ja)
Other versions
JPH04320307A (en
Inventor
守彦 岩上
雄一 本良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP8710991A priority Critical patent/JP2794975B2/en
Publication of JPH04320307A publication Critical patent/JPH04320307A/en
Application granted granted Critical
Publication of JP2794975B2 publication Critical patent/JP2794975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、輸送上の寸法又は重
量制限のために、変圧器中身を分解して輸送し、据え付
け場所で一体に組み立てられる分解輸送変圧器の鉄心に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron core for a disassembled and transportable transformer which is disassembled and transported, and assembled together at an installation site, due to transportation size or weight restrictions.

【0002】[0002]

【従来の技術】山間部や過密化する都市部の変電所に設
置する変圧器の場合、輸送上の寸法、重量制限のため
に、全装した変圧器をトレーラなどの輸送手段で据え付
け場所に運ぶことがしばしば困難なことがある。そのよ
うな場合、通常変圧器タンクに付属する放熱器やブッシ
ングなどを取り外して輸送したり、更には3相変圧器の
代わりに独立した3台の単相変圧器に分割して製作して
輸送しこれををセットとして据え付けて電気的にさ3相
変圧器に接続する方法を採用したりする。しかし、変圧
器の容量が増大するに伴い、このような方法でもなお輸
送制限に入らない場合がある。そのため、3相変圧器の
鉄心、巻線などの中身を分解して輸送し、据え付け場所
でこれを組み立てて、脱気処理した絶縁油を注入し、一
体の油入変圧器を構成するいわゆる分解輸送変圧器が採
用される。
2. Description of the Related Art In the case of a transformer installed in a substation in a mountainous area or in an overcrowded urban area, a fully-mounted transformer is installed at a place where the transformer is installed by means of a trailer or the like due to transportation size and weight restrictions. It is often difficult to carry. In such a case, the radiator and bushing normally attached to the transformer tank are removed and transported, or further divided into three independent single-phase transformers instead of three-phase transformers and transported. Then, this is installed as a set and electrically connected to a three-phase transformer. However, as the capacity of the transformer increases, such a method may still not allow the transportation to be restricted. Therefore, disassembling and transporting the contents of the iron core and windings of the three-phase transformer, assembling it at the installation location, injecting degassed insulating oil, and constructing an integrated oil-immersed transformer Transport transformer is adopted.

【0003】図5は従来の変圧器の3相3脚鉄心を示す
立面図である。実際の鉄心では幅寸法の異なる方向性珪
素鋼板を積層して断面が略円形状に構成されているが、
この図及び後述の図では最も幅の広い珪素鋼板だけを図
示してある。11,12,13は巻線が挿入される鉄心
脚であり、21,22は鉄心脚11,12,13の上部
を磁気的、機械的に結合する上部継鉄、31,32は同
じく下部を結合する下部継鉄である。矢印はそれぞれの
鉄心の方向性珪素鋼板の圧延方向を示しており後述すに
ようにこの矢印の方向が磁束が流れやすく鉄損を小さい
という励磁特性を持っている。この励磁特性を最大限利
用して鉄損の小さな鉄心にするために接合部は全て45
°の角度になっている。
FIG. 5 is an elevation view showing a three-phase three-leg core of a conventional transformer. In the actual iron core, the cross section is configured in a substantially circular shape by stacking directional silicon steel sheets with different width dimensions,
In this figure and the following figures, only the widest silicon steel sheet is shown. 11, 12, and 13 are iron legs into which windings are inserted; 21, 22 are upper yoke magnetically and mechanically connecting the upper portions of the iron legs 11, 12, and 13; It is the lower yoke that joins. The arrows indicate the rolling direction of the grain-oriented silicon steel sheet of each iron core. As will be described later, the directions of the arrows have the excitation characteristics that the magnetic flux flows easily and the iron loss is small. In order to make the most of this excitation characteristic to make the iron core small in iron loss, all joints are 45
° angle.

【0004】図の右側に示す寸法H5 はこの鉄心の高さ
寸法を表す。一方、輸送時に上部継鉄21,22を取り
除いても重量は減少するが高さ寸法は変わらない。すな
わち、鉄心の高さ寸法H5 は鉄心脚11,13で決まっ
てしまい上部継鉄21,22に無関係だからである。し
たがって、高さ寸法H5 が輸送時の高さ寸法制限に入ら
ない場合にはこのような3相3脚鉄心は採用できないこ
とになる。
[0004] The dimensions H 5 shown on the right side of the diagram represents the height dimension of the core. On the other hand, even if the upper yoke 21, 22 is removed at the time of transportation, the weight decreases but the height dimension does not change. That is, the height H 5 of the iron core is because it is independent of the upper yoke 21 and 22 will be determined by Tesshin'ashi 11 and 13. Therefore, such a 3-phase 3-leg iron core would not be employed when the height dimension H 5 from entering the height limit for transportation.

【0005】図6は従来の3相5脚鉄心の立面図であ
る。前述のように図5の3相3脚鉄心の輸送が困難な場
合に採用される鉄心構造であって、鉄心脚11A,1
2,13Aの両側に帰路脚14,15を設け、これらを
上部継鉄23,24,25,26と下部継鉄33,3
4,35,36で接合した構成である。
FIG. 6 is an elevation view of a conventional three-phase five-legged iron core. As described above, this is a core structure adopted when it is difficult to transport the three-phase three-leg core shown in FIG.
2 and 13A, return legs 14 and 15 are provided on both sides, and these are connected to upper yoke 23, 24, 25 and 26 and lower yoke 33 and 3 respectively.
4, 35, 36.

【0006】帰路脚14,15、上部継鉄23,24,
25,26及び下部継鉄33,34,35,36の断面
積は鉄心脚11A,12,13Aの約60%でよいこと
から、上部継鉄23,24,25,26及び下部継鉄3
3,34,35,36の幅寸法を図5の上部継鉄21,
22及び下部継鉄31,32の幅寸法よりも小さくする
ことができる。したがって、鉄心の高さ寸法H6 は図5
の高さ寸法H5 よりも小さくなる。そのため、図5の鉄
心では輸送できない場合でも図6の鉄心構造を採用する
ことによって輸送が可能になる。
Return legs 14, 15, upper yoke 23, 24,
Since the cross-sectional area of the lower yoke 25, 26 and the lower yoke 33, 34, 35, 36 may be approximately 60% of the iron core legs 11A, 12, 13A, the upper yoke 23, 24, 25, 26 and the lower yoke 3
The width dimensions of 3, 34, 35, 36 were changed to the upper yoke 21, FIG.
22 and the lower yoke 31, 32 can be smaller than the width dimension. Therefore, the height H 6 of the iron core is determined as shown in FIG.
It is smaller than the height H 5 in. Therefore, even in the case where the iron core shown in FIG. 5 cannot be transported, the iron core structure shown in FIG. 6 can be transported.

【0007】図7は方向性珪素鋼板の磁束が流れる方向
と発生する鉄損の関係を示すグラフである。この図にお
いて横軸は磁束の流れる方向の圧延方向からの角度
(°)、縦軸は単位重量当たりの鉄損 (W/kg)であ
り、曲線は最大磁束密度が1.5T、周波数が60HZ
での特性である。当然のことながら角度0°を中心にし
て左右対称である。
FIG. 7 is a graph showing the relationship between the direction in which the magnetic flux of the grain-oriented silicon steel sheet flows and the generated iron loss. In this figure, the horizontal axis represents the angle (°) of the direction in which the magnetic flux flows from the rolling direction, the vertical axis represents the iron loss per unit weight (W / kg), and the curve represents the maximum magnetic flux density of 1.5T and the frequency of 60H. Z
It is a characteristic in. Naturally, it is symmetrical about the angle 0 °.

【0008】この図から明らかなように、角度が0°の
ときの鉄損は1.3(W/kg)に対して、90°のとき
のそれは4.2(W/kg)と約3倍である。
As is apparent from this figure, the iron loss at an angle of 0 ° is 1.3 (W / kg), whereas that at 90 ° is 4.2 (W / kg), which is about 3 (W / kg). It is twice.

【0009】図8は図5の鉄心脚13と上部継鉄22と
の接合部の磁束の流れを模式的に示す磁束分布図であ
る。この図において、鉄心脚13の圧延方向は矢印で示
すように紙面の上下方向なので、磁束51は接合部4ま
でほぼ直進し、この接合部4で直角に角度を変えて上部
継鉄22の中を磁束52として圧延方向に一致した水平
方向に流れる。
FIG. 8 is a magnetic flux distribution diagram schematically showing the flow of magnetic flux at the joint between the iron core leg 13 and the upper yoke 22 of FIG. In this figure, since the rolling direction of the iron core leg 13 is the up and down direction of the paper as shown by the arrow, the magnetic flux 51 travels substantially straight to the joint 4 and changes the angle to a right angle at the joint 4 to change Flows as a magnetic flux 52 in the horizontal direction corresponding to the rolling direction.

【0010】図9は仮に接合部を水平にしたとした場合
の磁束分布図である。この図において仮の上部継鉄22
Sと仮の鉄心脚13Sとの接合部4Sは鉄心脚13Sの
矢印で示す圧延方向に直角なので、鉄心脚13S内の磁
束53は接合部4Sに直進して上部継鉄22Sに入り、
磁束54として直角に方向を変えるが、上部継鉄22S
の圧延方向は図示のように水平方向なので、方向を変え
る前の磁束が図7に示す大きな鉄損を発生することにな
り、この部分で局部加熱が発生する可能性がある。この
ようなことから接合部を前述のように45°の角度にし
ているのである。
FIG. 9 is a magnetic flux distribution diagram in the case where the joining portion is assumed to be horizontal. In this figure, a temporary upper yoke 22
Since the joint 4S between S and the temporary iron leg 13S is perpendicular to the rolling direction indicated by the arrow of the iron core 13S, the magnetic flux 53 in the iron core 13S goes straight to the joint 4S and enters the upper yoke 22S.
The direction changes at a right angle as the magnetic flux 54, but the upper yoke 22S
Since the rolling direction is horizontal as shown in the drawing, the magnetic flux before changing the direction causes a large iron loss shown in FIG. 7, and there is a possibility that local heating may occur in this portion. For this reason, the joint is formed at an angle of 45 ° as described above.

【0011】図10は輸送時の変圧器中身の模式的な立
面図であり、鉄心は図5の3相3脚鉄心を例として図示
してある。変圧器中身の輸送状態は種々あるが、この図
では各相の巻線61,62,63はそれぞれ鉄心脚1
1,12,13に挿入された状態で輸送される状態を示
してある。上部鉄心21,22は輸送時重量を軽減する
ために別に梱包されて輸送される。巻線61,62,6
3をこの図のように鉄心に挿入した状態で輸送が可能の
場合は、輸送時の容器として変圧器タンクそのものを使
用することができ、また、各相の巻線を三角結線や星形
結線などの3相結線をするリード接続も殆ど事前に行っ
ておくことができるという利点もある。重量の制限を受
けない場合には上部継鉄21,22も取付けた状態の変
圧器中身としては殆ど完成した状態で輸送される。ま
た、更に輸送制限が厳しい場合や寸法の制限を受けるよ
うな場合には、巻線61,62,63を鉄心脚11,1
2,13から取り外して輸送用のタンクに収納して輸送
し、鉄心は鉄心脚11,12,13と下部継鉄31,3
2とを切り離して輸送することになる。このような場合
には、巻線61,62,63別々に輸送するための輸送
用タンクが必要になるとともに、据え付け場所での組み
立て時間が長くなるという問題がある。
FIG. 10 is a schematic elevational view of the contents of the transformer during transportation, and the core is illustrated by taking the three-phase three-legged core of FIG. 5 as an example. Although there are various transport states of the contents of the transformer, in this figure, the windings 61, 62, 63 of each phase are respectively connected to the iron core legs 1
1 shows a state in which the sheet is transported while being inserted in 1, 12, and 13. The upper iron cores 21 and 22 are separately packed and transported to reduce the weight during transportation. Windings 61, 62, 6
3 can be transported with the core inserted as shown in this figure, the transformer tank itself can be used as a container for transportation, and the windings of each phase can be connected in a triangular or star connection. There is also an advantage that the lead connection for three-phase connection can be made almost in advance. If there is no restriction on the weight, the transformer with the upper yoke 21, 22 attached is transported in almost completed state. Further, when the transportation is more severe or the size is restricted, the windings 61, 62, 63 are connected to the iron legs 11, 1.
2, 13 and removed and stored in a transport tank for transportation. The iron cores are iron legs 11, 12, 13 and lower yoke 31, 3,
2 and will be transported separately. In such a case, there is a problem that a transport tank for transporting the windings 61, 62, and 63 separately is required, and the assembling time at the installation location becomes longer.

【0012】図10の状態で輸送する場合、前述のよう
に輸送時の高さ寸法H5 は鉄心脚11,13の先端の位
置によって決まってしまっているので、上部継鉄23,
24,25,26を取り外しても高さ寸法を小さくする
ことはできない。
[0012] When transporting a state of FIG. 10, since the height dimension H 5 during transportation, as described above we've determined by the position of the tip of Tesshin'ashi 11,13, the upper yoke 23,
Even if 24, 25, and 26 are removed, the height cannot be reduced.

【0013】[0013]

【発明が解決しようとする課題】このように従来の変圧
器鉄心では方向性珪素鋼板を使用して45°の角度で接
合しているために、上部継鉄を取り外す分解輸送を行っ
ても高さ寸法を小さくすることができないという問題が
ある。
As described above, since the conventional transformer iron core uses a directional silicon steel plate and is joined at an angle of 45 °, even if disassembled and transported to remove the upper yoke, the transformer core will be high. There is a problem that the size cannot be reduced.

【0014】この発明の目的は、巻線を鉄心脚に挿入し
た状態で上部継鉄だけを取り外す分解輸送を行う場合
に、上部継鉄を取り外すことによって鉄損を増加させる
ことなく高さ寸法を小さくすることのできる変圧器鉄心
を提供することにある。
[0014] An object of the present invention is to remove the upper yoke and remove the upper yoke in order to reduce the height without increasing iron loss when performing disassembly and transportation in which only the upper yoke is inserted with the winding inserted into the iron core leg. An object of the present invention is to provide a transformer core that can be made smaller.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、複数の直立する脚鉄心とこれら
脚鉄心を磁気的に結合する上部継鉄及び下部継鉄からな
りこれら脚鉄心と継鉄とが方向性珪素鋼板を積層してな
る変圧器鉄心において、最外側の前記脚鉄心と前記上部
継鉄とを、辺の方向が圧延方向に対して35°乃至55
°の範囲内の角度をした長方形珪素鋼板を積層してなる
接合鉄心を介して接合してなるものとし、また、変圧器
鉄心が、3相3脚鉄心であるものとし、また、変圧器鉄
心が、3相5脚鉄心であるものとし、また、変圧器鉄心
が、単相2脚鉄心であるものとする。
According to the present invention, a plurality of upright leg iron cores and an upper yoke and a lower yoke for magnetically coupling these leg iron cores are provided. In a transformer core in which an iron core and a yoke are laminated with grain-oriented silicon steel sheets, the outermost leg iron core and the upper yoke are arranged such that the direction of the side is 35 ° to 55 ° with respect to the rolling direction.
°, a rectangular silicon steel plate having an angle in the range of ° is joined through a joint core formed by laminating, the transformer core is a three-phase three-leg core, and the transformer core is Is a three-phase five-leg core, and the transformer core is a single-phase two-leg core.

【0016】[0016]

【作用】この発明の構成において、最外側の脚鉄心と上
部継鉄とを、辺の方向が圧延方向に対して35°乃至5
5°の範囲内の所定の角度をした長方形珪素鋼板を積層
した接合鉄心を介して接合することによって、接合鉄心
内を流れる磁束は接合鉄心の圧延方向に沿って流れて脚
鉄心と上部継鉄との磁束の流れは連結するので、常に珪
素鋼板の圧延方向沿って磁束が流れることから鉄損は従
来の変圧器鉄心と同程度になり、輸送時に上部継鉄とこ
の接合鉄心を取り外すことにより高さ方向寸法が小さく
なるので、輸送時の高さ寸法を輸送制限内に納めること
が可能になる。
In the structure of the present invention, the outermost leg iron core and the upper yoke are connected so that the direction of the side is 35 ° to 5 ° with respect to the rolling direction.
The magnetic flux flowing through the joint core flows along the rolling direction of the joint core by joining through a joint core in which rectangular silicon steel plates having a predetermined angle within a range of 5 ° are laminated, so that the leg core and the upper yoke are connected. Since the flow of the magnetic flux is connected, the magnetic flux always flows along the rolling direction of the silicon steel sheet, so the iron loss is about the same as the conventional transformer core, and by removing the upper yoke and this joint core during transportation Since the height dimension is reduced, it is possible to keep the height dimension during transportation within transportation restrictions.

【0017】また、変圧器鉄心が3相3脚鉄心場合には
両端の2本の脚鉄心と上部継鉄とを前述の接合鉄心で接
合すればよく、3相5脚鉄心の場合には両側の帰路脚鉄
心と上部継鉄とを接合鉄心で接合し、単相2脚鉄心の場
合には2本の脚鉄心と上部継鉄とを接合鉄心で接合する
構成を採用すればよい。
When the transformer core is a three-phase three-leg core, the two leg cores at both ends and the upper yoke may be joined by the above-mentioned joint core, and in the case of a three-phase five-leg core, both ends are provided. In this case, a configuration may be adopted in which the return leg iron core and the upper yoke are joined by a joint iron core, and in the case of a single-phase two-leg iron core, the two leg iron cores and the upper yoke are joined by a joint iron core.

【0018】[0018]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の実施例を示す3相3脚鉄心の立面図で
あり、図5と同じ部材については共通の符号を付けて詳
しい説明を省略する。この図において、上部継鉄27と
鉄心脚11Bとを、接合鉄心71を介して接合するもの
で、接合鉄心71は正方形をしておりその圧延方向は図
示のように右下がりの方向である。鉄心脚11Bが接合
鉄心71に接合する上端は水平に切断してあり同じく継
鉄27が接合鉄心72に接合する接合端は垂直に切断し
てある。接合鉄心72、鉄心脚13B、上部鉄心28も
同様である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
FIG. 1 is an elevational view of a three-phase three-legged iron core showing an embodiment of the present invention, and the same members as those in FIG. In this figure, the upper yoke 27 and the iron core leg 11B are joined via a joint iron core 71, and the joint iron core 71 has a square shape, and its rolling direction is a downward rightward direction as shown. The upper end where the iron core leg 11B is joined to the joint core 71 is cut horizontally, and the joint end where the yoke 27 is joined to the joint core 72 is also cut vertically. The same applies to the joint core 72, the core legs 13B, and the upper core 28.

【0019】鉄心脚11Bから接合鉄心71に垂直方向
に流れ込んだ磁束は接合鉄心71の中で圧延方向に沿っ
て45°左に方向を変えて上部継鉄27に入るが、接合
部71の圧延方向をこのように45°の角度にしてある
ので、磁束は圧延方向に沿って流れることから図9とは
違って鉄損が大きくならず局部加熱が発生する恐れはな
い。
The magnetic flux flowing vertically from the iron core leg 11B into the joint core 71 turns 45 ° to the left along the rolling direction in the joint core 71 and enters the upper yoke 27. Since the direction is set at an angle of 45 °, the magnetic flux flows along the rolling direction, so that unlike FIG. 9, the iron loss does not increase and there is no possibility that local heating occurs.

【0020】図2は図1の鉄心を使用した変圧器中身の
輸送時の模式的な立面図であり、図1と同じ部材につい
ては共通を符号を付けて詳しい説明を省略する。この図
において、上部継鉄26,27及び接合鉄心71,72
を取り外して別に輸送し、これらを取り外した変圧器中
身を変圧器タンクに収納して輸送する。このときの高さ
寸法は図のH2 で示す寸法になり、この寸法は中央の鉄
心脚12の高さ寸法になる。図5と同じであるが、鉄心
脚12の上部継鉄26,27との接合部は図示のように
先端が尖った形状をしていてこの先端部の高さ方向寸法
は上部継鉄26,27の幅寸法の約2分の1である。し
たがって、高さ寸法H2 は図5の高さ寸法H5 に比べて
上部継鉄26,27の幅寸法の2分の1だけ低くいこと
になる。
FIG. 2 is a schematic elevational view of the transformer during transportation using the iron core of FIG. 1. The same members as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. In this figure, upper yoke 26, 27 and joint iron core 71, 72
, And transported separately, and the contents of the transformer from which they were removed are stored in a transformer tank and transported. Height at this time is made into the size shown with H 2 in FIG, this dimension is the height dimension of the center core leg 12. 5 is the same as that of FIG. 5, but the joint of the iron core leg 12 with the upper yoke 26, 27 has a pointed tip as shown in the figure, and the height dimension of this tip is equal to that of the upper yoke 26, 27. 27 is approximately one-half of the width dimension. Therefore, the height dimension H 2 would have lowered by one half of the width of the upper yoke 26, 27 than the height dimension H 5 in FIG.

【0021】このように接合鉄心71,72を介して上
下継鉄26,27と鉄心脚11B,13Bとを接合する
構成とすることによって、励磁特性を損なうことなく分
解輸送時の高さ寸法を小さくすることができる。
By thus joining the upper and lower yokes 26, 27 and the iron core legs 11B, 13B via the joint iron cores 71, 72, the height dimension during disassembly and transportation can be reduced without impairing the excitation characteristics. Can be smaller.

【0022】200MVA程度の3相3脚鉄心を例にと
ると、鉄心脚12の直径700ミリ程度なので、この2
分の1の寸法である350ミリだけ輸送時の高さ寸法が
小さくなる。
Taking a three-phase three-legged iron core of about 200 MVA as an example, the diameter of the iron core leg 12 is about 700 mm.
The height at the time of transport is reduced by 350 mm, which is one-half the size.

【0023】図3は接合鉄心71,72に使用する珪素
鋼板710の製作法の例を示す切断図である。この図に
おいて、帯状の珪素鋼板700の圧延方向は矢印で示す
ように図の水平方向であり、この珪素鋼板700を圧延
方向に対して45°の角度を持った切断線101,10
2及びこれらに直角の切断線103,104で切断する
ことによって辺の方向が圧延方向に45°の角度を持っ
た長方形の珪素鋼板710を得ることができる。実際の
切断方法の一例としては、切断線101,102などの
互いに平行で圧延方向に右上がりの切断線で珪素鋼板7
00を切断することによって平行四辺形の珪素鋼板を
得、この平行四辺形の両側を切断して長方形の珪素鋼板
710を得る。また、鉄心脚12の珪素鋼板の製作時に
珪素鋼板710も製作することによって切断回数を節約
するなども可能である。
FIG. 3 is a sectional view showing an example of a method of manufacturing a silicon steel plate 710 used for the joint iron cores 71 and 72. In this figure, the rolling direction of the strip-shaped silicon steel sheet 700 is the horizontal direction of the figure as indicated by the arrow, and the silicon steel sheet 700 is cut along cutting lines 101 and 10 at an angle of 45 ° with respect to the rolling direction.
2 and a rectangular silicon steel plate 710 whose sides are at an angle of 45 ° to the rolling direction by cutting along the cutting lines 103 and 104 perpendicular to these. As an example of an actual cutting method, a silicon steel sheet 7 is cut by cutting lines parallel to each other, such as cutting lines 101 and 102, and rising to the right in the rolling direction.
By cutting 00, a parallelogram silicon steel plate is obtained, and both sides of the parallelogram are cut to obtain a rectangular silicon steel plate 710. It is also possible to reduce the number of cuts by manufacturing the silicon steel plate 710 when manufacturing the silicon steel plate of the iron core leg 12.

【0024】図4は接合部での実際の珪素鋼板の組み合
わせを示す平面図である。図4(A)において、接合鉄
心71の珪素鋼板711は僅かに横長であり、鉄心脚1
1Bの珪素鋼板111の幅に対して僅かに左に出っ張っ
ている。珪素鋼板711の図の縦方向寸法は上部継鉄2
1Bの珪素鋼板211の幅寸法に一致しており、したが
って、珪素鋼板711と珪素鋼板111との接合部は珪
素鋼板211の下端の線と一致している。一方、図4
(B)の接合鉄心71の珪素鋼板712は僅かに縦長で
あり、鉄心脚11の珪素鋼板112との接合部は上部継
鉄21の珪素鋼板212の下面の線より僅か下になって
いる。
FIG. 4 is a plan view showing an actual combination of silicon steel sheets at the joint. In FIG. 4A, the silicon steel plate 711 of the joint core 71 is slightly horizontally long, and
It protrudes slightly to the left with respect to the width of the silicon steel sheet 111 of 1B. The vertical dimension of the silicon steel sheet 711 in the figure is the upper yoke 2
1B, which corresponds to the width dimension of silicon steel plate 211, and therefore, the joint between silicon steel plate 711 and silicon steel plate 111 matches the line at the lower end of silicon steel plate 211. On the other hand, FIG.
The silicon steel plate 712 of the joint core 71 shown in FIG. 7B is slightly vertically long, and the joint of the iron core leg 11 with the silicon steel plate 112 is slightly lower than the line on the lower surface of the silicon steel plate 212 of the upper yoke 21.

【0025】実際の接合部は図4(A)の珪素鋼板の組
み合わせと図4(B)の組み合わせとを交互に積み重ね
て所定の厚みに積層するものであり、このように接合部
の位置を交互に変えることによって単に磁気的にだけで
なく機械的にも接合する構成になっている。このような
接合部を僅かずらして接合する構成は他の45°の傾斜
を持つ接合部に採用されているものである。
The actual joint is formed by alternately stacking the combination of the silicon steel plates shown in FIG. 4A and the combination shown in FIG. 4B and laminating the combination to a predetermined thickness. By alternately changing the structure, the structure is joined not only magnetically but also mechanically. Such a configuration in which the joining portions are slightly shifted from each other is employed in another joining portion having an inclination of 45 °.

【0026】図3の接合鉄心710は右上方向の辺の長
さの方が僅かに長い長方形をしており、この珪素鋼板7
10をそのまま使用すると珪素鋼板711として使用で
きる。珪素鋼板712は圧延方向が90°異なっている
ので、珪素鋼板710を引っ繰り返すことで珪素鋼板7
12の圧延方向に一致する。すなわち、図3に示す珪素
鋼板710の製作方法によって全ての接合鉄心71,7
2の珪素鋼板が製作可能である。
The joint iron core 710 shown in FIG. 3 has a rectangular shape in which the length in the upper right direction is slightly longer.
If 10 is used as it is, it can be used as a silicon steel plate 711. Since the rolling direction of the silicon steel sheet 712 is different by 90 °, the silicon steel sheet 710 is repeatedly
Twelve rolling directions. That is, all the joining iron cores 71, 7 are formed by the method of manufacturing the silicon steel plate 710 shown in FIG.
2 silicon steel plates can be manufactured.

【0027】前述の接合鉄心71,72を介してL字状
に接合される部分を接合する構成は図6の3相5脚鉄心
にも適用して効果を上げることができる。この場合は、
上部継鉄23と帰路脚14及び上部継鉄26と帰路脚1
5との接合部に適用することになる。
The structure in which the portions joined in an L-shape through the joint iron cores 71 and 72 described above can be applied to the three-phase five-leg iron core shown in FIG. 6 to improve the effect. in this case,
Upper yoke 23 and return leg 14 and upper yoke 26 and return leg 1
5 will be applied.

【0028】前述のように、上部継鉄23の幅寸法は鉄
心脚11Aの幅寸法よりも小さく、一方、鉄心脚11A
の上部先端の出っ張り寸法は図1と同じく鉄心脚11A
の幅寸法の2分の1なので、上部継鉄23,24,2
5,26を取り外す分解輸送を行う場合の高さ寸法の短
縮は図1の場合よりも小さい。しかし、5脚鉄心とした
ことによって下部継鉄33,34,35,36の幅寸法
が小さくなっているので、他の寸法が同一の場合の図1
の鉄心の高さ寸法H2 よりも小さくなる。
As described above, the width of the upper yoke 23 is smaller than the width of the iron leg 11A, while the width of the iron leg 11A is small.
The protrusion of the upper tip of the iron core leg 11A is the same as in FIG.
Is half of the width of the upper yoke 23, 24, 2
The shortening of the height when performing disassembly and transportation for removing 5, 26 is smaller than in the case of FIG. However, since the width dimensions of the lower yoke 33, 34, 35, 36 are reduced due to the use of the five-leg iron core, FIG.
It is smaller than the height dimension of H 2 core of.

【0029】単相2脚鉄心では図1の3相3脚鉄心の中
央の鉄心脚12を取り除いて上下の継鉄を1本にした構
成なので、この発明を適用して3相3脚鉄心の場合と同
様の効果を得ることができる。
In the single-phase two-legged iron core, since the central iron leg 12 of the three-phase three-legged iron core shown in FIG. 1 is removed and the upper and lower yokes are made one, the present invention is applied to the three-phase three-legged iron core. The same effect as in the case can be obtained.

【0030】前述のように、最も外側の鉄心脚又は帰路
脚などの脚鉄心とこれにL字状に接合される上部継鉄に
この発明を適用することによって輸送時の変圧器中身の
高さ寸法を小さくすることが可能になる。なお、前述の
鉄心の種類の他に中央脚鉄心と称される単相変圧器に使
用される鉄心があるが、この中央脚鉄心の場合は上下の
継鉄の幅寸法が中央の巻線が挿入される鉄心脚の幅寸法
の2分の1以下になることから、この発明を適用しても
鉄心脚によって高さ寸法が決まってしまうので、上部継
鉄を取り外しても輸送時の高さ寸法を小さくすることは
できない。
As described above, the present invention is applied to the outermost iron core such as the iron core leg or the return leg and the upper yoke which is joined thereto in an L-shape, so that the height of the transformer contents during transportation can be improved. The size can be reduced. In addition to the above-mentioned types of iron cores, there are iron cores used in single-phase transformers called central leg iron cores. Since the width is less than half the width of the inserted iron leg, the height is determined by the iron leg even when the present invention is applied. The dimensions cannot be reduced.

【0031】接合鉄心71,72の圧延方向と辺の角度
を45°に厳密に一致させる必要はない。図7で明らか
なように、角度が0°近辺では鉄損は余り変化しない特
性となっている。したがって、接合鉄心71,72の圧
延方向と辺の角度が10°程度ずれても実用上は何ら差
し支えない。また、一般に方向性珪素鋼板の切断は前述
のように45°が標準であり、切断装置もそのようにな
っているから、45°から余り離れた角度の接合鉄心7
1,72を製作する必然性もなく、前述のように45°
に対してプラスマイナス10°の範囲、すなわち、35
°〜55°の範囲に入っていればよい。なお、一方の辺
の角度が45°よりも小さいとこれと直角の辺の角度は
45°よりも大きくなるので、プラス側とマイナス側を
区別する必要はない。
It is not necessary to exactly match the rolling direction of the joining iron cores 71 and 72 with the angle of the side to 45 °. As is clear from FIG. 7, when the angle is around 0 °, the iron loss does not change much. Therefore, even if the angle between the rolling direction of the joint iron cores 71 and 72 and the side is shifted by about 10 °, there is no problem in practical use. Further, in general, the standard for cutting a grain-oriented silicon steel sheet is 45 ° as described above, and the cutting device is also the same.
No need to manufacture 1,72, 45 ° as described above
In the range of plus or minus 10 °, that is, 35
The angle may be in the range of ° to 55 °. If the angle of one side is smaller than 45 °, the angle of the side perpendicular to the angle is larger than 45 °, so that it is not necessary to distinguish between the plus side and the minus side.

【0032】[0032]

【発明の効果】この発明は前述のように、最外側の脚鉄
心と上部継鉄とを、辺の方向が圧延方向に対して35°
乃至55°の範囲内の所定の角度をした長方形状の方向
性珪素鋼板を積層した接合鉄心を介して接合することに
よって、接合鉄心内を流れる磁束は接合鉄心の圧延方向
に沿って流れて脚鉄心と上部継鉄との磁束の流れを連結
するので、常に珪素鋼板の圧延方向沿って磁束が流れる
ことから鉄損は従来の鉄心と同程度になり、輸送時に上
部継鉄とこの接合鉄心を取り外すと高さ方向寸法が小さ
くなるので、輸送時の高さ寸法を輸送制限内に納めるこ
とが可能になる。例えば、従来は容量が150MVA程
度までが3相3脚鉄心を採用して上部継鉄だけを取り外
す分解輸送が可能であったのに対して、この発明を採用
することによって200MVA程度まで可能になるとい
う効果が得られる。
As described above, according to the present invention, the outermost leg iron core and the upper yoke are connected at an angle of 35 ° with respect to the rolling direction.
The magnetic flux flowing in the joint core flows along the rolling direction of the joint core by joining through a joint core in which rectangular oriented silicon steel sheets having a predetermined angle within a range of from 55 ° to 55 ° are laminated. Since the flow of magnetic flux between the iron core and the upper yoke is connected, the magnetic flux always flows along the rolling direction of the silicon steel sheet, so the iron loss is about the same as the conventional iron core. When removed, the height dimension is reduced, so that the height dimension during transportation can be kept within transportation restrictions. For example, while the conventional capacity of up to about 150 MVA has been possible by using a three-phase three-leg iron core and disassembling and transporting by removing only the upper yoke, the present invention allows up to about 200 MVA. The effect is obtained.

【0033】その結果、巻線と鉄心を別々に輸送するよ
うな分解輸送を採用しなければならない条件の場合でも
上部継鉄を取り外すだけでその他の鉄心と巻線とを一体
にしたまま変圧器タンクに収納した状態で輸送すること
が可能になるので、据え付け場所での組み立ての時間が
短縮するという効果が得られる。
As a result, even in the case where disassembly and transport such that the windings and the iron core must be transported separately must be adopted, the transformer can be integrated with the other iron cores and the windings simply by removing the upper yoke. Since it is possible to transport in a state where it is stored in the tank, the effect of shortening the time for assembling at the installation location can be obtained.

【0034】また、変圧器鉄心が3相3脚鉄心場合に
は、両端の2本の脚鉄心と上部継鉄とを前述の接合鉄心
で接合すればよく、3相5脚鉄心の場合には、両側の帰
路脚鉄心と上部継鉄とを接合鉄心で接合し、単相2脚鉄
心の場合には、2本の脚鉄心と上部継鉄とを接合鉄心で
結合する構成を採用することで前述と同じ効果を得るこ
とができる。
When the transformer core is a three-phase three-leg core, the two leg cores at both ends and the upper yoke may be joined by the above-described joint core. By joining the return leg cores on both sides and the upper yoke with the joint core, and adopting a configuration in which the two leg cores and the upper yoke are joined with the joint core in the case of a single-phase two-leg iron core. The same effect as described above can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す3相3脚鉄心の立面図FIG. 1 is an elevation view of a three-phase three-legged iron core showing an embodiment of the present invention.

【図2】図1の鉄心を使用した変圧器中身の輸送時の模
式的な立面図
FIG. 2 is a schematic elevation view of a transformer during transportation using the iron core of FIG. 1;

【図3】接合鉄心に使用する珪素鋼板の製作法の例を示
す切断図
FIG. 3 is a cross-sectional view showing an example of a method of manufacturing a silicon steel sheet used for a joint core.

【図4】接合部での実際の珪素鋼板の組み合わせを示す
平面図
FIG. 4 is a plan view showing an actual combination of silicon steel plates at a joint.

【図5】従来の変圧器の3相3脚鉄心を示す立面図FIG. 5 is an elevation view showing a three-phase three-leg core of a conventional transformer.

【図6】従来の3相5脚鉄心の立面図FIG. 6 is an elevation view of a conventional three-phase five-legged iron core.

【図7】方向性珪素鋼板の磁束が流れる方向と発生する
鉄損の関係を示すグラフ
FIG. 7 is a graph showing the relationship between the direction in which the magnetic flux of a grain-oriented silicon steel sheet flows and the generated iron loss.

【図8】接合部の磁束の流れを示す模式的な磁束分布図FIG. 8 is a schematic magnetic flux distribution diagram showing the flow of magnetic flux at a joint.

【図9】接合部を仮に水平にした場合の模式的な磁束分
布図
FIG. 9 is a schematic magnetic flux distribution diagram in a case where a joining portion is temporarily horizontal.

【図10】この発明による変圧器中身の輸送時の模式的
な立面図
FIG. 10 is a schematic elevational view of a transformer during transportation according to the present invention.

【符号の説明】[Explanation of symbols]

11 鉄心脚(脚鉄心) 12 鉄心脚(脚鉄心) 13 鉄心脚(脚鉄心) 11A 鉄心脚(脚鉄心) 13A 鉄心脚(脚鉄心) 11B 鉄心脚(脚鉄心) 13B 鉄心脚(脚鉄心) 14 帰路脚(脚鉄心) 15 帰路脚(脚鉄心) 21 上部継鉄 22 上部継鉄 23 上部継鉄 24 上部継鉄 25 上部継鉄 26 上部継鉄 27 上部継鉄 28 上部継鉄 31 下部継鉄 32 下部継鉄 33 下部継鉄 34 下部継鉄 35 下部継鉄 36 下部継鉄 71 接合鉄心 72 接合鉄心 11 Iron leg (leg iron) 12 Iron leg (leg iron) 13 Iron leg (leg iron) 11A Iron leg (leg iron) 13A Iron leg (leg iron) 11B Iron leg (leg iron) 13B Iron leg (leg iron) 14 Return leg (leg iron core) 15 Return leg (leg iron core) 21 Upper yoke 22 Upper yoke 23 Upper yoke 24 Upper yoke 25 Upper yoke 26 Upper yoke 27 Upper yoke 28 Upper yoke 31 Lower yoke 32 Lower yoke 33 Lower yoke 34 Lower yoke 35 Lower yoke 36 Lower yoke 71 Joint core 72 Joint core

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の直立する脚鉄心とこれら脚鉄心を磁
気的に結合する上部継鉄及び下部継鉄からなりこれら脚
鉄心と継鉄とが方向性珪素鋼板を積層してなる変圧器鉄
心において、最外側の前記脚鉄心と前記上部継鉄とを、
辺の方向が圧延方向に対して35°乃至55°の範囲内
の角度をした長方形珪素鋼板を積層してなる接合鉄心を
介して接合してなることを特徴とする変圧器鉄心。
1. A transformer core comprising a plurality of upright leg iron cores and an upper yoke and a lower yoke for magnetically coupling these leg iron cores, wherein the leg iron core and the yoke are laminated with directional silicon steel sheets. In, the outermost leg iron core and the upper yoke,
A transformer core characterized by being joined via a joint iron core formed by stacking rectangular silicon steel plates whose sides have an angle in the range of 35 ° to 55 ° with respect to the rolling direction.
【請求項2】変圧器鉄心が、3相3脚鉄心であることを
特徴とする請求項1記載の変圧器鉄心。
2. The transformer core according to claim 1, wherein the transformer core is a three-phase three-leg core.
【請求項3】変圧器鉄心が、3相5脚鉄心であることを
特徴とする請求項1記載の変圧器鉄心。
3. The transformer core according to claim 1, wherein the transformer core is a three-phase five-leg core.
【請求項4】変圧器鉄心が、単相2脚鉄心であることを
特徴とする請求項1記載の変圧器鉄心。
4. The transformer core according to claim 1, wherein the transformer core is a single-phase two-leg core.
JP8710991A 1991-04-19 1991-04-19 Transformer core Expired - Lifetime JP2794975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8710991A JP2794975B2 (en) 1991-04-19 1991-04-19 Transformer core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8710991A JP2794975B2 (en) 1991-04-19 1991-04-19 Transformer core

Publications (2)

Publication Number Publication Date
JPH04320307A JPH04320307A (en) 1992-11-11
JP2794975B2 true JP2794975B2 (en) 1998-09-10

Family

ID=13905786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8710991A Expired - Lifetime JP2794975B2 (en) 1991-04-19 1991-04-19 Transformer core

Country Status (1)

Country Link
JP (1) JP2794975B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419501B1 (en) * 2000-12-27 2004-02-19 주식회사 아이티씨 Transformer of Low-Loss Core Structure
JP2008243985A (en) * 2007-03-26 2008-10-09 Nitta Ind Corp Core object of power transfer unit
JP5418311B2 (en) * 2009-03-23 2014-02-19 新日鐵住金株式会社 Single-phase reactor core with gap
JP2017130513A (en) * 2016-01-19 2017-07-27 ファナック株式会社 Polyphase reactor with reduced iron loss, iron core of polyphase reactor and method of manufacturing the same

Also Published As

Publication number Publication date
JPH04320307A (en) 1992-11-11

Similar Documents

Publication Publication Date Title
CN203277040U (en) Distribution transformer with laminated iron core
KR860006812A (en) Electric induction device
JP2794975B2 (en) Transformer core
JP2008182053A (en) Resting induction electric appliance
WO2014167571A1 (en) Three-phase chokes and methods of manufacturing thereof
US20150279544A1 (en) Transformer Having An Interlocking Core Frame
US2558110A (en) Three-phase transformer core
JPH09232164A (en) Triangularly arranged tripod-core type three-phase transformer
KR101573813B1 (en) Low loss type hybrid transformer, and manufacturing method thereof
US4176333A (en) Magnetic core for single phase electrical inductive apparatus
JPH0992545A (en) Structure of core of gas insulating induction electrical equipment
JP2007005470A (en) Three-phase wound core and three phase transformer
JP3070803B2 (en) Assembly method of disassembled transport transformer and its apparatus
JPH0145204B2 (en)
US2456941A (en) Transformer structure
CN211828417U (en) Transformer core unit and iron core
JP2009246080A (en) Stationary induction machine
JPH04186808A (en) Transportation method of knockdown-transported transformer
JPS6339952Y2 (en)
KR102518879B1 (en) Planar coil for reactor and reactor having the same
JP3492148B2 (en) Shell type transformer
CN211907190U (en) Transformer iron core
KR101997981B1 (en) Transformer type tie-plate for reduced stray loss, and manufacturing method thereof
JP2003347134A (en) Three-phase reactor
US2870525A (en) Method of transformer assembly using divided tank and banding plate

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080626

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100626

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110626

Year of fee payment: 13