JP2787951B2 - Mud material for blast furnace taphole - Google Patents

Mud material for blast furnace taphole

Info

Publication number
JP2787951B2
JP2787951B2 JP1108258A JP10825889A JP2787951B2 JP 2787951 B2 JP2787951 B2 JP 2787951B2 JP 1108258 A JP1108258 A JP 1108258A JP 10825889 A JP10825889 A JP 10825889A JP 2787951 B2 JP2787951 B2 JP 2787951B2
Authority
JP
Japan
Prior art keywords
weight
parts
clay
blast furnace
mud material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1108258A
Other languages
Japanese (ja)
Other versions
JPH02285015A (en
Inventor
恭信 鳥谷
利夫 山根
貞行 山崎
征男 小口
辰男 川上
満 木口
義和 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd, Kawasaki Steel Corp filed Critical Kawasaki Refractories Co Ltd
Priority to JP1108258A priority Critical patent/JP2787951B2/en
Publication of JPH02285015A publication Critical patent/JPH02285015A/en
Application granted granted Critical
Publication of JP2787951B2 publication Critical patent/JP2787951B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は高炉における出銑孔用マッド材に関するも
のである。
Description: TECHNICAL FIELD The present invention relates to a tapping mud material for a blast furnace.

〔従来の技術〕[Conventional technology]

最近の鉄鋼業界では少基数の大型高炉への集約がなさ
れ、出銑比〔1日の出銑量(t−pigiron)/炉内容積
(m3)〕を高める努力が続けられており、出銑比2.0以
上の高炉が増えている。
In recent years, the steel industry has concentrated on a small number of large blast furnaces, and efforts have been made to increase the tapping ratio [t-pigiron / sunshine volume (m 3 )]. Blast furnaces with 2.0 or more are increasing.

この出銑比を高めるため、送風量を増加させると出銑
滓の流出速度が大きくなり、出銑孔マッド材の損傷が大
きく出銑時間の低下をきたす。また、高出銑比操業では
開孔径が小さいと、出銑初期に造銑滓速度より出銑滓速
度が小さすぎて、炉内の貯銑滓レベルが高くなり、炉内
圧の変動等を生じ、操業に悪影響を及ぼす。従って、開
孔径を大きくする必要があるが、開孔径を大きくすると
出銑時間の低下をきたす。
If the blowing rate is increased to increase the tapping ratio, the outflow speed of tapping slag increases, and the taphole mud material is greatly damaged, resulting in a decrease in tapping time. In addition, in the high tapping ratio operation, if the opening diameter is small, the tapping speed is too low in the early stage of tapping, compared to the tapping speed, and the level of the tappings in the furnace increases, causing fluctuations in the furnace pressure. Adversely affect operations. Therefore, it is necessary to increase the opening diameter, but when the opening diameter is increased, the tapping time is reduced.

従来の高炉出銑孔用マッド材としてはろう石、シャモ
ット、アルミナ、炭化珪素、カーボン等の耐火骨材、耐
火粘土、金属珪素等の焼結剤並びにタール等のバインダ
ーからなるものが使用されている。
Conventional blast furnace taphole mud materials used include refractory aggregates such as pyroxene, chamotte, alumina, silicon carbide, and carbon, refractory clays, sintering agents such as metallic silicon, and binders such as tar. I have.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記、炭化珪素、カーボンは耐食性、耐摩耗性を増大
させるためにかなりの量が添加されるが、これ等物質は
自己焼結性がないため、添加量の増加に伴って強度が低
下する。そこで、このような強度の低下を防止するため
に粘土が多量に添加されるのであるが、この粘土は高炉
スラグと反応し、低融物を生成する。従って、高炉スラ
グの流出に伴い出銑孔径の拡大が急激に生じ、炉内に溶
銑、溶滓を残したまま出銑が終了してしまい、出銑回数
の増加、労働負荷の増大につながっていた。この問題を
解決するために、従来は粘土量を減少させること、アル
ミナ微粉、ジルコン微粉等を使用することが試みられて
きた。
The above-mentioned silicon carbide and carbon are added in a considerable amount in order to increase the corrosion resistance and wear resistance. However, since these substances do not have self-sintering properties, the strength decreases with an increase in the addition amount. Therefore, in order to prevent such a decrease in strength, a large amount of clay is added. The clay reacts with the blast furnace slag to generate a low melt. Therefore, the tapping hole diameter rapidly increases with the outflow of blast furnace slag, and the tapping ends with the molten iron and slag remaining in the furnace, leading to an increase in the number of tappings and an increase in labor load. Was. In order to solve this problem, attempts have conventionally been made to reduce the amount of clay and to use alumina fine powder, zircon fine powder and the like.

しかしながら、アルミナやジルコン等では粘土程の焼
結性が得られず、実炉使用時に出銑初期の孔径拡大が大
きくなる欠点があった。
However, alumina, zircon, and the like cannot obtain sintering properties comparable to those of clay, and there is a disadvantage that the diameter of the pores increases in the initial stage of tapping when used in an actual furnace.

この発明は上記従来の事情に鑑みて提案されたもので
あって、溶銑、溶滓に対して高い耐食性を有するととも
に、大きな強度を有し、出銑孔の急激な拡大現象がない
マッド材を提供することを目的とする。
The present invention has been proposed in view of the above-described conventional circumstances, and has a high corrosion resistance to hot metal and slag, has a large strength, and a mud material having no rapid expansion phenomenon of a tap hole. The purpose is to provide.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するためにこの発明は、SiO2含有量75
〜90%の高珪酸ろう石を主原料として使用し、粒径44μ
m以下の黒鉛を0.5〜4重量部と、粒径44μm以下の窒
化珪素鉄15〜30重量部と、カオリン粘土5〜15重量部
と、残部のその他の耐火材として、炭化珪素、コークス
等の非酸化物を使用し、タール等のバインダーとして残
炭素有機化合物を加えて混練するようにしている。な
お、上記主原料として使用するSiO2含有量75〜90%以上
の高珪酸ろう石と上記残部のその他の耐火材とを併せた
重量部は51〜79.5重量部とする。
In order to achieve the above object, the present invention provides an SiO 2 content of 75
Up to 90% of high silica silicate is used as the main raw material, and the particle size is 44μ.
0.5 to 4 parts by weight of graphite having a particle size of 0.5 m or less, 15 to 30 parts by weight of silicon nitride having a particle size of 44 μm or less, 5 to 15 parts by weight of kaolin clay, and the rest of other refractory materials such as silicon carbide and coke. A non-oxide is used, and a residual carbon organic compound is added and kneaded as a binder such as tar. In addition, the weight part of the high silicate fossilite having a SiO 2 content of 75 to 90% or more used as the main raw material and the remaining other refractory material is 51 to 79.5 parts by weight.

〔作 用〕(Operation)

この発明に使用される窒化珪素数は、フェロシリコン
を窒化したものであり、Si3N4を70〜80%含有し、残り
の大部分は金属Fe及びFeSiである。この中のSi3N4は共
有結合的性質を有し本来耐酸化性が高く、溶銑、溶融ス
ラグに対して濡れ難いという性質を有しているが、1400
℃以上の温度で徐々に分解して窒素を放出する性質があ
る。この窒素はカーボンの存在下でカオリン粘土と反応
し耐火物中に固定され、マッド材の緻密化及び耐食性が
向上すると推定される。
Silicon nitride number to be used in the present invention is obtained by nitriding ferrosilicon, containing Si 3 N 4 70~80%, most remaining a metal Fe and FeSi. Among them, Si 3 N 4 has a covalent bond property and inherently has high oxidation resistance, and has a property that it is difficult to get wet with hot metal and molten slag.
It has the property of gradually decomposing at a temperature of ℃ or more and releasing nitrogen. It is presumed that this nitrogen reacts with kaolin clay in the presence of carbon and is fixed in the refractory, thereby improving the densification and corrosion resistance of the mud material.

すなわち、カオリン粘土はカーボンの存在下で下記第
(1)式に示すように窒素と反応しサイアロンを生じ
る。
That is, kaolin clay reacts with nitrogen in the presence of carbon as shown in the following formula (1) to produce sialon.

上記反応により生じたサイアロンは溶銑、溶融スラグ
に濡れ難く、粘土の欠点である溶融スラグと反応して低
融点物質を生じる性質がなくなり、マッド材の耐食性が
大きく改良される。
The sialon generated by the above reaction is hardly wetted by molten iron and molten slag, and has no property of reacting with molten slag, which is a drawback of clay, to produce a low-melting substance, thereby greatly improving the corrosion resistance of the mud material.

この窒化珪素鉄は44μm以下の微粉が粘土と反応しや
すく、添加量はマッド材中で15〜30重量部が適当であ
る。15重量部以下では窒素の揮散が少なく、上記粘土と
窒素の反応が充分に生じ得ない。30重量部以上では反応
焼結強度が高くなりすぎて、開孔が困難となり不都合で
ある。窒化珪素鉄の粒径が44μm以上では粘土との反応
が乏しく、粘土が未反応として残るので耐食性が低下す
る。
The fine powder of silicon nitride having a diameter of 44 μm or less easily reacts with the clay, and its addition amount is suitably 15 to 30 parts by weight in the mud material. If the amount is less than 15 parts by weight, the volatilization of nitrogen is small, and the reaction between the clay and nitrogen cannot sufficiently occur. If the amount is more than 30 parts by weight, the reaction sintering strength becomes too high, and it is difficult to form holes. If the particle size of the silicon iron nitride is 44 μm or more, the reaction with the clay is poor, and the clay remains unreacted, so that the corrosion resistance is reduced.

主骨材は、高炉スラグと反応して高粘性融液を生じ徐
々に損傷されるSiO2含有量75〜90%以上の高珪酸ろう石
が適当である。SiO2含有量が75%より少ないと融液の粘
性が下がりすぎて損耗が大きくなる。SiO2含有量が90%
より多いと焼結不足となり、強度が低下する。
The main aggregate, SiO 2 content of 75 to 90 percent more high silica pyrophyllite react with blast-furnace slag is gradually damage resulting highly viscous melt is suitable. If the SiO 2 content is less than 75%, the viscosity of the melt becomes too low, resulting in increased wear. 90% SiO 2 content
If the amount is larger than that, sintering becomes insufficient, and the strength decreases.

本発明では粒径44μm以下の黒鉛を使用する。黒鉛は
上記窒素と粘土の反応を促進するものである。その配合
割合は0.5〜4重量部が適当であり、0.5重量部以下では
窒素との反応が充分得られず、4重量部以上では焼結を
阻害して不都合である。黒鉛の粒径は44μm以下が好ま
しく、44μm以上では窒素と粘土の反応が乏しく、粘土
が未反応として残るので、耐食性が低下する。
In the present invention, graphite having a particle size of 44 μm or less is used. Graphite promotes the reaction between nitrogen and clay. The compounding ratio is suitably 0.5 to 4 parts by weight. If it is less than 0.5 part by weight, a sufficient reaction with nitrogen cannot be obtained, and if it is more than 4 parts by weight, sintering is hindered, which is inconvenient. The particle size of graphite is preferably 44 μm or less, and if it is 44 μm or more, the reaction between nitrogen and clay is poor, and the clay remains unreacted, so that the corrosion resistance is reduced.

カオリン粘土は5重量部以下ではカーボン、窒素との
反応が不十分であり、15重量部を越えると未反応の粘土
が多くなりすぎて、マット材の耐食性に悪影響を及ぼ
す。
If the kaolin clay is less than 5 parts by weight, the reaction with carbon and nitrogen is insufficient, and if it exceeds 15 parts by weight, the amount of unreacted clay becomes too large, adversely affecting the corrosion resistance of the mat material.

この他、残部の耐火性物質として、炭化珪素、コーク
ス等の非酸化物原料、金属珪素、フェロシリコン、アル
ミニウム粉等の添加剤等を必要に応じて使用することが
できる。バインダーは残炭素有機化合物、例えば通常使
用されるタール、タールピッチ、フェノールレジンを使
用することができる。
In addition, non-oxide raw materials such as silicon carbide and coke, and additives such as metal silicon, ferrosilicon, and aluminum powder can be used as necessary as the remaining refractory materials. As the binder, a residual carbon organic compound, for example, commonly used tar, tar pitch, or phenol resin can be used.

以上の構成及び作用により、この発明のマッド材は使
用温度付近での良好な耐食性及び充分な強度を発揮し、
しかも、出銑時に低融点物質を生成しないので、低出銑
比操業時の出銑孔の急激な拡大がなくなる。
With the above configuration and action, the mud material of the present invention exhibits good corrosion resistance and sufficient strength near the operating temperature,
In addition, since low-melting-point substances are not generated at the time of tapping, rapid expansion of tap holes during low tapping ratio operation is eliminated.

〔実施例〕〔Example〕

以下、実施例、比較例を挙げ、本発明をより一層明瞭
なものとする。
Hereinafter, the present invention will be further clarified by giving Examples and Comparative Examples.

第1表はこの発明の実施例(a)(b)及び従来製法
に係る比較品(c)の配合割合及び熱間曲げ強さ(1400
℃における)、耐食性を示したものである。この第1表
からも理解できるように本願発明品は、熱間曲げ強さ、
耐食性とも従来品の比較例よりも遥かに優れていること
が理解できる。
Table 1 shows the compounding ratio and hot bending strength (1400) of Examples (a) and (b) of the present invention and Comparative product (c) according to the conventional production method.
C.) and its corrosion resistance. As can be understood from Table 1, the product of the present invention has a hot bending strength,
It can be understood that the corrosion resistance is far superior to the comparative example of the conventional product.

本発明マッド材を高炉に使用したところ、出銑中の孔
径拡大が少なく、出銑時間が従来に比して1.5倍程長く
なり、これによってマッド材の使用量及び労働負荷が低
減した。
When the mud material of the present invention was used in a blast furnace, the expansion of the hole diameter during tapping was small, and the tapping time was about 1.5 times longer than before, thereby reducing the amount of mud material used and the labor load.

〔発明の効果〕 以上説明したように、この本発明はSiO2含有量75〜90
%の高珪酸ろう石を主原料として、微粉部に粒径44μm
以下の窒化珪素鉄と粒径44μm以下の黒鉛及び粘土を組
み合わせることにより、使用温度域での耐食性、強度が
充分となり、高炉におけて出銑孔の急激な拡大を生じな
い利点がある。
[Effect of the Invention] As described above, the present invention has a SiO 2 content of 75 to 90.
% Of high-silicate fossilite as the main raw material, the particle size is 44μm in the fine powder part
By combining the following silicon iron nitride with graphite and clay having a particle size of 44 μm or less, the corrosion resistance and strength in the operating temperature range are sufficient, and there is an advantage that the taphole does not rapidly expand in a blast furnace.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 貞行 兵庫県赤穂市中広字東沖1576番地の2 川崎炉材株式会社内 (72)発明者 小口 征男 兵庫県赤穂市中広字東沖1576番地の2 川崎炉材株式会社内 (72)発明者 川上 辰男 兵庫県赤穂市中広字東沖1576番地の2 川崎炉材株式会社内 (72)発明者 木口 満 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 妹尾 義和 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (58)調査した分野(Int.Cl.6,DB名) C21B 7/12 C04B 35/16──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Sadayuki Yamazaki 1576, Nakahirohiro Higashi-oki, Ako City, Hyogo Prefecture 2 Kawasaki Furnace Materials Co., Ltd. No. 2 in Kawasaki Furnace Materials Co., Ltd. (72) Inventor Tatsuo Kawakami 1576, Nakagiro-ji, Higashi-oki, Aki-shi, Hyogo No. 1576 2 in Kawasaki Furnace Materials Co., Ltd. Chome (without address) Mizushima Works, Kawasaki Steel Corporation (72) Inventor Yoshikazu Senoo 1-chome, Mizushima, Kawasaki-dori, Kurashiki City, Okayama Prefecture (without address number) Mizushima Works, Kawasaki Steel Corporation (58) Field surveyed (Int. Cl. 6 , DB name) C21B 7/12 C04B 35/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粒径44μm以下の黒鉛を0.5〜4重量部
と、粒径44μm以下の窒化珪素鉄15〜30重量部と、カオ
リン粘土5〜15重量部と、主原料として使用するSiO2
有量75〜90%の高珪酸ろう石および残部の耐火材51〜7
9.5重量部に、バインダーとして残炭素有機化合物を加
えて混練したことを特徴とする高炉出銑孔用マッド材。
1. 0.5 to 4 parts by weight of graphite having a particle size of 44 μm or less, 15 to 30 parts by weight of silicon iron nitride having a particle size of 44 μm or less, 5 to 15 parts by weight of kaolin clay, and SiO 2 used as a main raw material. High silicate pyroxene with a content of 75-90% and the rest refractory 51-7
A mud material for a blast furnace taphole, wherein a residual carbon organic compound is added and kneaded as a binder to 9.5 parts by weight.
JP1108258A 1989-04-27 1989-04-27 Mud material for blast furnace taphole Expired - Lifetime JP2787951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1108258A JP2787951B2 (en) 1989-04-27 1989-04-27 Mud material for blast furnace taphole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1108258A JP2787951B2 (en) 1989-04-27 1989-04-27 Mud material for blast furnace taphole

Publications (2)

Publication Number Publication Date
JPH02285015A JPH02285015A (en) 1990-11-22
JP2787951B2 true JP2787951B2 (en) 1998-08-20

Family

ID=14480097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1108258A Expired - Lifetime JP2787951B2 (en) 1989-04-27 1989-04-27 Mud material for blast furnace taphole

Country Status (1)

Country Link
JP (1) JP2787951B2 (en)

Also Published As

Publication number Publication date
JPH02285015A (en) 1990-11-22

Similar Documents

Publication Publication Date Title
US4605635A (en) Carbon-containing refractory
JP2787950B2 (en) Mud material for blast furnace taphole
JPH0352428B2 (en)
JP2787951B2 (en) Mud material for blast furnace taphole
JPH0196070A (en) Unfixed shape refractory to be used for spout for molten metal
JP3977900B2 (en) Blast furnace outlet closing mud material
JP2617086B2 (en) Silicon carbide casting material
JP2831311B2 (en) Blast furnace taphole plugging material
JP2610280B2 (en) Mud material for blast furnace taphole
JP2633018B2 (en) Carbon containing refractories
JP3661977B2 (en) Magnesia-carbon slide gate plate
KR100308922B1 (en) Method of Manufacturing Silicon Nitride Bonded Silicon Carbide Composites by Silicon Nitriding Reaction
JPH08231278A (en) Material for closing tap hole
JPH0578180A (en) Carbon fiber-containing refractory
JPH0140788B2 (en)
JPH06298572A (en) Mud material
JPH0585805A (en) Carbon-containing fire-resistant material
JPH01268811A (en) Mud material for tap hole of blast furnace
JP2922998B2 (en) Irregular refractories for blast furnace gutters
JPH0647502B2 (en) High-alumina casting material
JPS589874A (en) Refractories for blast furnace lining
JPS6350371A (en) Mud material for blast furnace tap hole
JPS6127350B2 (en)
JP2002255660A (en) Clogging material for tap hole in blast furnace
JPH01111780A (en) Unfired refractory

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 11

EXPY Cancellation because of completion of term