JP2783467B2 - Determination of impurity concentration in single crystal silicon rod - Google Patents

Determination of impurity concentration in single crystal silicon rod

Info

Publication number
JP2783467B2
JP2783467B2 JP3093253A JP9325391A JP2783467B2 JP 2783467 B2 JP2783467 B2 JP 2783467B2 JP 3093253 A JP3093253 A JP 3093253A JP 9325391 A JP9325391 A JP 9325391A JP 2783467 B2 JP2783467 B2 JP 2783467B2
Authority
JP
Japan
Prior art keywords
silicon
crystal silicon
single crystal
impurity concentration
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3093253A
Other languages
Japanese (ja)
Other versions
JPH05232104A (en
Inventor
和浩 原田
康 島貫
久 降屋
順一 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14077340&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2783467(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP3093253A priority Critical patent/JP2783467B2/en
Publication of JPH05232104A publication Critical patent/JPH05232104A/en
Application granted granted Critical
Publication of JP2783467B2 publication Critical patent/JP2783467B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は引き上げ法で成長された
単結晶シリコンロッドに係り、特に、単結晶シリコンロ
ッド中の不純物濃度を正確に定量する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal silicon rod grown by a pulling method, and more particularly to a method for accurately determining the impurity concentration in a single crystal silicon rod.

【0002】[0002]

【従来の技術】引き上げ法では、単結晶種子が坩堝中の
溶融シリコンに漬けられ、この単結晶種子は回転されな
がら徐々に引き上げられ、単結晶シリコンロッドが成長
してゆく。単結晶シリコンロッドの品質管理上、不純物
元素がこの単結晶シリコンロッドにどの程度の濃度で含
まれているかを把握する必要があるが、不純物元素は引
き上げ中の溶融シリコン中にきわめて微量しか含まれて
おらず、引き上げ中の溶融シリコンに含まれている不純
物元素を直接測定することは、現在のところ、困難であ
る。
2. Description of the Related Art In the pulling method, a single crystal seed is immersed in molten silicon in a crucible, and the single crystal seed is gradually pulled while being rotated, so that a single crystal silicon rod grows. For quality control of single-crystal silicon rods, it is necessary to understand the concentration of impurity elements in this single-crystal silicon rod.However, only a trace amount of impurity elements is contained in the molten silicon being pulled. At present, it is difficult at present to directly measure the impurity element contained in the molten silicon being pulled up.

【0003】そこで、引き上げ終了後に坩堝に固化して
残ったシリコン中に濃縮されて存在する不純物元素を定
量分析し、その測定値から単結晶シリコンロッド中の不
純物濃度を算出する、いわゆる残湯分析法が実施されて
いた。
[0003] In view of this, what is called a residual hot water analysis is to quantitatively analyze the impurity element present in the silicon remaining after solidification in the crucible after the lifting, and calculate the impurity concentration in the single crystal silicon rod from the measured value. The law had been implemented.

【0004】通常のシリコン単結晶引き上げ工程におい
ては、40〜50kg程度の溶融シリコンから単結晶シ
リコンロッドを成長させ、引き上げ終了時には約4〜5
kgの溶融シリコン残さが坩堝中に残っている。したが
って、単結晶シリコンの引き上げ工程における固化率は
約90%に達する。このシリコンの溶融残さは加熱を停
止すると固化する。しかしながら、シリコン溶融の残さ
の固化は同時に起きるのではなく、坩堝内の位置により
固化開始時間に差がある。この固化開始時間の差は不純
物の偏析の原因となり、固化したシリコン残さ中の不純
物濃度分布に著しい差を発生させる。図4と図5は、ひ
素のドープされた溶融シリコンから得られたシリコン塊
のXMA像(倍率40)を撮影した写真であり、図4は
シリコン塊の遅く固化した部分を撮影した写真であり、
同一シリコン塊の速く固化した部分は図5に示されてい
る。図中、白い模様はひ素のシリコンに対する比が1:
1に偏析した部分を表している。図4と図5を比較する
と明らかなように、同一シリコン塊でも遅く固化した部
分は、白い模様の示す割合が大きく、ひ素の濃度が大き
くなっている。
In a normal silicon single crystal pulling step, a single crystal silicon rod is grown from about 40 to 50 kg of molten silicon, and about 4 to 5
kg of molten silicon residue remains in the crucible. Therefore, the solidification rate in the single crystal silicon pulling step reaches about 90%. This silicon residue solidifies when the heating is stopped. However, solidification of the residue of silicon melting does not occur at the same time, but the solidification start time varies depending on the position in the crucible. This difference in the solidification start time causes segregation of impurities, and causes a significant difference in the impurity concentration distribution in the solidified silicon residue. 4 and 5 are XMA images (magnification: 40) of a silicon mass obtained from molten silicon doped with arsenic, and FIG. 4 is a photo of a slowly solidified portion of the silicon mass. ,
The fast solidified portion of the same silicon mass is shown in FIG. In the figure, the white pattern has a ratio of arsenic to silicon of 1:
The portion segregated to 1 is shown. As is apparent from a comparison between FIG. 4 and FIG. 5, even in the same silicon lump, the portion solidified late has a large white pattern ratio and a high arsenic concentration.

【0005】以上の説明から明かな通り、溶融シリコン
中に均一に含まれていた不純物は固化の際偏析し、坩堝
中の固化したシリコンの一部を定量分析しても、その分
析結果は試料の採集位置で大幅に変化する。したがっ
て、単結晶シリコンの引き上げ終了後に坩堝に残る固化
した残さから採集される試料を定量分析し、その分析値
から単結晶シリコンロッド中の不純物を推定する方法
(以下、従来方法1という)では、単結晶シリコンロッ
ド中の不純物濃度の推定値は、定量分析に付される試料
の採集位置により変動し、推定値の信頼性が低いという
難点があった。
As is clear from the above description, the impurities uniformly contained in the molten silicon segregate during solidification, and even if a part of the solidified silicon in the crucible is quantitatively analyzed, the analysis result is the same as the sample. It changes greatly depending on the collection position. Therefore, in the method of quantitatively analyzing a sample collected from the solidified residue remaining in the crucible after the completion of pulling up single crystal silicon and estimating impurities in the single crystal silicon rod from the analysis value (hereinafter, referred to as conventional method 1), The estimated value of the impurity concentration in the single-crystal silicon rod fluctuates depending on the position where the sample to be subjected to the quantitative analysis is collected, and there is a problem that the reliability of the estimated value is low.

【0006】かかる従来の単結晶シリコンロッドの不純
物推定方法の難点を解決すべく、固化率を向上させるこ
とが提案されている(1989年春期応用物理学会予稿
集、2p−ZP−2参照)。この方法では、シリコンの
固化率を99%以上に高め、少量のシリコン残さを固化
してから、固化したシリコンを硝弗酸で全量溶解した後
に、定量分析し、分析結果から不純物濃度を推定してい
た(以下、従来例2という)。かかる方法は、不純物の
偏析が定量分析の分析値に影響しないので、従来例1に
比べて変動の少ない推定値が得られる。
It has been proposed to improve the solidification rate in order to solve the problems of the conventional method for estimating impurities of a single crystal silicon rod (see the Spring 1989 Preprints, 2p-ZP-2). In this method, the solidification rate of silicon is increased to 99% or more, a small amount of silicon residue is solidified, the solidified silicon is completely dissolved with nitric hydrofluoric acid, and then quantitative analysis is performed, and the impurity concentration is estimated from the analysis result. (Hereinafter referred to as Conventional Example 2). In this method, since the segregation of impurities does not affect the analysis value of the quantitative analysis, an estimated value with less fluctuation than in Conventional Example 1 can be obtained.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来例
2では、固化率を高めるのに要するコストが大きく、製
品の製造原価を上昇させるという問題点があった。すな
わち、本来、引き上げ法では、販売できる単結晶シリコ
ンロッドだけ引き上げれば充分であるにもかかわらず、
定量分析用の残さを減少させるために、製品として販売
できない単結晶のテール部分の引き上げを続けなければ
ならない。特に、坩堝の加熱は溶融シリコン残さの減少
にともない効率が悪化し、引き上げ機の運転継続に要す
る費用を大幅に増加させていた。
However, the conventional example 2 has a problem that the cost required for increasing the solidification rate is large and the production cost of the product is increased. In other words, although the pulling method is essentially sufficient to pull only single-crystal silicon rods that can be sold,
In order to reduce the residue for quantitative analysis, the tail portion of a single crystal that cannot be sold as a product must be continuously raised. In particular, the efficiency of the heating of the crucible deteriorated with the decrease of the molten silicon residue, and the cost required to continue the operation of the pulling machine was greatly increased.

【0008】また、固化した多結晶シリコンは硝弗酸で
溶解しなければならないが、難溶性なので、シリコン残
さが100g以上だと溶解に長時間を要するという問題
点がある。一方、溶解に要する時間の短縮を図るべく、
シリコン残さを100g未満となるように固化率を更に
高めると、上述した引き上げ機の運転に要する費用が更
に増加するという問題点がある。
Further, the solidified polycrystalline silicon must be dissolved with nitric hydrofluoric acid. However, since it is hardly soluble, if the silicon residue is 100 g or more, it takes a long time to dissolve. On the other hand, in order to shorten the time required for dissolution,
If the solidification rate is further increased so that the silicon residue is less than 100 g, there is a problem that the cost required for operating the above-described lifting machine further increases.

【0009】加えて、引き上げられる単結晶シリコンロ
ッドのテール部分の形状は、制御しにくく、製品の外観
にも問題点があった。
In addition, the shape of the tail portion of the single-crystal silicon rod to be pulled is difficult to control, and there is a problem in the appearance of the product.

【0010】[0010]

【課題を解決するための手段】不純物の偏在は、シリコ
ンの固化過程で発生するのであり、固化前の溶融シリコ
ン残さ中では不純物は均一に分布している。したがっ
て、溶融シリコンから直接試料を採集すれば、試料採集
位置が異なっていても、分析結果に変動が生じず、信頼
度の高い推定値が得られる。しかしながら、高温の溶融
シリコンから試料を採集する治具を破損されにくい金属
材料で形成すると、溶融シリコンを汚染するので、金属
製の治具は不適であり、一方、溶融シリコンを汚染しな
い石英製の治具は、シリコンの固化時に熱応力で破損し
やすい。そこで、本願発明者は汚染の原因とならない石
英等を使用する方法を研究し、以下に記載する発明に至
った。
The uneven distribution of impurities occurs during the process of solidifying silicon, and the impurities are uniformly distributed in the molten silicon residue before solidification. Therefore, if the sample is directly collected from the molten silicon, even if the sample collection position is different, the analysis result does not change and a highly reliable estimated value can be obtained. However, if a jig for collecting a sample from high-temperature molten silicon is formed from a metal material that is not easily damaged, the molten silicon will be contaminated, so a metal jig is unsuitable. The jig is easily damaged by thermal stress when the silicon is solidified. Then, the inventor of the present application studied a method of using quartz or the like which does not cause contamination, and reached the invention described below.

【0011】本発明の要旨は、坩堝中の溶融シリコンか
ら単結晶シリコンのロッドを引き上げた後に坩堝中に残
存する溶融シリコンを該溶融シリコンを汚染しない材料
の治具を使用して試料を採集する段階と、採集後固化し
た試料の全量を溶解して溶解液を得る段階と、上記溶解
液中の不純物濃度を定量分析する段階と、上記定量分析
された不純物濃度から単結晶シリコンロッド中の不純物
濃度を算出する段階とを含む。
The gist of the present invention is to collect a sample using a jig made of a material which does not contaminate the molten silicon remaining in the crucible after pulling up a single crystal silicon rod from the molten silicon in the crucible. Dissolving the entire amount of the sample solidified after collection to obtain a solution, quantitatively analyzing the impurity concentration in the solution, and analyzing the impurity in the single-crystal silicon rod from the quantitatively analyzed impurity concentration. Calculating the concentration.

【0012】[0012]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0013】図1は本発明の一実施例で使用する引き上
げ機を示す概略断面図であり、図中、1は坩堝を示して
いる。坩堝1は加熱器2から熱を得て、シリコンを溶融
状態に保っている。チャック3に把持された単結晶種子
は回転機構5に連結された軸4でゆっくり回転しつつ、
引き上げられ、単結晶シリコンロッドを成長させて行
く。
FIG. 1 is a schematic sectional view showing a pulling machine used in one embodiment of the present invention, in which 1 indicates a crucible. The crucible 1 receives heat from the heater 2 to keep the silicon in a molten state. While the single crystal seed held by the chuck 3 is slowly rotated by the shaft 4 connected to the rotation mechanism 5,
It is pulled up and grows a single crystal silicon rod.

【0014】坩堝1は約40キログラムの溶融シリコン
6を保持しており、引き上げ機は単結晶シリコンロッド
が約35キログラム(固化率90%)に達すると、単結
晶シリコンロッドの成長を停止し、単結晶シリコンロッ
ドを冷却ゾーン7に移動する。
The crucible 1 holds about 40 kilograms of molten silicon 6, and the pulling machine stops the growth of the single crystal silicon rod when the single crystal silicon rod reaches about 35 kilograms (solidification rate 90%), The single crystal silicon rod is moved to the cooling zone 7.

【0015】次に、シャッタ8を閉じ、試料採集用の治
具を使用して試料を採取する。治具9は高純度石英で作
られた先端部9aを着脱自在に有しており、治具9は、
図2に示されているように、矢印A方向に移動して高純
度石英製の先端部9aで必要量(5〜30g)の溶融シ
リコン残さをすくい取る。溶融シリコンをすくい取った
治具9は矢印A方向と逆方向に移動し、高純度石英製の
受け皿10上に至る。受け皿10上に至った後、先端部
9aは溶融シリコンと共に冷却するので、熱膨張係数差
に起因して熱応力が発生し、破損する。しかしながら、
破損した先端部9aと試料は受け皿10上に四散するの
みなので、余さず捕収することができる。
Next, the shutter 8 is closed, and a sample is collected using a jig for collecting the sample. The jig 9 has a detachable tip portion 9a made of high-purity quartz.
As shown in FIG. 2, it is moved in the direction of arrow A, and a required amount (5 to 30 g) of the molten silicon residue is scooped off at the tip 9a made of high-purity quartz. The jig 9 from which the molten silicon has been scooped moves in the direction opposite to the direction of the arrow A, and reaches the tray 10 made of high-purity quartz. After reaching the receiving tray 10, the tip 9a is cooled together with the molten silicon, so that thermal stress is generated due to a difference in thermal expansion coefficient and the tip 9a is broken. However,
Since the damaged tip portion 9a and the sample only scatter on the receiving tray 10, they can be completely collected.

【0016】受け皿10は矢印B方向に移動し、先端部
9aの破片および試料はテフロンビーカー内に回収され
る。試料の相当部分は破片に付着しているので、テフロ
ンビーカーに弗酸をいれて石英を完全に溶解して除去す
る。残った試料を水洗した後に、試料の重量を秤量し、
所定量の硝弗酸で溶解する。上述のように、試料は5〜
30gなので、溶解は短時間で終了する。
The tray 10 moves in the direction of arrow B, and the fragments at the tip 9a and the sample are collected in a Teflon beaker. Since a considerable portion of the sample is attached to the debris, hydrofluoric acid is placed in a Teflon beaker to completely dissolve and remove the quartz. After washing the remaining sample with water, weigh the sample,
Dissolve with a predetermined amount of nitric hydrofluoric acid. As mentioned above, samples
Since it is 30 g, dissolution is completed in a short time.

【0017】つぎに、溶解液中の微量金属不純物の濃度
をICP−MS(Inductively Coupl
ed Plasma Mass Spectromet
ry)またはフレームレス原子吸光等の分析法で定量分
析して不純物濃度を決定する。かようにして不純物濃度
が決定されると、(数1)で単結晶シリコントップ部の
不純物濃度Cosが定量化される。なお、Clは坩堝に
残った溶融シリコン中の不純物濃度を、gはClが得ら
れたときの固化率を、kは不純物の偏析係数をそれぞれ
表している。なお、(数1)は初期状態で不純物が入っ
ていることを仮定している。
Next, the concentration of trace metal impurities in the solution was determined by ICP-MS (Inductively Coupled).
ed Plasma Mass Spectromet
ry) or quantitative analysis by an analytical method such as flameless atomic absorption to determine the impurity concentration. When the impurity concentration is thus determined, the impurity concentration Cos in the single crystal silicon top portion is quantified by (Equation 1). Note that Cl represents the impurity concentration in the molten silicon remaining in the crucible, g represents the solidification rate when Cl was obtained, and k represents the segregation coefficient of the impurities. (Equation 1) assumes that impurities are contained in the initial state.

【0018】[0018]

【数1】 Cos=kCl/(1−g)k-1 ## EQU1 ## Cos = kCl / (1-g) k-1

【0019】坩堝に残った溶融シリコン中の不純物は単
結晶シリコンロッド引き上げ前の溶融シリコンから引き
継いだと仮定すると、上式から単結晶シリコンロッドの
トップ部(固化率0)に含まれている不純物濃度の定量
値Cosが得られる。図3はFe,Cr,Niについて
本実施例による方法で測定した定量値Cos(小円で示
す)と、従来例2で固化率99%以上にした試料から測
定した定量値(小四角で示す)とを表すグラフである。
本実施例により測定した定量値Cosは固化率90%の
残さから得られた試料をICP−MS法で分析した。横
軸はFe、Cr、Niをそれぞれ示し、縦軸は定量値を
示している。Fe,Cr,Niの偏折係数はそれぞれ8
×10-6、3×10-5、3×10-5として計算した。図
3から明かな通り、両者はよく一致しており、本実施例
で正確な定量値が得られることが理解できる。本実施例
では、溶融状態で試料を採集するうえ僅か(5〜10
g)の試料で分析用溶解液が作れるのに対して、従来例
2では固化率を向上させるために数時間要し、更に、固
化した試料全量(100〜200g)を溶解するのに、
更に数時間を要した。したがって、本実施例では、従来
例に比べて分析に要する時間を約10時間短縮できた。
Assuming that the impurities in the molten silicon remaining in the crucible were inherited from the molten silicon before the single crystal silicon rod was pulled up, the impurities contained in the top portion (solidification rate 0) of the single crystal silicon rod can be calculated from the above equation. A quantitative value Cos of the concentration is obtained. FIG. 3 shows quantitative values Cos (indicated by small circles) of Fe, Cr, and Ni measured by the method according to the present embodiment, and quantitative values (indicated by small squares) measured from a sample having a solidification rate of 99% or more in Conventional Example 2. ).
As for the quantitative value Cos measured in this example, a sample obtained from a residue having a solidification rate of 90% was analyzed by an ICP-MS method. The horizontal axis shows Fe, Cr, and Ni, respectively, and the vertical axis shows quantitative values. The deflection coefficients of Fe, Cr and Ni are each 8
The calculation was performed as × 10 −6 , 3 × 10 −5 , and 3 × 10 −5 . As is evident from FIG. 3, the two agree well, and it can be understood that accurate quantitative values can be obtained in this example. In this embodiment, the sample is collected in a molten state and slightly (5-10
In contrast to g), a sample solution for analysis can be prepared, whereas in Conventional Example 2, several hours are required to improve the solidification rate, and further, the entire amount of solidified sample (100 to 200 g) is dissolved.
It took several more hours. Therefore, in the present embodiment, the time required for the analysis can be reduced by about 10 hours as compared with the conventional example.

【0020】[0020]

【効果】以上説明してきたように、本発明によると、溶
融シリコン残さから直接試料を採集し、その分析結果に
基づき単結晶シリコンロッド中の不純物濃度を定量する
ので、信頼度の高い定量値が僅かな費用の増加で短時間
の内に得られるという効果を奏する。
As described above, according to the present invention, a sample is directly collected from the molten silicon residue, and the impurity concentration in the single-crystal silicon rod is determined based on the analysis result. This has the effect that it can be obtained in a short time with a slight increase in cost.

【0021】また、単結晶シリコンロッドの引き上げ
は、製品部分の成長後、速やかに終了させられるので、
テール部の外観を損なうこともない。
Further, since the pulling of the single-crystal silicon rod is completed immediately after the growth of the product portion,
The appearance of the tail is not impaired.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例で使用する引き上げ機の概略
断面図である。
FIG. 1 is a schematic sectional view of a lifting machine used in one embodiment of the present invention.

【図2】本発明の一実施例の試料採集用治具を示す断面
図である。
FIG. 2 is a sectional view showing a sample collecting jig according to an embodiment of the present invention.

【図3】試料中の不純物濃度の定量値を示すグラフであ
る。
FIG. 3 is a graph showing quantitative values of impurity concentrations in a sample.

【図4】坩堝中で固化したシリコンの結晶構造の一部を
示す写真である。
FIG. 4 is a photograph showing a part of the crystal structure of silicon solidified in a crucible.

【図5】坩堝中で固化したシリコンの他の部分の結晶構
造を示す写真である。
FIG. 5 is a photograph showing a crystal structure of another portion of silicon solidified in a crucible.

【符号の説明】[Explanation of symbols]

1 坩堝 2 加熱器 3 シードチャック 6 溶融シリコン 7 冷却ゾーン 8 シャッター 9 試料採集用治具 9a 先端部 10 受け皿 DESCRIPTION OF SYMBOLS 1 Crucible 2 Heater 3 Seed chuck 6 Molten silicon 7 Cooling zone 8 Shutter 9 Sample collection jig 9a Tip part 10 Receiving tray

───────────────────────────────────────────────────── フロントページの続き (72)発明者 降屋 久 埼玉県大宮市北袋町一丁目297番地 三 菱マテリアル株式会社 中央研究所内 (72)発明者 松原 順一 埼玉県大宮市北袋町一丁目297番地 三 菱マテリアル株式会社 中央研究所内 審査官 亀田 宏之 (58)調査した分野(Int.Cl.6,DB名) G01N 33/00 G01N 21/31 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hisashi Furuya 1-297 Kitabukuro-cho, Omiya-shi, Saitama Prefecture Central Research Laboratory, Mitsubishi Materials Corporation (72) Inventor Junichi Matsubara 1-297 Kitabukuro-cho, Omiya-shi, Saitama Hiroyuki Kameda, Examiner, Central Research Laboratory, Mitsubishi Materials Corporation (58) Field surveyed (Int.Cl. 6 , DB name) G01N 33/00 G01N 21/31 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 坩堝中の溶融シリコンから単結晶シリコ
ンのロッドを引き上げた後に坩堝中に残存する溶融シリ
コンを該溶融シリコンを汚染しない材料の治具を使用し
て試料を採集する段階と、採集後固化した試料の全量を
溶解して溶解液を得る段階と、上記溶解液中の不純物濃
度を定量分析する段階と、上記定量分析された不純物濃
度から単結晶シリコンロッド中の不純物濃度を算出する
段階とを含む単結晶シリコンロッドの不純物濃度定量方
法。
1. A step of collecting a sample of molten silicon remaining in a crucible after pulling up a rod of single-crystal silicon from the molten silicon in the crucible using a jig made of a material that does not contaminate the molten silicon; Dissolving the entire amount of the post-solidified sample to obtain a solution, quantitatively analyzing the impurity concentration in the solution, and calculating the impurity concentration in the single-crystal silicon rod from the quantitatively analyzed impurity concentration. And a method for quantifying the impurity concentration of a single-crystal silicon rod.
JP3093253A 1991-03-29 1991-03-29 Determination of impurity concentration in single crystal silicon rod Expired - Lifetime JP2783467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3093253A JP2783467B2 (en) 1991-03-29 1991-03-29 Determination of impurity concentration in single crystal silicon rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3093253A JP2783467B2 (en) 1991-03-29 1991-03-29 Determination of impurity concentration in single crystal silicon rod

Publications (2)

Publication Number Publication Date
JPH05232104A JPH05232104A (en) 1993-09-07
JP2783467B2 true JP2783467B2 (en) 1998-08-06

Family

ID=14077340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3093253A Expired - Lifetime JP2783467B2 (en) 1991-03-29 1991-03-29 Determination of impurity concentration in single crystal silicon rod

Country Status (1)

Country Link
JP (1) JP2783467B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266813A (en) * 2005-03-23 2006-10-05 Komatsu Electronic Metals Co Ltd Melt collection tool, and ingot manufacturing device using melt collection tool
US7520932B2 (en) * 2006-04-05 2009-04-21 Dow Corning Corporation Method of analyzing carbon concentration in crystalline silicon
JP5194165B1 (en) * 2011-11-29 2013-05-08 シャープ株式会社 Method for inspecting refined metal lump and method for producing high purity metal including the same
JP6439593B2 (en) * 2015-06-02 2018-12-19 信越半導体株式会社 Impurity analysis method and silicon crystal evaluation method
JP6459903B2 (en) * 2015-10-30 2019-01-30 信越半導体株式会社 Impurity analysis method and silicon single crystal manufacturing method
CN108732307A (en) * 2018-05-04 2018-11-02 扬州连城金晖金刚线切片研发有限公司 A kind of list of diamond wire slice, the polycrystalline silicon rod method of inspection

Also Published As

Publication number Publication date
JPH05232104A (en) 1993-09-07

Similar Documents

Publication Publication Date Title
Durand et al. Carbon solubility in solid and liquid silicon—A review with reference to eutectic equilibrium
Youngquist et al. Secondary nucleation in a class II system: Ammonium sulfate‐water
JP4833747B2 (en) Quality evaluation method of crystal grown ingot
JP2783467B2 (en) Determination of impurity concentration in single crystal silicon rod
Pang et al. Solution heat treatment optimization of fourth-generation single-crystal nickel-base superalloys
Zhang et al. Effect of grain-boundary characteristics on castability of nickel-base superalloys
Semiatin et al. Segregation and homogenization of a near-gamma titanium aluminide
JPH0247532A (en) Analysis of trace metal for semiconductor material
JP6439593B2 (en) Impurity analysis method and silicon crystal evaluation method
JP2604924B2 (en) Method for analyzing impurities in silicon crystal
Autruffe et al. High performance multicrystalline silicon: Grain structure and iron precipitation
JP3368732B2 (en) Method for analyzing impurities in silicon
Wang et al. High-throughput extraction of the anisotropic interdiffusion coefficients in hcp Mg–Al alloys
JPH02259563A (en) Method for determining concentration of metal impurity in cz single crystal silicon
Li et al. Effects of directional solidification parameters and crystal selector on microstructure of single crystal of Ni-base superalloys
US6916657B2 (en) Evaluation method for polycrystalline silicon
JP6459903B2 (en) Impurity analysis method and silicon single crystal manufacturing method
US20220381761A1 (en) Method for determining trace metals in silicon
CN112304844B (en) Method for rapidly measuring initial melting temperature of single crystal high-temperature alloy
JP2017109883A (en) Metal impurity analysis method and evaluation method of silicon crystal
JP5413242B2 (en) Polycrystalline silicon impurity concentration measurement method
JPH06298591A (en) Crucible for pulling up silicon single crystal
JPH0725561B2 (en) Quartz glass crucible
JPS605095A (en) Method for growing li2b4o7 single crystal
KR20030026385A (en) Method For Manufacturing Mold Type Ferro Alloy Sample For Quantiative Analysis

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980421

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110522

Year of fee payment: 13

EXPY Cancellation because of completion of term