JP2782889B2 - Method for producing fiber-reinforced inorganic material - Google Patents

Method for producing fiber-reinforced inorganic material

Info

Publication number
JP2782889B2
JP2782889B2 JP2017436A JP1743690A JP2782889B2 JP 2782889 B2 JP2782889 B2 JP 2782889B2 JP 2017436 A JP2017436 A JP 2017436A JP 1743690 A JP1743690 A JP 1743690A JP 2782889 B2 JP2782889 B2 JP 2782889B2
Authority
JP
Japan
Prior art keywords
molded body
mold
fiber
base material
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2017436A
Other languages
Japanese (ja)
Other versions
JPH03223177A (en
Inventor
正 佐々
渡辺  孝
裕次 関谷
隆志 大浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2017436A priority Critical patent/JP2782889B2/en
Publication of JPH03223177A publication Critical patent/JPH03223177A/en
Application granted granted Critical
Publication of JP2782889B2 publication Critical patent/JP2782889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、繊維強化無機系材料の製造方法に係り、特
に、任意の形状を有しかつ緻密な組織の繊維強化無機系
材料を得る方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a fiber-reinforced inorganic material, and more particularly to a method for obtaining a fiber-reinforced inorganic material having an arbitrary shape and a dense structure. It is about.

「従来の技術」 高温、高強度、高靭性、耐環境安定性が特に必要とさ
れる技術分野である航空機、ロケット、宇宙、核融合、
エネルギ関連技術分野では、ロケット・ジェット・ラム
ジェットエンジン、超高温耐熱壁用の材料として、超耐
熱材料である繊維強化無機系材料が求められている。
"Conventional technology" High-temperature, high-strength, high-toughness, and environmental stability are particularly required in the fields of aircraft, rocket, space, nuclear fusion,
In the energy-related technical field, a fiber-reinforced inorganic material that is a super heat-resistant material is required as a material for a rocket, a jet, a ram jet engine, and an ultra-high temperature heat-resistant wall.

かかる用途を完全に満たす材料を提供することは困難
であるが、一部を満足させる材料として、炭素系繊維の
表面に、耐熱性、耐酸化性母材組織層を付着させた耐熱
性複合材料等が検討されている。
Although it is difficult to provide a material that completely satisfies such uses, a heat-resistant composite material in which a heat-resistant, oxidation-resistant base material tissue layer is adhered to the surface of a carbon-based fiber as a material that partially satisfies such a use. Etc. are being studied.

従来、かかる耐熱性複合材料を製造する場合には、複
数の単繊維を集合させて、フィラメントワインディング
(繊維を芯金に巻き付ける方法)、シート積層、多次元
織り等の成形方法により目的とする形状の繊維成形体を
形成しておき、該繊維成形体にCVI法(Chemical Vapor
Infiltration)を用いて気体原料を含浸させつつ熱化学
反応を生じさせることにより、繊維成形体に耐熱性を有
する母材組織層を必要な厚さに形成する方法が採用され
ている。このCVI法によると、母材質の付着組織の制御
を比較的容易に行うことができる等の長所を有してい
る。
Conventionally, when manufacturing such a heat-resistant composite material, a plurality of single fibers are aggregated, and a desired shape is formed by a forming method such as filament winding (a method of winding fibers around a core metal), sheet lamination, or multidimensional weaving. Is formed, and the CVI method (Chemical Vapor
A method has been adopted in which a thermochemical reaction is caused while impregnating a gaseous raw material using infiltration to form a heat-resistant base material tissue layer in a fiber molded body to a required thickness. According to the CVI method, there is an advantage that the control of the attached tissue of the base material can be performed relatively easily.

「発明が解決しようとする課題」 しかしながら、フィラメントワインディング、シート
積層、多次元織り等の成形方法では、繊維成形体の形状
が限定され、単純な形状のものしか成形できない。ま
た、多次元織りの成形方法では極めて工数がかかる。一
方、母材組織層を形成した後の複合材料を機械加工等に
よって成形するとしても、緻密な母材組織層により高硬
度、高剛性を有するため、実質的に加工不可能である。
[Problems to be Solved by the Invention] However, in a molding method such as filament winding, sheet lamination, or multidimensional weaving, the shape of a fiber molded body is limited, and only a simple shape can be molded. In addition, a multi-dimensional weaving molding method requires a very long man-hour. On the other hand, even if the composite material after the formation of the base material structure layer is formed by machining or the like, the dense base material structure layer has high hardness and high rigidity, so that it cannot be processed substantially.

本発明は上記事情に鑑みて提案されたもので、緻密な
母材組織層を有し、かつ任意形状の成形を可能にするこ
とを目的とするものである。
The present invention has been proposed in view of the above circumstances, and has an object to have a dense base material structure layer and to enable molding of an arbitrary shape.

「課題を解決するための手段」 上記目的を達成するため、本発明では、複数の単繊維
を集合させた状態の繊維成形体の形成工程と、該繊維成
形体を型により成形し、その型を閉じた状態で型の隙間
から繊維成形体に気体原料を含浸させつつ熱化学反応を
生じさせて繊維成形体に部分的に母材質を形成する工程
と、該母材質を部分的に形成した中間成形体を型から外
した後その表面全体に気体原料を含浸させつつ熱化学反
応を生じさせて中間成形体の空隙を埋める母材組織層を
形成する工程とを有する繊維強化無機系材料の製造方法
としている。
"Means for Solving the Problems" In order to achieve the above object, in the present invention, a step of forming a fiber molded body in a state where a plurality of single fibers are aggregated, forming the fiber molded body by a mold, and forming the mold A step of causing a thermochemical reaction while impregnating the fiber molded body with a gaseous raw material from the gap of the mold in a state where the mold is closed to partially form a matrix material in the fiber molded body, and partially forming the matrix material Forming a matrix material layer that fills the voids of the intermediate molded body by causing a thermochemical reaction while impregnating the entire surface with the gaseous raw material after removing the intermediate molded body from the mold. Manufacturing method.

「作用」 本発明の製造方法では、繊維成形体を型により希望す
る形状に成形し、その型閉め状態で型の隙間からCVI法
を施すことにより、単繊維の表面に母材質を部分的に付
着形成した中間成形体を作製する。この状態では、中間
成形体は、母材質間に空隙が残った状態ではあるが、部
分的に付着した母材質により型崩れしない程度に単繊維
が結合される。したがって、この状態で型から外しても
中間成形体が元に戻ることはなく、成形時の形状が保持
される。そして、型から外して中間成形体の全面から本
格的に気体原料を含浸させて熱化学反応を生じさせるこ
とにより、前記空隙を埋めて緻密な母材組織層を形成す
るものである。
In the manufacturing method of the present invention, the fiber material is formed into a desired shape by a mold, and the matrix material is partially applied to the surface of the single fiber by performing the CVI method from a gap of the mold in a closed state of the mold. An intermediate formed body formed by adhesion is produced. In this state, the intermediate molded body is in a state in which voids are left between the base materials, but the single fibers are bonded to such an extent that the shape does not collapse due to the partially adhered base material. Therefore, even if the intermediate molded body is removed from the mold in this state, the intermediate molded body does not return to its original state, and the shape at the time of molding is maintained. Then, by removing the mold and fully impregnating the entire surface of the intermediate molded body with a gaseous raw material to cause a thermochemical reaction, the voids are filled to form a dense base material structure layer.

「実施例」 本発明に係る繊維強化無機系材料の製造方法の実施工
程例について、第1図ないし第3図に基づいて説明す
る。
"Example" An example of an embodiment of a method for producing a fiber-reinforced inorganic material according to the present invention will be described with reference to Figs. 1 to 3.

[繊維成形体の形成工程] 適用される繊維は、無機系母材を強化するために好適
な高温強度を有する繊維であることが必要であり、例え
ば、炭素、炭化硅素、窒化硅素、アルミナ、ジルコニ
ア、ムライトその他の無機系耐熱材料を主成分とする繊
維である。
[Process of Forming Fiber Molded Body] The fiber to be applied needs to be a fiber having a high-temperature strength suitable for reinforcing an inorganic base material. For example, carbon, silicon carbide, silicon nitride, alumina, It is a fiber mainly composed of zirconia, mullite and other inorganic heat-resistant materials.

このような繊維により例えば航空エンジンのアフター
バーナ部品を製作すべく、該繊維をシート積層、多次元
織り等の成形方法により例えば平板状に成形する。この
成形によって得られる繊維成形体1は、複数の単繊維1a
を集合させたものであるため、第1図(B)に示すよう
に各単繊維1aの間等に多くの空隙1bを有するものとなっ
ている。
In order to manufacture, for example, an afterburner part for an aircraft engine using such fibers, the fibers are formed into, for example, a flat plate by a forming method such as sheet lamination or multidimensional weaving. The fiber molded body 1 obtained by this molding has a plurality of single fibers 1a.
Therefore, as shown in FIG. 1 (B), many voids 1b are provided between the single fibers 1a.

[型押し及び部分的母材質形成工程] 炭素材料により希望する形状のキャビティ2を有する
型3を製作し、その上型3Aと下型3Bとの間に前記繊維成
形体1を配置して第1図(A)に示すように型閉めする
ことにより、キャビティ2内に圧縮成形する。そして、
型3を型閉め状態に保持するため、上型3Aと下型3Bとを
例えば炭素材料で作られたボルト・ナット4により固定
する。
[Embossing and Partial Base Material Forming Step] A mold 3 having a cavity 2 of a desired shape is manufactured from a carbon material, and the fiber molded body 1 is disposed between an upper mold 3A and a lower mold 3B. 1 As shown in FIG. 1 (A), the mold is closed, and compression molding is performed in the cavity 2. And
In order to hold the mold 3 in the mold closed state, the upper mold 3A and the lower mold 3B are fixed by bolts and nuts 4 made of, for example, a carbon material.

次いで、この型閉め状態の型3ごと繊維成形体1を第
2図(A)に示すようにCVI装置の反応炉5内に設置
し、反応炉5の気体充填口5aから気体原料を送り込みな
がら前述したCVI法を施して中間成形体6を作製する。
この場合、例えば炭素繊維1aに対して炭化水素系の気体
原料、例えば水素−5%メタンの組成の気体原料を用い
て1250℃の高温下にて処理を行う、反応炉5内に送り込
まれた気体原料は型3の隙間からキャビティ2内に侵入
し、熱化学反応によって繊維成形体1の単繊維1aの表面
に母材質6aを形成するが、該繊維成形体1の空隙1bの体
積の約10%に母材質6aが付着形成された時点で処理を停
止する。
Next, as shown in FIG. 2 (A), the fiber molded body 1 together with the mold 3 in the closed mold state is placed in the reaction furnace 5 of the CVI apparatus, and the gas raw material is fed from the gas filling port 5a of the reaction furnace 5 while being sent. The intermediate molded body 6 is produced by performing the above-mentioned CVI method.
In this case, for example, the carbon fiber 1a is fed into the reaction furnace 5 in which a treatment is performed at a high temperature of 1250 ° C. using a hydrocarbon-based gas source, for example, a gas source having a composition of hydrogen-5% methane. The gaseous raw material enters the cavity 2 through the gap of the mold 3 and forms a base material 6a on the surface of the single fiber 1a of the fiber molded body 1 by a thermochemical reaction. The process is stopped when the base material 6a is adhered to 10%.

そして、型3ごと中間成形体6を反応炉5から取り出
した後、型3を開いて中間成形体6をキャビティ2から
外す。この状態では、中間成形体6に部分的に母材質6a
が付着形成しており、大部分に空隙6bが残った状態であ
るが、その母材質6aによって単繊維1aが結合され、中間
成形体6はキャビティ2の形状に保持されて、型崩れが
防止された状態となる。
Then, after taking out the intermediate molded body 6 together with the mold 3 from the reaction furnace 5, the mold 3 is opened and the intermediate molded body 6 is removed from the cavity 2. In this state, the base material 6a is partially
Are adhered and formed, and the voids 6b are mostly left. However, the single fibers 1a are joined by the base material 6a, and the intermediate molded body 6 is held in the shape of the cavity 2 to prevent mold collapse. It will be in the state that was done.

[本格的母材組織層形成工程] 次いで、中間成形体6のみをCVI装置の反応炉5内に
入れて、炭素製の受け台等の上に設置し、中間成形体6
の全面から気体原料を含浸させつつ高温下で熱化学反応
を生じさせて、中間成形体6の単繊維1aの表面上に母材
組織層(母材質)7aを形成する。この場合、炭化水素ガ
スと硅素含有気体との混合ガス、例えば水素−8%メタ
ン−10%四塩化硅素の組成の混合ガスを気体原料として
用い、中間成形体6の空隙6bに炭化硅素を母材として形
成させる。
[Full-Scale Base Material Tissue Layer Forming Step] Next, only the intermediate molded body 6 is placed in the reaction furnace 5 of the CVI apparatus, and is set on a carbon cradle or the like.
A thermochemical reaction is caused at a high temperature while impregnating the gaseous raw material from the entire surface of the intermediate molded body 6 to form a base material structure layer (base material) 7 a on the surface of the single fiber 1 a of the intermediate molded body 6. In this case, a mixed gas of a hydrocarbon gas and a silicon-containing gas, for example, a mixed gas of a composition of hydrogen-8% methane-10% silicon tetrachloride is used as a gas raw material, and silicon It is formed as a material.

この処理は、前述したように母材質7aの付着組織の制
御を正確に行い得ることにより、単繊維1aの表面に同心
円状の年輪のように母材質7aが付着成長して、繊維1aの
間の空隙6bを徐々に埋めていくものとなる。そして、そ
の空隙6bが消滅し開気孔率が0%となるまでこの工程を
継続する。
In this process, the base material 7a adheres and grows like a concentric annual ring on the surface of the single fiber 1a by being able to accurately control the adhering tissue of the base material 7a as described above. Is gradually filled. Then, this step is continued until the void 6b disappears and the open porosity becomes 0%.

このようにして製作した繊維強化材料7は、炭素繊維
で強化され、炭素と炭化硅素を母材とする複合材料によ
り、高い強度を発揮し得るとともに、前述の圧縮成形時
に繊維成形体を部分的に結合してしまうから、型の3の
キャビティ2に応じた任意の形状を得ることができ、し
かも、最終的な母材組織層7aの形成工程においては、型
3から外した状態で中間成形体6の全面から気体原料を
含浸させるようにしており、内部の繊維1aまで母材組織
層7aにより確実に包囲して緻密な組織を得ることができ
る。したがって、従来の金属製部品より耐熱性等に優れ
た特性を発揮するものである。
The fiber reinforced material 7 manufactured in this manner is reinforced with carbon fiber, and can exhibit high strength by using a composite material based on carbon and silicon carbide. Therefore, an arbitrary shape corresponding to the cavity 2 of the mold 3 can be obtained, and in the final step of forming the base material structure layer 7a, the intermediate molding is performed while the mold 3 is removed. The entire surface of the body 6 is impregnated with the gaseous raw material, so that the inner fiber 1a can be reliably surrounded by the base material tissue layer 7a to obtain a dense structure. Therefore, it exhibits properties superior in heat resistance and the like to conventional metal parts.

「発明の効果」 以上の説明で明らかなように、本発明に係る繊維強化
無機系材料の製造方法によれば、次のような効果を奏す
ることができる。
[Effects of the Invention] As is clear from the above description, the following effects can be obtained according to the method for producing a fiber-reinforced inorganic material according to the present invention.

(i)型を閉じた状態で繊維成形体に部分的に母材質を
形成することにより、その母材質によって型崩れしない
程度に単繊維を結合させ得るので、型から外した後に復
元してしまうことを防止でき、したがって、複数形状等
の任意の形状に形成することができる。
(I) By partially forming the matrix material in the fiber molded body with the mold closed, the single fibers can be bonded to such an extent that the mold does not collapse due to the matrix material, and the fiber is restored after being removed from the mold. Therefore, it can be formed in an arbitrary shape such as a plurality of shapes.

(ii)型から外した後に全面から気体原料を含浸させつ
つ母材組織層を形成するので、内部の単繊維も確実に包
囲した状態で空隙を埋め、緻密組織のものを得ることが
でき、複合材料としての強度、品質を向上させることが
できる。
(Ii) Since the matrix material layer is formed while being impregnated with the gaseous raw material from the entire surface after the mold is removed from the mold, the voids can be filled in a state in which the internal single fibers are also securely surrounded, and a dense structure can be obtained. Strength and quality as a composite material can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第3図は本発明に係る繊維強化無機系材料
の製造方法の実施工程例を示すもので、第1図(A)は
繊維成形体を型により成形した状態を示す正断面図、第
1図(B)はそのときの繊維成形体の拡大横断面図、第
2図(A)は型閉め状態で母材質を形成している状態を
示す正断面図、第2図(B)は部分的に母材質を形成し
た状態の中間成形体の拡大横断面図、第3図(A)は型
から取り外した後の中間成形体に母材組織層を形成して
いる状態を示す正断面図、第3図(B)は母材組織層を
形成した後の繊維強化無機系材料の拡大横断面図であ
る。 1……繊維成形体、1a……単繊維、1b……空隙、2……
キャビティ、3……型、4……ボルト・ナット、5……
反応炉、6……中間成形体、6a……母材質、6b……空
隙、7a……母材組織層(母材質)、7……繊維強化無機
系材料。
1 to 3 show an example of an embodiment of a process for producing a fiber-reinforced inorganic material according to the present invention. FIG. 1 (A) is a front sectional view showing a state in which a fiber molded body is molded by a mold. FIG. 1 (B) is an enlarged transverse sectional view of the fiber molded body at that time, FIG. 2 (A) is a front sectional view showing a state in which a base material is formed in a mold closed state, and FIG. ) Is an enlarged cross-sectional view of an intermediate molded body in a state where a base material is partially formed, and FIG. 3A shows a state in which a base material tissue layer is formed in the intermediate molded body after being removed from a mold. FIG. 3 (B) is an enlarged cross-sectional view of the fiber-reinforced inorganic material after forming the base material tissue layer. 1 ... fiber molded body, 1a ... single fiber, 1b ... void, 2 ...
Cavity, 3 ... mold, 4 ... bolt / nut, 5 ...
Reaction furnace, 6: Intermediate molded body, 6a: Base material, 6b: Void, 7a: Base material structure layer (base material), 7: Fiber-reinforced inorganic material.

フロントページの続き (72)発明者 大浪 隆志 東京都江東区豊洲3丁目1番15号 石川 島播磨重工業株式会社技術研究所内 (56)参考文献 特開 平2−164781(JP,A) 特開 昭64−87581(JP,A) 特開 平3−28177(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/71 - 35/84 C04B 38/00 - 38/10 C04B 41/80 - 41/91Continuation of the front page (72) Inventor Takashi Onami 3-1-1-15 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries, Ltd. Technical Research Institute (56) References JP-A-2-1644781 (JP, A) JP-A Sho 64-87581 (JP, A) JP-A-3-28177 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 35/71-35/84 C04B 38/00-38 / 10 C04B 41/80-41/91

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数の単繊維を集合させた状態の繊維成形
体の形成工程と、該繊維成形体を型により成形し、その
型を閉じた状態で型の隙間から繊維成形体に気体原料を
含浸させつつ熱化学反応を生じさせて繊維成形体に部分
的に母材質を形成する工程と、該母材質を部分的に形成
した中間成形体を型から外した後その表面全体から気体
原料を含浸させつつ熱化学反応を生じさせて中間成形体
の空隙を埋める母材組織層を形成する工程とを有するこ
とを特徴とする繊維強化無機系材料の製造方法。
1. A step of forming a fiber molded body in a state in which a plurality of single fibers are aggregated, forming the fiber molded body by a mold, and closing the mold to form a gaseous raw material from the gap of the mold into the fiber molded body. Forming a base material in the fiber molded body by causing a thermochemical reaction while impregnating the material; and removing the intermediate molded body partially formed from the base material from the mold, and then removing the gaseous material from the entire surface thereof. Forming a base material tissue layer that fills voids of the intermediate molded body by causing a thermochemical reaction while impregnating the intermediate molded body.
JP2017436A 1990-01-26 1990-01-26 Method for producing fiber-reinforced inorganic material Expired - Lifetime JP2782889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017436A JP2782889B2 (en) 1990-01-26 1990-01-26 Method for producing fiber-reinforced inorganic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017436A JP2782889B2 (en) 1990-01-26 1990-01-26 Method for producing fiber-reinforced inorganic material

Publications (2)

Publication Number Publication Date
JPH03223177A JPH03223177A (en) 1991-10-02
JP2782889B2 true JP2782889B2 (en) 1998-08-06

Family

ID=11943975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017436A Expired - Lifetime JP2782889B2 (en) 1990-01-26 1990-01-26 Method for producing fiber-reinforced inorganic material

Country Status (1)

Country Link
JP (1) JP2782889B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220402828A1 (en) * 2021-06-18 2022-12-22 Goodrich Corporation Shape forming opf preform

Also Published As

Publication number Publication date
JPH03223177A (en) 1991-10-02

Similar Documents

Publication Publication Date Title
US10954168B2 (en) Ceramic matrix composite articles and methods for forming same
US5547737A (en) Light-weight, high-strength, stiff panels
US4581263A (en) Graphite fiber mold
US5632834A (en) Process for producing sandwich structures from fiber-reinforced ceramics
US5888641A (en) Fiber reinforced ceramic matrix composite internal combustion engine exhaust manifold
US7200912B2 (en) Making composite material parts from blanks made by reinforcing a fiber structure and/or bonding fiber structures together
GB2197618A (en) Panels
JP2782889B2 (en) Method for producing fiber-reinforced inorganic material
CN114411242B (en) Quartz fiber reinforced carbon-silicon dioxide composite material guide cylinder and preparation method thereof
US4949921A (en) Method of molding fiber reinforced glass matrix composite articles
JP2782885B2 (en) Method for producing fiber-reinforced inorganic material
US7037602B2 (en) Multilayer composite
EP0888245A1 (en) Carbon-carbon piston architectures
JP2782890B2 (en) Method for producing fiber-reinforced inorganic material
JPS5851913B2 (en) Manufacturing method for fiber-reinforced ceramics
JP3371993B2 (en) Method for producing fiber-reinforced ceramic composite material
JP2782891B2 (en) Method for producing fiber-reinforced inorganic material
CN217211888U (en) Clamp for testing high-temperature mechanical properties of material
JP3128571B2 (en) Method of manufacturing C / C composite product
JPS63277563A (en) Fiber-reinforced silicon carbide ceramics and production thereof
JPH0143621B2 (en)
JP2782888B2 (en) Fiber reinforced inorganic material and method for producing the same
CN114414363A (en) Manufacturing method of clamp for testing high-temperature mechanical properties of material
JPS63302292A (en) Heat-insulating material for high temperature furnace
JPH03205358A (en) Production of carbon fiber-reinforced carbon composite material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080522

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080522

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080522

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100522

Year of fee payment: 12