JP2780419B2 - Impurity introduction device and its introduction method - Google Patents
Impurity introduction device and its introduction methodInfo
- Publication number
- JP2780419B2 JP2780419B2 JP2053428A JP5342890A JP2780419B2 JP 2780419 B2 JP2780419 B2 JP 2780419B2 JP 2053428 A JP2053428 A JP 2053428A JP 5342890 A JP5342890 A JP 5342890A JP 2780419 B2 JP2780419 B2 JP 2780419B2
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- impurities
- introducing
- impurity
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012535 impurity Substances 0.000 title claims description 42
- 238000000034 method Methods 0.000 title claims description 8
- 239000000463 material Substances 0.000 claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 8
- 239000010409 thin film Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- 238000004544 sputter deposition Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は固体の表面近傍に不純物を導入する装置及び
その導入方法に関するものであり、特に半導体装置製造
分野の不純物導入に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for introducing impurities near the surface of a solid, and more particularly to impurity introduction in the field of semiconductor device manufacturing.
従来の技術 プラズマ発生装置を用いて不純物を導入する時には、
例えばアプライド フィジクス レターズ,vol53、pp20
59、1988に記載のごとく第3図に示した装置を用いる。
以下に第3図を参照しながら説明する。この図面はECR
タイプのイオンソースを用い必要に応じてRF等の高周波
を印加しうる構造の装置である。チェンバーは大きく分
けて、ECRイオンソース2と反応チェンバー4に分かれ
る。これらのチェンバー内壁6は高真空を維持するに足
る機械的強度を有する金属材料で構成される事が一般的
である。これらのチェンバー内雰囲気はターボ分子ポン
プ8等の真空ポンプを用いて高真空に保たれる。この例
では5X10-7torr以上の高真空である。不純物を導入する
対象の試料に例えばシリコンウエハー10を用いるならば
それに適した形のウエハーホルダー12を作成しウエハー
10を装着する。この場合ホルダー12は冷却材を使用する
事によってウエハー10を冷却(この場合は80℃以下)す
ることが出来る。高真空のチェンバーに所望のガスを導
入し、マイクロ波発生装置14からマイクロ波導波管16を
介して導かれたマイクロ波と、磁場によってプラズマ
(図示せず)を発生させる。このプラズマは自らのポテ
ンシャルと発散磁界によってウエハー10に到達する。更
に例えば均一性を向上させる等の他の目的がある場合に
は、ウエハーホルダー12に高周波電源20から高周波等
(直流バイアスでも可)を印加する事によりプラズマを
整える事が出来る。この様にして、適切な真空度、ガス
導入量、マイクロ波・高周波のパワーを維持した設定の
時間ウエハー10をプラズマに曝すとウエハー表面10aに
適切な量の不純物を導入する事が出来る。2. Description of the Related Art When introducing impurities using a plasma generator,
For example, Applied Physics Letters, vol53, pp20
The apparatus shown in FIG. 3 is used as described in 59, 1988.
This will be described below with reference to FIG. This drawing is ECR
This is an apparatus having a structure that can apply a high frequency such as RF as needed using a type ion source. The chamber is roughly divided into an ECR ion source 2 and a reaction chamber 4. These chamber inner walls 6 are generally made of a metal material having mechanical strength sufficient to maintain a high vacuum. The atmosphere in these chambers is maintained at a high vacuum using a vacuum pump such as a turbo molecular pump 8. In this example, the high vacuum is 5 × 10 −7 torr or more. For example, if a silicon wafer 10 is used as a sample into which impurities are to be introduced, a wafer holder 12 of a shape suitable for the silicon wafer 10 is formed and a wafer is prepared.
Attach 10 In this case, the holder 12 can cool the wafer 10 (in this case, 80 ° C. or lower) by using a coolant. A desired gas is introduced into a high vacuum chamber, and plasma (not shown) is generated by a microwave guided from a microwave generator 14 via a microwave waveguide 16 and a magnetic field. This plasma reaches the wafer 10 by its own potential and diverging magnetic field. Further, if there is another purpose such as improvement of uniformity, the plasma can be adjusted by applying a high frequency or the like (a DC bias is also possible) from the high frequency power supply 20 to the wafer holder 12. In this manner, when the wafer 10 is exposed to the plasma for a set time while maintaining the appropriate degree of vacuum, gas introduction amount, and microwave / high-frequency power, an appropriate amount of impurities can be introduced into the wafer surface 10a.
発明が解決しようとする課題 先に従来例で示した方法を半導体製造に応用する場合
の問題点について説明する。半導体装置を作成する場合
に、不純物を導入する目的は、半導体表面の所望のキャ
リア濃度の領域を所望の部位に形成する事である。従っ
て目的とする特性のキャリアを得るためには、特定の不
純物のみを導入しなければならない。しかるに、従来例
で示した装置を用いると主に2つの点で問題が発生す
る。1つは、チェンバー構成材料の混入である。第3図
より明かな様に、発生するプラズマに対してウエハー10
と同様に反応チェンボー4の内壁も同電位となる。従っ
て、チェンバーの機械材料はプラズマのポテンシャルに
よってイオンの照射を受け続ける事になる。通常チェン
バー(即ちグランド)に対してプラズマは数10〜数100e
Vのポテンシャルを有していてこのエネルギーに従って
チェンバーがイオンの照射を受ける。このエネルギー範
囲はスパッタリングが優勢に生じる領域であるため、チ
ェンバーの構成材料がスパッタリングされプラズマ内に
混入する。この混入した不必要なイオンが所望のイオン
と混じってウエハー10に導入される。真空チェンバーは
通常重金属で構成されているから、ウエハーに重金属が
導入される事になる。シリコン半導体の場合、重金属は
キャリアの再結合中心として働くから与える悪影響は甚
大である。2つめは、他導電性キャリアの混入である。
前述したエネルギーのプラズマはデポジションをも引き
起こす。シリコンにボロンを導入しようとした場合、ボ
ロンを含むガスを用いてプラズマを発生するとチェンバ
ー内壁6に金属ボロンが堆積する。この堆積した金属ボ
ロンは前述したスパッタリングの対象となるので、金属
材料と同様に再混入する。このため、同一チェンバーで
多種類の不純物を用いると他の不必要な不純物を同時に
導入してしまい、又この量は制御しにくいので種類の異
なる不純物が互いに相殺して、所望のキャリア濃度が得
られなくなる。Problems to be Solved by the Invention Problems to be solved when the method shown in the conventional example is applied to semiconductor manufacturing will be described. When manufacturing a semiconductor device, the purpose of introducing impurities is to form a region having a desired carrier concentration on a semiconductor surface at a desired portion. Therefore, in order to obtain a carrier having desired characteristics, only specific impurities must be introduced. However, the use of the device shown in the conventional example causes problems mainly in two points. One is the mixing of chamber constituent materials. As is clear from FIG.
Similarly, the inner wall of the reaction chamber 4 has the same potential. Therefore, the mechanical material of the chamber continues to be irradiated with ions due to the potential of the plasma. Usually several tens to several hundreds of plasma per chamber (ie ground)
It has a potential of V and the chamber is irradiated with ions according to this energy. Since this energy range is a region where sputtering predominates, the constituent materials of the chamber are sputtered and mixed into the plasma. The mixed unnecessary ions are introduced into the wafer 10 while being mixed with desired ions. Since the vacuum chamber is usually made of heavy metal, heavy metal is introduced into the wafer. In the case of a silicon semiconductor, the heavy metal acts as a carrier recombination center, so that the adverse effect is significant. The second is mixing of other conductive carriers.
The above-mentioned energy plasma also causes deposition. When trying to introduce boron into silicon, if plasma is generated using a gas containing boron, metal boron is deposited on the inner wall 6 of the chamber. Since the deposited metal boron is subjected to the above-mentioned sputtering, it is re-mixed similarly to the metal material. For this reason, if various impurities are used in the same chamber, other unnecessary impurities are introduced at the same time, and since the amount is difficult to control, impurities of different types cancel each other to obtain a desired carrier concentration. Can not be.
本発明は、上述の問題点に鑑みてなされ、プラズマ反
応チェンバー内壁から好ましくない材料を排除すること
により、汚染をなくすと共に不純物導入を正確に行うこ
とができる不純物の導入装置及びその導入方法を提供す
ることを目的とする。The present invention has been made in view of the above-described problems, and provides an impurity introduction apparatus and an introduction method capable of eliminating impurities and accurately introducing impurities by removing undesirable materials from the inner wall of the plasma reaction chamber. The purpose is to do.
課題を解決するための手段 上記の目的を達成するために本発明の不純物導入装置
は、プラズマを用いて試料に複数の異なる不純物を導入
する不純物の導入装置であって、所望の不純物元素、分
子毎に専用の複数の真空槽を具備する構成となってい。
そして、好ましくは、真空槽の内壁を機能材料薄膜で被
覆するものである。ここで、機能性材とは、スパッタリ
ングの収率が低い材料またはスパッタされて試料に混入
しても電気的に問題を引き起こさない材料のことであ
る。Means for Solving the Problems In order to achieve the above object, an impurity introduction device of the present invention is an impurity introduction device for introducing a plurality of different impurities into a sample using plasma, and includes a desired impurity element, It is configured to have a plurality of dedicated vacuum chambers for each.
Preferably, the inner wall of the vacuum chamber is covered with a thin film of a functional material. Here, the functional material is a material having a low sputtering yield or a material which does not cause an electrical problem even when sputtered and mixed into a sample.
作用 本発明は上述の構成により、任意の不純物を制御性良
く、固体表面に導入する事が可能となる。又、特に半導
体装置製造に本発明のようなプラズマドーピングを用い
る際には電気的に悪影響を及ぼす不必要な不純物を除去
し得るので、極めて高性能の半導体装置を作製する事が
できる。Operation In the present invention, with the above-described configuration, it becomes possible to introduce arbitrary impurities into the solid surface with good controllability. In addition, when plasma doping as in the present invention is used for manufacturing a semiconductor device, unnecessary impurities having an adverse effect on electrical properties can be removed, so that an extremely high-performance semiconductor device can be manufactured.
実施例 (実施例1) 以下に第1図を参照しながら、本発明の1実施例につ
いて説明する。第1図は本発明の主旨から明らかな様
に、基本的な構造は従来例で示したものと同一である。
この図面はECRタイプのイオンソースを用い必要に応じ
てRF等の高周波を印加しうる構造の装置である。チェン
バーは大きく分けて、ECRイオンソース2と反応チェン
バー4に分かれる。これらのチェンバー内壁6は高真空
を維持するに足る機械的強度を有する金属材料で構成さ
れる事が一般的である。このチェンバーの内壁6に、Si
又はOを含んだ物質またはガスを導入してプラズマを発
生させ、いわゆるプラズマCVD法を用いてSIまたはシリ
コン酸化物薄膜を被覆させ、それを機能性材料22として
用いる。本実施例では高純度のシリコンを用いている。
これらのチェンバー内雰囲気はターボ分子ポンプ8等の
真空ポンプを用いて高真空に保たれる。この例では5X10
-7torr以上の高真空である。不純物を導入する対象の試
料に例えばシリコンウエハー10を用いるならばそれに適
した形のウエハーホルダー12を作成しウエハー10を装着
する。この場合ホルダー12は冷却材を使用する事によっ
てウエハー10を冷却(この場合は80℃以下)することが
出来る。この例では前記ウエハーホルダー12やウエハー
ホルダーを支えるロッド24等の金属材料の表面をも高純
度のシリコンで被覆した。高真空のチェンバー所望のガ
スを導入し、マイクロ波発生装置14からマイクロ波導波
管16を介して導かれたマイクロ波と、磁場によってプラ
ズマを発生させる。このプラズマは自らのポテンシャル
と発散磁界によってウエハー10に到達する。更に均一性
を向上させるために、ウエハーホルダー12に高周波電源
20から高周波等を印可する事によりプラズマを整えた。
この様にして、本実施例では反応用に用いる真空チェン
バーの内壁を機能性材料で被覆しておく事によって、ウ
エハー表面10aに必要な不純物だけを汚染を伴うことな
く正確に導入する事ができる。Embodiment (Embodiment 1) An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows that the basic structure is the same as that shown in the conventional example, as apparent from the gist of the present invention.
This drawing shows an apparatus having a structure in which an ECR type ion source can be used to apply a high frequency such as RF as required. The chamber is roughly divided into an ECR ion source 2 and a reaction chamber 4. These chamber inner walls 6 are generally made of a metal material having mechanical strength sufficient to maintain a high vacuum. On the inner wall 6 of this chamber,
Alternatively, a substance or gas containing O is introduced to generate plasma, and the SI or silicon oxide thin film is coated by using a so-called plasma CVD method, and this is used as the functional material 22. In this embodiment, high-purity silicon is used.
The atmosphere in these chambers is maintained at a high vacuum using a vacuum pump such as a turbo molecular pump 8. 5X10 in this example
High vacuum of -7 torr or more. If, for example, a silicon wafer 10 is to be used as a sample into which impurities are to be introduced, a wafer holder 12 having a shape suitable for it is prepared and the wafer 10 is mounted. In this case, the holder 12 can cool the wafer 10 (in this case, 80 ° C. or lower) by using a coolant. In this example, the surface of the metal material such as the wafer holder 12 and the rod 24 supporting the wafer holder was also coated with high-purity silicon. A desired gas in a high vacuum chamber is introduced, and plasma is generated by a microwave guided from a microwave generator 14 through a microwave waveguide 16 and a magnetic field. This plasma reaches the wafer 10 by its own potential and diverging magnetic field. In order to further improve the uniformity, a high-frequency power supply
The plasma was prepared by applying high frequency from 20.
In this way, in this embodiment, by coating the inner wall of the vacuum chamber used for the reaction with a functional material, only the necessary impurities on the wafer surface 10a can be accurately introduced without contamination. .
(実施例2) 第2図を用いて本発明の第2の実施例について説明す
る。本実施例は異なる種類の不純物が混合しない様に、
即ち他の不純物を導入した際に付随してチェンバー壁に
付着もしくは堆積した物質が本来の不純物を導入する際
に混入する事を防ぐため、チェンバーを専用化して必要
な不純物の数だけ不純物の導入装置にチェンバーを設け
る。従って、基本的には第1の実施例で述べたチェンバ
ーを組み合わせ用いる。このため、個々の不純物導入プ
ロセスは本発明の第1の実施例で記述したものと全く同
様である。多くの種類の不純物を連続して導入する場合
には、チェンバー間に真空搬送系26を設け、所謂マルチ
チェンバーの形式を採れば良い。Embodiment 2 A second embodiment of the present invention will be described with reference to FIG. In this embodiment, different types of impurities are not mixed,
In other words, in order to prevent substances adhering or accumulating on the chamber wall accompanying the introduction of other impurities from being mixed when introducing the original impurities, the chamber is dedicated and the impurities are introduced by the number of necessary impurities. Provide a chamber in the device. Therefore, basically, the chambers described in the first embodiment are used in combination. Therefore, the individual impurity introduction processes are exactly the same as those described in the first embodiment of the present invention. When many types of impurities are continuously introduced, a vacuum transfer system 26 may be provided between the chambers to adopt a so-called multi-chamber type.
なお、実施例1,2では、真空槽内にSi又はOを含んだ
物質またはガスを導入してプラズマを発生させ、いわゆ
るプラズマCVD法を用いて形成したSiまたはシリコン酸
化物薄膜を真空槽内壁被覆機能材料として用いている
が、あらかじめプラズマ溶射によって形成した機能材料
薄膜を内壁に具備した真空槽を用いるか、またはあらか
じめ溶剤に混入させたシリコン酸化物微粉末を塗布する
方法で形成したシリコン酸化膜を内壁に具備した真空槽
を用いても同様の効果を有する。In Examples 1 and 2, a substance or gas containing Si or O was introduced into the vacuum chamber to generate plasma, and a Si or silicon oxide thin film formed by using a so-called plasma CVD method was applied to the inner wall of the vacuum chamber. Silicon oxide which is used as a coating functional material, but is formed by using a vacuum chamber having a functional material thin film formed on the inner wall in advance by plasma spraying, or by applying a silicon oxide fine powder previously mixed in a solvent. The same effect can be obtained by using a vacuum chamber having a film on the inner wall.
発明の効果 以上述べた様に本発明によれば、固体基板に不純物を
導入する際に不要の不純物の導入を完全に阻止できるた
め、希望通りの性能を持つ不純物層を形成する事が出来
る。特に、半導体に応用した場合には、所望の電気特性
を得られるため高性能の超LSIを製造する事が出来る。Effects of the Invention As described above, according to the present invention, unnecessary impurities can be completely prevented from being introduced when impurities are introduced into a solid substrate, so that an impurity layer having desired performance can be formed. In particular, when applied to semiconductors, desired electrical characteristics can be obtained, so that a high-performance VLSI can be manufactured.
第1図は本発明の第1の実施例の装置構成概略図、第2
図は本発明の第2の実施例の装置構成概略図、第3図は
従来例の装置構成概略図である。 2……ECRイオンソース、4……反応チェンバー、6…
…チェンバー内壁、8……ターボ分子ポンプ、10……ウ
エハー、12……ウエハーホルダー、14……マイクロ波発
生装置、16……マイクロ波導波管、20……高周波電源、
22……機能性材料、24……ロッド。FIG. 1 is a schematic view of the device configuration of a first embodiment of the present invention, and FIG.
FIG. 3 is a schematic diagram of a device according to a second embodiment of the present invention, and FIG. 3 is a schematic diagram of a device according to a conventional example. 2 ... ECR ion source, 4 ... Reaction chamber, 6 ...
... chamber inner wall, 8 ... turbo molecular pump, 10 ... wafer, 12 ... wafer holder, 14 ... microwave generator, 16 ... microwave waveguide, 20 ... high frequency power supply,
22 ... Functional material, 24 ... Rod.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 21/265 H01J 37/317──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 21/265 H01J 37/317
Claims (4)
物を導入する不純物の導入装置であって、所望の不純物
元素、分子毎に専用の複数の真空槽を具備することを特
徴とする不純物の導入装置。An impurity introducing apparatus for introducing a plurality of different impurities into a sample by using plasma, comprising a plurality of vacuum chambers dedicated for each desired impurity element or molecule. Introduction device.
い材料またはスパッタされて試料に混入しても電気的に
問題を引き起こさない機能材料薄膜で被覆したことを特
徴とする特許請求の範囲第1項に記載の不純物の導入装
置。2. The method according to claim 1, wherein the inner wall of the vacuum chamber is coated with a material having a low sputtering yield or a functional material thin film which does not cause an electrical problem even when sputtered and mixed into a sample. An apparatus for introducing impurities according to claim 1.
い材料またはスパッタされて試料に混入しても電気的に
問題を引き起こさない機能材料薄膜で被覆し、前記機能
材料薄膜が、真空槽内にSiまたはOを含んだ物質または
ガスを導入してプラズマを発生させ、プラズマCVD法を
用いて形成されたSiまたはシリコン酸化物薄膜であるこ
とを特徴とする特許請求の範囲第1項に記載の不純物の
導入装置。3. An inner wall of a vacuum chamber is coated with a material having a low sputtering yield or a functional material thin film which does not cause an electrical problem even when sputtered and mixed into a sample. 2. A silicon or silicon oxide thin film formed by using a plasma CVD method to generate a plasma by introducing a substance or gas containing Si or O into the thin film, according to claim 1, wherein Impurity introduction device.
物を導入する不純物の導入方法であって、所望の不純物
元素、分子毎に専用に設けられた複数の真空槽内で各々
の不純物の導入を行うことを特徴とする不純物の導入方
法。4. An impurity introduction method for introducing a plurality of different impurities into a sample using plasma, wherein each impurity is introduced into a plurality of vacuum chambers provided exclusively for each desired impurity element or molecule. A method of introducing impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2053428A JP2780419B2 (en) | 1990-03-05 | 1990-03-05 | Impurity introduction device and its introduction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2053428A JP2780419B2 (en) | 1990-03-05 | 1990-03-05 | Impurity introduction device and its introduction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03255622A JPH03255622A (en) | 1991-11-14 |
JP2780419B2 true JP2780419B2 (en) | 1998-07-30 |
Family
ID=12942569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2053428A Expired - Lifetime JP2780419B2 (en) | 1990-03-05 | 1990-03-05 | Impurity introduction device and its introduction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2780419B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7622725B2 (en) | 2005-03-30 | 2009-11-24 | Panaosnic Corporation | Impurity introducing apparatus and impurity introducing method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2919254B2 (en) * | 1993-11-22 | 1999-07-12 | 日本電気株式会社 | Semiconductor device manufacturing method and forming apparatus |
JP3080867B2 (en) * | 1995-09-25 | 2000-08-28 | 日本電気株式会社 | Method for manufacturing SOI substrate |
JP4790896B2 (en) * | 2000-05-26 | 2011-10-12 | エーユー オプトロニクス コーポレイション | Manufacturing method and manufacturing apparatus of active matrix device including top gate type TFT |
US7759254B2 (en) | 2003-08-25 | 2010-07-20 | Panasonic Corporation | Method for forming impurity-introduced layer, method for cleaning object to be processed apparatus for introducing impurity and method for producing device |
KR100757347B1 (en) | 2006-08-30 | 2007-09-10 | 삼성전자주식회사 | Ion implanter |
US7939388B2 (en) | 2006-10-25 | 2011-05-10 | Panasonic Corporation | Plasma doping method and plasma doping apparatus |
JP5710591B2 (en) * | 2009-04-20 | 2015-04-30 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Enhanced removal of residual fluorine radicals using a silicon coating on the process chamber walls |
US8461030B2 (en) * | 2009-11-17 | 2013-06-11 | Varian Semiconductor Equipment Associates, Inc. | Apparatus and method for controllably implanting workpieces |
EP3503159B1 (en) * | 2017-12-20 | 2021-05-05 | The Swatch Group Research and Development Ltd | Method for implanting ions on a surface of an object to be treated |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63279552A (en) * | 1987-05-11 | 1988-11-16 | Nissin Electric Co Ltd | Ion beam irradiation device |
JPH01255140A (en) * | 1988-04-05 | 1989-10-12 | Denki Kagaku Kogyo Kk | Arc chamber for ion source |
-
1990
- 1990-03-05 JP JP2053428A patent/JP2780419B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7622725B2 (en) | 2005-03-30 | 2009-11-24 | Panaosnic Corporation | Impurity introducing apparatus and impurity introducing method |
US7626184B2 (en) | 2005-03-30 | 2009-12-01 | Panasonic Corporation | Impurity introducing apparatus and impurity introducing method |
Also Published As
Publication number | Publication date |
---|---|
JPH03255622A (en) | 1991-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4262631A (en) | Thin film deposition apparatus using an RF glow discharge | |
US4173661A (en) | Method for depositing thin layers of materials by decomposing a gas to yield a plasma | |
US6454912B1 (en) | Method and apparatus for the fabrication of ferroelectric films | |
US4151058A (en) | Method for manufacturing a layer of amorphous silicon usable in an electronic device | |
US4572759A (en) | Troide plasma reactor with magnetic enhancement | |
US4876983A (en) | Plasma operation apparatus | |
US4013533A (en) | Volatilization and deposition of a semi-conductor substance and a metallic doping impurity | |
US4612207A (en) | Apparatus and process for the fabrication of large area thin film multilayers | |
US6328858B1 (en) | Multi-layer sputter deposition apparatus | |
JPH07268622A (en) | Microwave plasma sticking source | |
US6335268B1 (en) | Plasma immersion ion processor for fabricating semiconductor integrated circuits | |
JP2780419B2 (en) | Impurity introduction device and its introduction method | |
WO1993018201A1 (en) | Plasma implantation process and equipment | |
JP3351843B2 (en) | Film formation method | |
KR20200089342A (en) | Geometrically selective deposition of dielectric films using low frequency bias | |
GB1585558A (en) | Growing native semiconductor oxide layers | |
US6388366B1 (en) | Carbon nitride cold cathode | |
JP2004047695A (en) | Method and apparatus for plasma doping | |
JP3084243B2 (en) | Method of depositing dielectric layer by PECVD method | |
JP2859721B2 (en) | Plasma processing equipment | |
US6811611B2 (en) | Esrf source for ion plating epitaxial deposition | |
JP2000199060A (en) | Electronic cyclotron resonance plasma sputtering device, and manufacture of thin film | |
JPH03279294A (en) | Growth of epitaxial layer | |
JPH0687440B2 (en) | Microwave plasma generation method | |
JP3220528B2 (en) | Vacuum processing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090515 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100515 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100515 Year of fee payment: 12 |