JP2780205B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2780205B2
JP2780205B2 JP16890790A JP16890790A JP2780205B2 JP 2780205 B2 JP2780205 B2 JP 2780205B2 JP 16890790 A JP16890790 A JP 16890790A JP 16890790 A JP16890790 A JP 16890790A JP 2780205 B2 JP2780205 B2 JP 2780205B2
Authority
JP
Japan
Prior art keywords
temperature
film
atmosphere
wsin
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16890790A
Other languages
Japanese (ja)
Other versions
JPH0456319A (en
Inventor
健一 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16890790A priority Critical patent/JP2780205B2/en
Publication of JPH0456319A publication Critical patent/JPH0456319A/en
Application granted granted Critical
Publication of JP2780205B2 publication Critical patent/JP2780205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 〔概 要〕 本発明は半導体集積回路装置に包含される抵抗体の形
成に関し、 抵抗体皮膜の抵抗値温度依存性を解消することによっ
て、低温動作中の集積回路装置が環境温度変化の影響を
受けることなく動作する状況の実現を目的とし、 半導体装置の製造方法に包含されるWSiN抵抗皮膜の堆
積形成を、WSi0.6をターゲットとするAr+N2雰囲気中で
のスパッタリングによって行い、その際 該雰囲気のガス流量比をAr:N2=1:2とし、且つ 堆積されるWSiNの40K〜300Kの範囲での平均的な抵抗
率変化が、同じ温度範囲でWSiが示す金属性の抵抗率変
化を補償し、結果的に該温度範囲で抵抗率の温度依存性
が解消されている組成となるように該雰囲気の圧力を0.
8〜1.2×10-3Torrの範囲で選定して該処理を行うことに
より構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to the formation of a resistor included in a semiconductor integrated circuit device. The present invention relates to an integrated circuit device operating at a low temperature by eliminating the temperature dependence of the resistance value of a resistor film. Of the WSiN resistive film included in the manufacturing method of the semiconductor device by the sputtering in the Ar + N 2 atmosphere with the target of WSi 0.6 . At that time, the gas flow ratio of the atmosphere was set to Ar: N 2 = 1: 2, and the average change in resistivity of the deposited WSiN in the range of 40K to 300K was the same as that of WSi in the same temperature range. Pressure in the atmosphere so that the composition has a composition in which the temperature dependency of the resistivity is eliminated in the temperature range.
The processing is performed by selecting the range of 8 to 1.2 × 10 −3 Torr.

〔産業上の利用分野〕[Industrial applications]

高電子移動度トランジスタ(HEMT)やホットエレクト
ロントランジスタ(HET)のような半導体素子を能度素
子とする集積回路は、常温での動作に比べ77K程度の低
温での動作が著しく高速となることから、液体窒素中に
浸漬した状態で動作させることも行われている。
Integrated circuits that use semiconductor devices such as high electron mobility transistors (HEMT) and hot electron transistors (HET) as active devices can operate at a low temperature of about 77K significantly faster than at room temperature. In some cases, the apparatus is operated while immersed in liquid nitrogen.

その他、ジョセフソン接合素子のように低温動作が常
温であるものや、高集積化に因る発熱増加から強力な冷
却を必要とする集積回路など、液体窒素温度のような低
温環境で動作させる場合が増えている。
In addition, when operating in a low-temperature environment such as liquid nitrogen temperature, such as those that operate at low temperature at room temperature, such as Josephson junction elements, and integrated circuits that require strong cooling due to increased heat generation due to high integration. Is increasing.

このような集積回路は低温動作中に温度変動が起こっ
ても正常に動作することが要求される他、低温動作を前
提として設計されたものであっても、常温近傍の高温で
も正常に動作することが求められる場合がある。
Such an integrated circuit is required to operate normally even when a temperature fluctuation occurs during a low-temperature operation, and even if the integrated circuit is designed on the assumption of a low-temperature operation, it also operates normally even at a high temperature near normal temperature. May be required.

環境温度の変動に影響されることなく集積回路が正常
に動作するためには、回路を構成する各種素子の温度依
存性が十分に小であるか、或いは相互に補償し合うよう
な温度依存性を持つものでなければならない。回路素子
の中、抵抗素子は温度依存性を示すものの一つであり、
40K〜300K(望ましくは40〜300K)程度の温度範囲で抵
抗率変化の少ない抵抗体皮膜を形成し得ることは、温度
依存性の無い集積回路を実現するのに不可欠である。
In order for integrated circuits to operate normally without being affected by environmental temperature fluctuations, the temperature dependence of the various elements that make up the circuit must be sufficiently small or compensate for each other. Must have Among the circuit elements, the resistance element is one of those showing temperature dependence,
It is indispensable to be able to form a resistor film with a small change in resistivity in a temperature range of about 40K to 300K (preferably 40 to 300K) in order to realize an integrated circuit having no temperature dependency.

〔従来の技術〕[Conventional technology]

集積回路用抵抗皮膜として用いられている皮膜の一つ
にWSiN膜がある。これはN2雰囲気中でタングステンシリ
サイド(WSi)をスパッタすることによって得られる
が、その際ターゲットにはWSi0.6なる組成のものが通常
用いられる。雰囲気はAr+N2、圧力はミリTorr程度であ
る。
One of the films used as a resistive film for integrated circuits is a WSiN film. This is obtained by sputtering tungsten silicide (WSi) in an N 2 atmosphere. At this time, a target having a composition of WSi 0.6 is usually used. The atmosphere is Ar + N 2 and the pressure is about milliTorr.

該皮膜の組成は固定的なものではなく、WSiXNYで表さ
れ、形成時の雰囲気の圧力によって変動するものであ
る。また、この物質は半導体的性質を示し、温度の上昇
に伴って導電率が上昇する。第2図はこの状況を示すも
ので、スパッタリングの雰囲気はAr:N2=1:2、圧力が7.
0×10-3Torrと3.5×10-3Torrの場合のシート抵抗の温度
変化が描かれている。両曲線は何れも右下がりであると
同時に、図中に矢印で示されるように、雰囲気圧力が低
くなるに従ってシート抵抗値も低下している。
The composition of the film is not fixed, but is represented by WSi X N Y , and varies depending on the pressure of the atmosphere at the time of formation. In addition, this material exhibits semiconducting properties, and the conductivity increases with an increase in temperature. FIG. 2 shows this situation. The sputtering atmosphere was Ar: N 2 = 1: 2 and the pressure was 7.
The temperature change of the sheet resistance at 0 × 10 −3 Torr and 3.5 × 10 −3 Torr is shown. At the same time, both curves have a downward slope, and as indicated by the arrows in the figure, the sheet resistance value decreases as the atmospheric pressure decreases.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

第2図に明示されているように、通常の条件で形成さ
れたWSiN膜は、液体窒素温度と常温とでシート抵抗が大
きく異なる。このように変化幅が大きい材料で抵抗体を
形成したのでは、温度変化に対して集積回路が安定に動
作することは望めない。
As clearly shown in FIG. 2, the sheet resistance of the WSiN film formed under normal conditions differs greatly between liquid nitrogen temperature and normal temperature. If the resistor is formed of such a material having a large change width, it cannot be expected that the integrated circuit operates stably with respect to temperature change.

本発明の目的は、液体窒素程度の低温から常温までの
温度範囲で、抵抗率変動の少ないWSiN膜を形成する方法
を提供することであり、それによって温度変化に対し動
作の安定した集積回路を提供することである。
An object of the present invention is to provide a method for forming a WSiN film having a small resistivity variation in a temperature range from a low temperature of about liquid nitrogen to a normal temperature, thereby providing an integrated circuit which operates stably with respect to a temperature change. To provide.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、本発明の半導体装置の製造
方法に含まれるWSiN膜の堆積形成では、 該皮膜の堆積形成を、WSi0.6をターゲットとするAr+
N2雰囲気中でのスパッタリングにより形成するに際し、 該雰囲気のガス流量比をAr:N2=1:2とし、且つ 堆積されるWSiNの70K〜300Kの範囲での平均的な抵抗
率変化が、同じ温度範囲でWSiが示す金属性の抵抗率変
化を補償し、結果的に該温度範囲で抵抗率の温度依存性
が解消されている組成となるように、該雰囲気の圧力を
0.8〜1.2×10-3Torrの範囲で選定することが行われる。
To achieve the above object, the deposited the WSiN film included in the semiconductor device manufacturing method of the present invention, the deposition formation of said coating, the WSi 0.6 targeting Ar +
When forming by sputtering in an N 2 atmosphere, the gas flow ratio of the atmosphere is set to Ar: N 2 = 1: 2, and the average resistivity change of the deposited WSiN in the range of 70K to 300K is as follows: The pressure of the atmosphere is adjusted so as to compensate for the change in the metallic resistivity exhibited by WSi in the same temperature range and, as a result, to obtain a composition in which the temperature dependence of the resistivity is eliminated in the temperature range.
Selection is performed in the range of 0.8 to 1.2 × 10 −3 Torr.

〔作 用〕(Operation)

第2図に示されているように、スパッタリング実行時
の圧力をより低くすれば、シート抵抗が低下すると共に
70K〜300Kの範囲の抵抗率変動範囲はより小となる。そ
の場合も低温時に低導電率となる半導体的性質は受け継
がれる。
As shown in FIG. 2, lowering the pressure during the execution of sputtering lowers the sheet resistance and
The variation range of the resistivity in the range of 70K to 300K is smaller. Also in that case, the semiconducting property of low conductivity at low temperature is inherited.

一方、非N2雰囲気でスパッタリングにより形成された
WSi膜は第3図に示されるように、高温ほど低導電率と
なる金属的性質を備えている。従って、第2図に見られ
るWSiN膜の抵抗率変化の傾向を敷衍し、より低圧でスパ
ッタリングを行えば、堆積するWSiN間の抵抗率の温度変
化はWSi膜の金属的傾向を相殺したもの、即ち温度依存
性を殆ど持たないものとなる。
On the other hand, it was formed by sputtering in a non-N 2 atmosphere.
As shown in FIG. 3, the WSi film has metallic properties such that the higher the temperature, the lower the conductivity. Therefore, by extending the tendency of the resistivity change of the WSiN film shown in FIG. 2 and performing sputtering at a lower pressure, the temperature change of the resistivity between the deposited WSiNs offsets the metallic tendency of the WSi film, That is, it has almost no temperature dependency.

〔実施例〕〔Example〕

ターゲット材料の組成をWSi0.6とし、ガス流量比をA
r:N2=1:2、圧力を1.0×10-3Torrとしてスパッタリング
を行った時の、堆積したWSiN膜の抵抗率が温度変化を示
したものが第1図である。
The target material composition is WSi 0.6 , and the gas flow ratio is A
FIG. 1 shows the resistivity of the deposited WSiN film as a function of temperature when sputtering is performed with r: N 2 = 1: 2 and a pressure of 1.0 × 10 −3 Torr.

同図に明らかな如く、40K〜300Kの範囲でシート抵抗
は略一定である。これは堆積したWSiN膜の組成が、WSi
膜の金属的性質をちょうど補償する半導体的性質のもの
となっている故と考えられる。即ち、この温度範囲での
抵抗率変化の平均値が、WSi膜の抵抗率変化を相殺して
いると見なし得るのである。
As is apparent from the figure, the sheet resistance is substantially constant in the range of 40K to 300K. This is because the composition of the deposited WSiN film is
It is considered that the film has a semiconductor property that just compensates for the metal property of the film. That is, it can be considered that the average value of the change in resistivity in this temperature range cancels out the change in resistivity of the WSi film.

このように堆積した皮膜が金属的性質と半導体的性質
をちょうど補償したものとなる圧力条件は使用する装置
によって若干異なるが、殆どの場合0.8〜1.2×10-3Torr
の範囲に収まる。
The pressure conditions under which the deposited film just compensates for the metallic and semiconducting properties vary slightly depending on the equipment used, but in most cases 0.8 to 1.2 × 10 -3 Torr.
Within the range.

〔発明の効果〕〔The invention's effect〕

本発明の方法によって形成された抵抗皮膜は広い温度
範囲にわたって抵抗率が略一定であるから、これを用い
た集積回路では、設定された環境温度から外れた温度条
件の下でも安定に動作することになる。
Since the resistance film formed by the method of the present invention has a substantially constant resistivity over a wide temperature range, an integrated circuit using the same can operate stably even under a temperature condition deviating from a set environmental temperature. become.

【図面の簡単な説明】[Brief description of the drawings]

第1図は実施例のWSiN膜のシート抵抗の温度依存性を示
す図、 第2図は一般的なWSiN膜のシート抵抗の温度依存性を示
す図、 第3図はWSi膜のシート抵抗の温度依存性を示す図 である。
FIG. 1 is a diagram showing the temperature dependence of the sheet resistance of the WSiN film of the embodiment, FIG. 2 is a diagram showing the temperature dependence of the sheet resistance of a general WSiN film, and FIG. FIG. 3 is a diagram showing temperature dependence.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】WSix(x≒0.6)をターゲットとし、Ar+N
2雰囲気中で実施するスパッタリングによってWSiN皮膜
を堆積形成する処理を包含する半導体装置の製造に於い
て、 該雰囲気のガス流量比をAr:N2=1:2とし、且つ、 堆積されるWSiNのシート抵抗値の温度依存性が解消され
ている組成となるように、該雰囲気の圧力を0.8〜1.2×
10-3Torrの範囲で選定して該皮膜の堆積形成処理を行う
ことを特徴とする半導体装置の製造方法。
(1) Ar + N, targeting WSi x (x ≒ 0.6)
(2) In manufacturing a semiconductor device including a process of depositing and forming a WSiN film by sputtering performed in an atmosphere, the gas flow ratio of the atmosphere is set to Ar: N 2 = 1: 2, and the WSiN of the deposited WSiN is The pressure of the atmosphere is set to 0.8 to 1.2 × so as to have a composition in which the temperature dependency of the sheet resistance is eliminated.
A method for manufacturing a semiconductor device, comprising performing deposition processing of a film selected in the range of 10 -3 Torr.
JP16890790A 1990-06-26 1990-06-26 Method for manufacturing semiconductor device Expired - Lifetime JP2780205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16890790A JP2780205B2 (en) 1990-06-26 1990-06-26 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16890790A JP2780205B2 (en) 1990-06-26 1990-06-26 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0456319A JPH0456319A (en) 1992-02-24
JP2780205B2 true JP2780205B2 (en) 1998-07-30

Family

ID=15876777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16890790A Expired - Lifetime JP2780205B2 (en) 1990-06-26 1990-06-26 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2780205B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173135A (en) * 1996-12-16 1998-06-26 Matsushita Electron Corp Semiconductor integrated circuit and manufacturing method thereof
CN101777469A (en) * 2010-03-25 2010-07-14 西安交通大学 Method for preparing surface conduction electron emission film in W-Si-N nanometer diphase structure
CN104005002B (en) * 2014-05-19 2016-08-31 江苏科技大学 WAlN hard nanometer structural membrane and preparation method
US9461137B1 (en) * 2015-09-11 2016-10-04 Applied Materials, Inc. Tungsten silicide nitride films and methods of formation

Also Published As

Publication number Publication date
JPH0456319A (en) 1992-02-24

Similar Documents

Publication Publication Date Title
US4391846A (en) Method of preparing high-temperature-stable thin-film resistors
US5691571A (en) Semiconductor device having fine contact hole with high aspect ratio
KR20070032803A (en) Silicon-Rich Nickel-Silicide Ohmic Junctions for Silicon Carbide Semiconductor Devices
Çakar et al. The conductance and capacitance–frequency characteristics of Au/pyronine-B/p-type Si/Al contacts
Awan et al. Conductivity and dielectric properties of silicon nitride thin films prepared by RF magnetron sputtering using nitrogen gas
JP2780205B2 (en) Method for manufacturing semiconductor device
Akkılıç et al. The calculation of electronic parameters of an Ag/chitin/n-Si Schottky barrier diode
KR910004994B1 (en) Superconducting ceramic pattern and its manufacturing method
JP2007306008A (en) Method of forming heat-resistant metal-silicon-nitrogen capacitor, and its structure
US5330592A (en) Process of deposition and solid state reaction for making alloyed highly conductive copper germanide
Suh et al. Electrical characteristics of TaSi x N y/SiO 2/Si structures by Fowler–Nordheim current analysis
Glück et al. CoSi2 and TiSi2 for SiSiGe heterodevices
US7030728B2 (en) Layout and method to improve mixed-mode resistor performance
Park et al. Effects of copper oxide/gold electrode as the source-drain electrodes in organic thin-film transistors
Lee et al. Electrical properties of lightly doped polycrystalline silicon
US5641993A (en) Semiconductor IC with multilayered Al wiring
Tong et al. Temperature dependence of resistance in reactively sputtered RuO~ 2 thin films
US5731226A (en) Low temperature method of manufacturing epitaxial titanium silicide
Chen et al. Scaling of the Hall coefficient and resistivity in underdoped and overdoped R Ba 2 Cu 3 O y films
Garcia-Cuenca et al. Electrical conduction in polycrystalline CdS films. I. Theory
Ramaswamy et al. Large deviation from Matthiessen's rule in chemical vapour deposited copper films and its correlation with nanostructure
US20040080000A1 (en) Gate structure of metal oxide semiconductor field effect transistor
JP2000077629A (en) Laminated capacitor provided with diffusion barrier
JP3085745B2 (en) Method for manufacturing semiconductor device
US20020125986A1 (en) Method for fabricating ultra high-resistive conductors in semiconductor devices and devices fabricated