JP2771061B2 - Method for measuring film thickness of airtight high-frequency window - Google Patents

Method for measuring film thickness of airtight high-frequency window

Info

Publication number
JP2771061B2
JP2771061B2 JP3294831A JP29483191A JP2771061B2 JP 2771061 B2 JP2771061 B2 JP 2771061B2 JP 3294831 A JP3294831 A JP 3294831A JP 29483191 A JP29483191 A JP 29483191A JP 2771061 B2 JP2771061 B2 JP 2771061B2
Authority
JP
Japan
Prior art keywords
frequency
film thickness
window
frequency window
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3294831A
Other languages
Japanese (ja)
Other versions
JPH05267901A (en
Inventor
和孝 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3294831A priority Critical patent/JP2771061B2/en
Publication of JPH05267901A publication Critical patent/JPH05267901A/en
Application granted granted Critical
Publication of JP2771061B2 publication Critical patent/JP2771061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Waveguide Connection Structure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、例えば、進行波管や
クライストロンのようなマイクロ波管、あるいはこれら
のマイクロ波管のマイクロ波電力を利用する機器の真空
部と外部導波管との間に設けられる気密性を有する高周
波気密窓において、その内部に設けられる誘電体円板表
面の薄膜の膜厚を測定するための高周波気密窓の膜厚測
定方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a microwave tube such as a traveling wave tube or a klystron, or a device for utilizing microwave power of such a microwave tube, between a vacuum portion and an external waveguide. The thickness of the high frequency airtight window for measuring the thickness of the thin film on the surface of the dielectric disk provided inside the high frequency airtight window having airtightness provided in
It is related to the setting method .

【0002】[0002]

【従来の技術】図6は例えば特開昭54−146561
号公報に記載された従来の気密高周波窓を示す側面断面
図であり、図において、1は方形導波管、2は方形導波
管1の間に配された円形導波管、3は円形導波管2の内
部に気密にろう付けされた誘電体円板、4は誘電体円板
3の両側表面に設けられた高周波放電を抑制するための
窒化チタン,酸化チタン,酸化クロム等から成る薄膜で
ある。
2. Description of the Related Art FIG.
FIG. 1 is a side cross-sectional view showing a conventional hermetic high-frequency window described in Japanese Patent Laid-Open Publication No. H10-207, in which 1 is a rectangular waveguide, 2 is a circular waveguide disposed between rectangular waveguides 1, and 3 is a circular waveguide. The dielectric disk 4 airtightly brazed inside the waveguide 2 is made of titanium nitride, titanium oxide, chromium oxide, or the like provided on both surfaces of the dielectric disk 3 for suppressing high-frequency discharge. It is a thin film.

【0003】次に動作について説明する。片側の方形導
波管にはマイクロ波が入力され、誘電体円板3を通過し
て他側の方形導波管1から出力される。
Next, the operation will be described. The rectangular waveguide of side microwave is input and output from the rectangular waveguide 1 on the other side through the induction conductor disc 3.

【0004】この構造を持つ気密高周波窓は、一般に、
許容マイクロ波電力がかなり大きく、マイクロ波反射も
小さく、信頼性が高いという特徴を持つ。しかし、この
気密高周波窓にさらに大きな電力のマイクロ波を通した
場合は、誘電体円板3の表面に小さな穴が開き、気密性
が不十分となることがある。この小さな穴は、高周波電
界によって加速された電子の衝突によるもの(高周波放
電)と考えられる。この高周波放電の発生は、高周波電
界の強度と方向と共に、電子衝突に伴う誘電体円板3の
表面からの二次電子放出の割合の多少によって決まる。
An airtight high-frequency window having this structure is generally
It has features that the allowable microwave power is considerably large, the microwave reflection is small, and the reliability is high. However, when microwaves of higher power are passed through the hermetic high-frequency window, small holes may be formed in the surface of the dielectric disk 3 and the hermeticity may be insufficient. This small hole is considered to be caused by collision of electrons accelerated by a high-frequency electric field (high-frequency discharge). The occurrence of this high-frequency discharge is determined by the intensity and direction of the high-frequency electric field and the proportion of secondary electron emission from the surface of the dielectric disk 3 due to electron collision.

【0005】このため、誘電体円板3の表面からの二次
電子放出を減少させるべく、誘電体円板3の表面全体
に、窒化チタン,酸化チタン,酸化クロム等の薄膜4を
コーティングして高周波放電の発生を抑制している。誘
電体円板3の表面から二次電子放出を減少させるために
は、このコーティング膜の厚さが十分に厚いことが望ま
しい。しかし、薄膜4の厚さがあまり厚くなると、この
コーティング膜によりマイクロ波が反射され、マイクロ
波窓としての特性が悪くなる。
[0005] Therefore, in order to reduce secondary electron emission from the surface of the dielectric disk 3, the entire surface of the dielectric disk 3 is coated with a thin film 4 of titanium nitride, titanium oxide, chromium oxide or the like. High frequency discharge is suppressed. In order to reduce secondary electron emission from the surface of the dielectric disk 3, it is desirable that the thickness of the coating film is sufficiently large. However, if the thickness of the thin film 4 is too large, the microwave is reflected by the coating film, and the characteristics as a microwave window deteriorate.

【0006】このため、マイクロ波の反射を生ずること
なく、かつ二次電子放出を抑えるためには、厚さが数ナ
ノメートル程度の薄膜4を誘電体円板3の表面全体に形
成する必要がある。従来の代表的な膜厚測定法として
は、コーティングする時の膜厚モニター(水晶膜厚計)
による膜厚測定法,表面抵抗を測り膜厚を推定する方
法,オージェ電子分析装置による膜厚測定法がある。
Therefore, in order to prevent microwave reflection and to suppress secondary electron emission, it is necessary to form a thin film 4 having a thickness of about several nanometers on the entire surface of the dielectric disk 3. is there. As a conventional representative film thickness measuring method, there is a film thickness monitor during coating (quartz film thickness meter)
There is a method of measuring the film thickness by using a method, a method of estimating the film thickness by measuring the surface resistance, and a method of measuring the film thickness by an Auger electron analyzer.

【0007】[0007]

【発明が解決しようとする課題】従来の気密高周波窓で
は、誘電体円板3の表面に薄膜4をコーティングする時
の膜厚モニター(水晶膜厚計)による膜厚測定と、コー
ティング時のプロセス管理によって膜厚を規定してい
る。しかし、必ずしも平坦でない誘電体円板3の表面に
形成する非常に薄い膜のため、膜厚の測定が非常に難し
いという問題や、成膜後の膜厚,膜質の変化については
確認できないという問題があった。
In a conventional hermetic high-frequency window, the film thickness is measured by a film thickness monitor (a quartz film thickness meter) when coating the thin film 4 on the surface of the dielectric disk 3, and the coating process is performed. The film thickness is regulated by management. However, since the thickness of the dielectric disk 3 is not very flat, the measurement of the film thickness is very difficult, and the change in film thickness and film quality after film formation cannot be confirmed. was there.

【0008】また、表面抵抗による方法では、この非常
に薄い膜の測定においては、精度が不十分であること及
び窓組立後の測定が困難であるという問題がある。さら
にオージェ電子分析装置による膜厚測定法では、破壊的
な測定法であるため、気密高周波窓の組立後には測定す
ることができない等の問題があった。
In the method using the surface resistance, there is a problem that the measurement of this very thin film is insufficient in accuracy and difficult to measure after assembling the window. Further, the film thickness measuring method using the Auger electron analyzer is a destructive measuring method, and thus has a problem that it cannot be measured after the airtight high-frequency window is assembled.

【0009】この発明は上記のような課題を解消するた
めになされたもので、気密高周波窓の非常に薄い膜の有
無の確認及び膜厚の測定を、膜形成後さらには窓を機器
に取付けた後に行うことのできる気密高周波窓の膜厚測
定方法を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is intended to confirm the presence or absence of a very thin film of an airtight high-frequency window and to measure the film thickness. Film thickness measurement of airtight high-frequency window
The purpose is to obtain a fixed method .

【0010】[0010]

【課題を解決するための手段】請求項1の発明に係る気
密高周波窓の膜厚測定法は、気密高周波窓のゴーストモ
ード共振周波数におけるQ値の減少分を測定し、その測
定値を膜厚に換算するようにしたものである。
According to a first aspect of the present invention, there is provided a method for measuring the film thickness of an airtight high-frequency window, which measures a decrease in the Q value at a ghost mode resonance frequency of the airtight high-frequency window and uses the measured value as a film thickness. Is converted to.

【0011】[0011]

【0012】[0012]

【作用】請求項1の発明における気密高周波窓の膜厚測
定法は、気密高周波窓のゴーストモード共振を利用して
おり、そのゴーストモード共振のQ値が薄膜により損失
が増大されることにより減少するので、その減少に現れ
たものを膜厚に換算することができる。
According to the first aspect of the present invention, the method for measuring the film thickness of the hermetic high-frequency window utilizes the ghost mode resonance of the hermetic high-frequency window, and the Q value of the ghost mode resonance is reduced by increasing the loss due to the thin film. Therefore, what appears in the decrease can be converted into a film thickness.

【0013】[0013]

【0014】[0014]

【実施例】実施例1.以下、請求項1の発明の一実施例
を図について説明する。図1においては図6と対応する
部分には同一符号を付して説明を省略する。図1におい
て、5は高周波信号を出力すると共に、入力信号の周波
数分析を行うネットワークアナライザ、6aは片側の方
形導波管1の開口から差し込まれ、ネットワークアナラ
イザ5の出力信号が加えられる励振用のプローブ、6b
は他側の方形導波管1の開口から差し込まれて共振状態
を検出する検出用のプローブである。
[Embodiment 1] An embodiment of the first aspect of the present invention will be described below with reference to the drawings. In FIG. 1, portions corresponding to those in FIG. 6 are denoted by the same reference numerals, and description thereof is omitted. In FIG. 1, reference numeral 5 denotes a network analyzer which outputs a high-frequency signal and analyzes the frequency of an input signal. Reference numeral 6a denotes an excitation device which is inserted through an opening of the rectangular waveguide 1 on one side and to which an output signal of the network analyzer 5 is applied. Probe, 6b
Is a detection probe which is inserted through the opening of the rectangular waveguide 1 on the other side and detects a resonance state.

【0015】次に動作について説明する。気密高周波窓
においては、一般に図2に示すような周波数fとVSW
Rとの関係が見られる。図2において、使用周波数7付
近では、VSWRが小さくなるように気密高周波窓は設
計されているが、それより外れた周波数のところに、急
激なVSWRの変化が観測される。この急激に変化する
周波数をゴーストモード周波数8と呼び、この周波数で
は気密高周波窓内部で特定モード(TE311,TE1
21,TE111,TE011等)のマイクロ波が共振
状態にある。この特定モードのマイクロ波共振状態は、
主として、誘電体円板3によって起こるため、その表面
にある薄膜4の存在が大きく影響する。即ち、共振によ
って作られる電磁界の強いところに薄膜4があるため大
きな損失を生ずる。そのため、共振によって蓄えられる
エネルギーが減少し、Q値が減少する。
Next, the operation will be described. In an airtight high-frequency window, generally, the frequency f and VSW as shown in FIG.
The relationship with R is seen. In FIG. 2, the hermetic high-frequency window is designed so that the VSWR becomes small near the operating frequency 7, but a sharp change in the VSWR is observed at a frequency outside the window. This rapidly changing frequency is called a ghost mode frequency 8, and at this frequency, the specific mode (TE311, TE1) is set inside the hermetic high frequency window.
21, TE111, TE011, etc.) are in a resonance state. The microwave resonance state of this specific mode is
Since it mainly occurs due to the dielectric disk 3, the presence of the thin film 4 on its surface greatly affects. That is, since the thin film 4 is located where the electromagnetic field generated by resonance is strong, a large loss occurs. Therefore, the energy stored by the resonance decreases, and the Q value decreases.

【0016】特に、方形導波管1の遮断周波数以下の周
波数のゴーストモードであるTE111やTE011の
共振を利用すれば、方形導波管1にはマイクロ波は伝送
しないのでQ値は高くなり、薄膜4による損失量の測定
は精度が高くできる。図1に示すように、励振と検出の
2つのプローブ6a,6bを用いて、上記ゴーストモー
ド周波数8における共振を測定し、その測定値からQ値
を求める。
In particular, if the resonance of TE111 or TE011, which is a ghost mode having a frequency equal to or lower than the cutoff frequency of the rectangular waveguide 1, is used, microwaves are not transmitted to the rectangular waveguide 1, so that the Q value increases. The measurement of the loss due to the thin film 4 can be performed with high accuracy. As shown in FIG. 1, resonance is measured at the ghost mode frequency 8 using two probes 6a and 6b for excitation and detection, and a Q value is obtained from the measured value.

【0017】図3にゴーストモード共振を測定した例を
示す。横軸が周波数fで、縦軸は共振の強度を示す量S
21である。薄膜4のない場合の共振カーブ9のQ値は共
振周波数8を半値幅10で割った値である。薄膜4をコ
ーティングした場合の共振カーブ11の半値幅12は、
薄膜4のない場合の半値幅10に比べて大きくQ値が小
さくなる。このことを利用して、あらかじめ、膜厚のわ
かっている数種類の気密高周波窓によりゴーストモード
周波数付近でのQ値の減少分の測定を行なっておけば、
ゴーストモード共振周波数8におけるQ値の減少分の測
定値より、同一構成の気密高周波窓の薄膜4の膜厚を換
算することができる。
FIG. 3 shows an example of measuring ghost mode resonance. The horizontal axis is the frequency f, and the vertical axis is the quantity S indicating the intensity of resonance.
21 . The Q value of the resonance curve 9 without the thin film 4 is a value obtained by dividing the resonance frequency 8 by the half width 10. The half width 12 of the resonance curve 11 when the thin film 4 is coated is
The Q value is much smaller than the half width 10 when the thin film 4 is not provided. By utilizing this fact, if the measurement of the decrease of the Q value near the ghost mode frequency is performed in advance by using several types of hermetic high-frequency windows whose film thickness is known,
From the measured value of the decrease in the Q value at the ghost mode resonance frequency 8, the thickness of the thin film 4 of the hermetic high-frequency window having the same configuration can be converted.

【0018】実施例2.上記実施例1では、2つのプロ
ーブ6a,6bを用いているが、気密高周波窓を機器に
取付けた後に、1つのプローブ6a又は6bを用いて、
ゴーストモードの励振と検出を行い、上記と同様にして
ゴーストモード周波数8における共振の測定からQ値を
求めることができる。2つのプローブ6a,6bを用い
る方法に比べ、1つのプローブでは測定の確度は低くな
るが、気密高周波窓にどのような機器が接続されていて
も無関係に測定できる利点がある。
Embodiment 2 FIG. In the first embodiment, two probes 6a and 6b are used. However, after the airtight high-frequency window is attached to the device, one probe 6a or 6b is used.
The ghost mode is excited and detected, and the Q value can be obtained from the measurement of the resonance at the ghost mode frequency 8 in the same manner as described above. Compared to the method using two probes 6a and 6b, the accuracy of measurement is lower with one probe, but there is an advantage that measurement can be performed regardless of what device is connected to the hermetic high-frequency window.

【0019】実施例3. 図4は請求項の発明の一実施例を示し、気密高周波窓
の方形導波管1に小窓13を設けたもので、この実施例
では小さなプローブ用窓13を設けている。このプロー
ブ用窓13は例えば、方形導波管1の側面の円形導波管
2との接続部よりあまり離れない位置に、小さな穴をあ
けその穴にセラミックスなどの誘電体を嵌め込んで真空
気密を保つ構造を持つ。
Embodiment 3 FIG. FIG. 4 shows an embodiment of the first aspect of the present invention, in which a small window 13 is provided in the rectangular waveguide 1 of an airtight high-frequency window. In this embodiment, a small probe window 13 is provided. For example, a small hole is made in the probe window 13 at a position not far from the connection portion with the circular waveguide 2 on the side surface of the rectangular waveguide 1 and a dielectric such as ceramics is fitted into the hole to form a vacuum airtight. With a structure that keeps

【0020】このプローブ用窓13に励振と検出の2つ
のプローブ6a,6bを取付けて、気密高周波窓の内部
を励振し、ゴーストモード共振周波数8におけるQ値の
減少分を上記と同様にして測定することにより、気密高
周波窓の薄膜4の膜厚を換算することができる。この検
査法は、気密高周波窓が機器に組み込まれた後でも導波
管を外すことなく、また、気密高周波窓に何が接続され
ていても無関係に測定できる利点がある。
Attach two probes 6a and 6b for excitation and detection to the probe window 13 to excite the inside of the hermetic high-frequency window, and measure the decrease of the Q value at the ghost mode resonance frequency 8 in the same manner as described above. By doing so, the thickness of the thin film 4 of the hermetic high-frequency window can be converted. This inspection method has an advantage that the measurement can be performed without removing the waveguide even after the hermetic high-frequency window is installed in the device and regardless of what is connected to the hermetic high-frequency window.

【0021】実施例4. 図5は請求項の発明の他の実施例を示し、気密高周波
窓の円形導波管2の側面にプローブ用窓13を設けたも
のである。このプローブ用窓13は、図5のように円形
導波管2の方形導波管1と接続される側面2aに設けて
もよく、あるいは、円形導波管2の他の側面に設けても
よい。このプローブ用窓13を用いても、上記実施例3
と全く同様の作用,利点を有する。
Embodiment 4 FIG. Figure 5 is a billing shows another embodiment of the first aspect of the invention, provided with a probe window 13 on the side surface of the circular waveguide 2 hermetic high-frequency window. The probe window 13 may be provided on the side surface 2a of the circular waveguide 2 connected to the rectangular waveguide 1 as shown in FIG. 5, or may be provided on the other side surface of the circular waveguide 2. Good. Even when the probe window 13 is used, the third embodiment can be used.
It has exactly the same functions and advantages as.

【0022】[0022]

【発明の効果】以上のように、請求項1の発明によれ
ば、気密高周波窓内部をゴーストモード周波数で励振
し、その共振状態におけるQ値を測定し、その測定値か
ら膜厚を換算するようにしたので、気密高周波窓の組立
後においても、いつでも測定を行うことができ、このた
め、成膜後の膜厚,膜質の変化についての測定を行うこ
とが可能になる等の効果が得られる。
As described above, according to the first aspect of the present invention, the inside of the hermetic high-frequency window is excited at the ghost mode frequency, the Q value in the resonance state is measured, and the film thickness is converted from the measured value. As a result, the measurement can be performed at any time even after the airtight high-frequency window is assembled. Therefore, it is possible to measure the change in film thickness and film quality after film formation. Can be

【0023】[0023]

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の発明の一実施例による気密高周波窓
の膜厚測定方法を示す断面構成図である。
FIG. 1 is a sectional view showing a method for measuring a film thickness of an airtight high-frequency window according to an embodiment of the present invention.

【図2】気密高周波窓の周波数に対するVSWR測定の
一例を示す特性図である。
FIG. 2 is a characteristic diagram showing an example of a VSWR measurement with respect to a frequency of an airtight high-frequency window.

【図3】気密高周波窓の薄膜の膜厚換算のためのQ値の
測定の一例を示す特性図である。
FIG. 3 is a characteristic diagram showing an example of measurement of a Q value for converting a film thickness of a thin film of an airtight high-frequency window.

【図4】請求項の発明の一実施例による気密高周波窓
を用いた膜厚測定方法を示す断面構成図である。
4 is a cross-sectional view illustrating a film thickness measurement method using a gas-tight high-frequency window according to an embodiment of the invention of claim 1.

【図5】他の実施例による気密高周波窓を用いた膜厚測
定方法を示す断面構成図である。
FIG. 5 is a cross-sectional configuration diagram showing a film thickness measuring method using an airtight high-frequency window according to another embodiment.

【図6】従来の気密高周波窓の側面断面図である。FIG. 6 is a side sectional view of a conventional hermetic high-frequency window.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 方形導波管の間に円形導波管が配され、
この円形導波管の内部に誘電体円板が気密に封止されて
配され、この誘電体円板の表面に高周波放電を抑制する
ための薄膜を設けて成る気密高周波窓において、上記誘
電体円板の近傍を所定のゴーストモード周波数の高周波
により励振して共振状態と成し、この共振状態における
Q値を測定し、この測定値を上記薄膜の膜厚に換算する
ようにした気密高周波窓の膜厚測定方法。
1. A circular waveguide is arranged between rectangular waveguides,
A dielectric disk is hermetically sealed inside the circular waveguide, and a thin film for suppressing high-frequency discharge is provided on the surface of the dielectric disk. A hermetic high-frequency window in which the vicinity of the disk is excited by a high frequency of a predetermined ghost mode frequency to form a resonance state, a Q value in the resonance state is measured, and the measured value is converted into a film thickness of the thin film. Thickness measurement method.
JP3294831A 1991-10-16 1991-10-16 Method for measuring film thickness of airtight high-frequency window Expired - Fee Related JP2771061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3294831A JP2771061B2 (en) 1991-10-16 1991-10-16 Method for measuring film thickness of airtight high-frequency window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3294831A JP2771061B2 (en) 1991-10-16 1991-10-16 Method for measuring film thickness of airtight high-frequency window

Publications (2)

Publication Number Publication Date
JPH05267901A JPH05267901A (en) 1993-10-15
JP2771061B2 true JP2771061B2 (en) 1998-07-02

Family

ID=17812821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3294831A Expired - Fee Related JP2771061B2 (en) 1991-10-16 1991-10-16 Method for measuring film thickness of airtight high-frequency window

Country Status (1)

Country Link
JP (1) JP2771061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111243920A (en) * 2020-01-21 2020-06-05 电子科技大学 Planar microwave energy transmission window

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037626A1 (en) * 2005-09-28 2007-04-05 Konkuk University Industrial Cooperation Corp. Method of measuring thickness of thin film using microwave
CN106643587B (en) * 2016-09-14 2019-05-24 西安交通大学 A kind of thickness of metal film measurement method based on microwave transmission method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264946U (en) * 1985-10-11 1987-04-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111243920A (en) * 2020-01-21 2020-06-05 电子科技大学 Planar microwave energy transmission window
CN111243920B (en) * 2020-01-21 2021-07-13 电子科技大学 Planar microwave energy transmission window

Also Published As

Publication number Publication date
JPH05267901A (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US8040138B2 (en) Planar type frequency shift probe for measuring plasma electron densities and method and apparatus for measuring plasma electron densities
US6447691B1 (en) Method for detecting end point of plasma etching, and plasma etching apparatus
JP2771061B2 (en) Method for measuring film thickness of airtight high-frequency window
US20080000585A1 (en) Apparatus for monitoring electron density and electron temperature of plasma and method thereof
US7732227B2 (en) Method and apparatus for wall film monitoring
Hill et al. High-power vacuum window in WR10
JPH05113323A (en) Measuring method for film thickness of thin film of airtight high-frequency window
JP3789203B2 (en) Microwave application equipment
JP2001281284A (en) Nondestructive measuring instrument for complex dielectric constant
WO2003065061A1 (en) Apparatus and method for improving microwave coupling to a resonant cavity
Lau et al. Scrape-off layer reflectometer for Alcator C-Mod
JP2659485B2 (en) Inspection device for dielectric disk of airtight high-frequency window
JP2514862B2 (en) Plasma measurement method
US2768327A (en) Wave guide output circuit for a magnetron
US9977070B2 (en) Method for inspecting magnetron
KR0159203B1 (en) Microwave resonance probe and measurement method of density of dynamic plasma using the probe
Karp et al. Higher order modes and instabilities in coupled-cavity TWT's
JPH11166951A (en) Method and device for measuring dielectric constant
Souw Plasma density measurement in an imperfect microwave cavity
JPS5936001Y2 (en) Connection structure between vacuum window and waveguide
JP2928113B2 (en) Pill box type vacuum window
Pritzkau et al. Experimental study of pulsed heating of electromagnetic cavities
US5210464A (en) Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load
JP2005175612A (en) Conversion adapter and measuring instrument
Thiebaut et al. Broadband and low insertion loss Stark cell for microwave spectroscopy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees