JP2770541B2 - Solid electrolyte fuel cell - Google Patents
Solid electrolyte fuel cellInfo
- Publication number
- JP2770541B2 JP2770541B2 JP2063052A JP6305290A JP2770541B2 JP 2770541 B2 JP2770541 B2 JP 2770541B2 JP 2063052 A JP2063052 A JP 2063052A JP 6305290 A JP6305290 A JP 6305290A JP 2770541 B2 JP2770541 B2 JP 2770541B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- pressure
- fuel
- electrolyte
- current density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04104—Regulation of differential pressures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
- H01M2300/0074—Ion conductive at high temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は、固体電解質燃料電池に関し、特にその信
頼性の向上を図るものである。Description: TECHNICAL FIELD The present invention relates to a solid oxide fuel cell, and more particularly to improving its reliability.
[従来の技術] 以下に一般的な固体電解質を用いた燃料電池(以下、
SOFCと称する)の動作原理について説明する。第4図は
SOFCを構成する単電池(10)の動作原理を示す説明図で
ある。図において、(11)はイットリア安定化ジルコニ
ア(YSZ)からなり酸素イオン伝導性を有する固体電解
質部、(12),(13)は電解質部(11)を介在して構成
される一対の電極反応部である。燃料電極部(12)には
燃料ガス(a)としてH2、酸素電極部(13)には酸化剤
ガス(b)として空気やO2がそれぞれ供給されて、電気
化学反応を起こす。(16)は電気エネルギーを外部負荷
(17)へ取り出す電気回路である。矢印(c)は、電気
化学反応時に固体電解質(11)中を移動する酸素イオン
の流れを、矢印(d)はSOFCの外部負荷(17)へ取り出
される電子の流れを示している。[Prior art] A fuel cell using a general solid electrolyte (hereinafter, referred to as a fuel cell)
The operating principle of the SOFC will be described. Fig. 4
FIG. 4 is an explanatory diagram showing the operation principle of a unit cell (10) constituting the SOFC. In the figure, (11) is a solid electrolyte part made of yttria-stabilized zirconia (YSZ) and has oxygen ion conductivity, and (12) and (13) are a pair of electrode reactions formed by interposing the electrolyte part (11). Department. The fuel electrode portion (12) H 2 as a fuel gas (a), the oxygen electrode portion (13) is supplied with air or O 2 as the oxidant gas (b), causing an electrochemical reaction. (16) is an electric circuit for extracting electric energy to an external load (17). Arrow (c) indicates the flow of oxygen ions moving in the solid electrolyte (11) during the electrochemical reaction, and arrow (d) indicates the flow of electrons extracted to the external load (17) of the SOFC.
次に動作について説明する。酸化剤ガスは、酸素電極
部(13)において、電子の供給を受け、酸素イオンとな
り(反応1)、固体電解質部(11)中の酸素イオン空孔
に取り込まれる。酸素イオンは固体電解質(11)中を拡
散して、燃料電極部(12)において水素と反応し、水蒸
気と電子を生じる(反応2)。これらの各反応は、次式
で表わされる。Next, the operation will be described. The oxidizing gas is supplied with electrons at the oxygen electrode section (13), becomes oxygen ions (reaction 1), and is taken into oxygen ion vacancies in the solid electrolyte section (11). Oxygen ions diffuse in the solid electrolyte (11), react with hydrogen at the fuel electrode (12), and generate water vapor and electrons (reaction 2). Each of these reactions is represented by the following formula.
反応1:O2+4e-→2O2- 反応2:2H2+2O2-→2H2O+4e- また、反応1と反応2を合成すれば、 2H2+O2→2H2O となり、これは水素の燃焼反応と同様なものである。こ
の場合、酸素イオンを伝導するために、通常約1000℃程
度の高温で運転される。Reaction 1: O 2 + 4e - → 2O 2- reaction 2: 2H 2 + 2O 2- → 2H 2 O + 4e - Furthermore, if the synthesis reaction 1 and reaction 2, 2H 2 + O 2 → 2H 2 O , and the this hydrogen It is similar to the combustion reaction. In this case, the device is usually operated at a high temperature of about 1000 ° C. in order to conduct oxygen ions.
次に実際的な電池形態について説明する。第5図及び
第6図は、例えば刊行物「電気学会論文誌B,106巻,8
号,昭和61−8,第693頁〜第700頁」に記載されている従
来の円筒型横縞型SOFCと呼ばれているものの斜視図及び
拡大断面図である。第5図において、(10)は円筒型の
単電池、(20)はこの単電池(10)を接続する接続部で
ある。このように1つの円筒に複数個の単電池(10)を
直列に接続して燃料電池スタックを形成している。この
例では、燃料ガス(a)は円筒管内に、酸化剤ガス
(b)は円筒外面に供給されている。第6図は第5図の
部分拡大断面図であり、図において(11)はイットリア
安定化ジルコニア(YSZ)からなる固体電解質部、(1
2)はNiとYSZのサーメットからなる燃料電極部、(13)
はLaCoO3からなる酸素電極部、(14)はNiからなる中間
接続子、(15)はアルミナ(Al2O3)からなる多孔基体
管である。この基体管(15)の表面に上記各電池要素等
を構成する固体層が、溶射法等で薄膜形成されている。
第7図は、例えば特開昭57−130381号公報に記載されて
いる縦縞型と呼ばれる円筒型SOFCの一形態の断面を含む
斜視図である。図中、(21)はイットリア安定化ジルコ
ニア(YSZ)からなる固体電解質部、(22)はニッケル
(Ni)とジルコニア(YSZ)とのサーメットからなる燃
料電極部、(23)は例えはストロンチウム等をドープし
たLaMnO3などからなる酸素電極部、(24)はカルシア安
定化ジルコニア(CSZ)からなる基体層で、この表面に
電池要素等を構成する固体層を薄膜形成している。(2
5)はマグネシウム(Mg)などをドープしたLaCrO3から
なる中間接続層、(26)は燃料電極部(22)と同一の物
質からなる弓形層である。第8図は1つの円筒で形成さ
れた上記単電池を、Ni金属フエルト(27)を介して配列
接続したスタックの一例を示す側面図である。この例で
は、金属フエルト(27)がNiであり、還元雰囲気が望ま
しいので、円筒の内側に酸化剤ガス(b)を、円筒の外
側に燃料ガス(a)を供給している。基体層(24)とし
てはカルシア安定化ジルコニア(CSZ)を用いている。Next, a practical battery configuration will be described. FIGS. 5 and 6 show, for example, the publication “IEEJ Transactions on Papers B, 106, 8
No., pp. 693 to 700, pp. 693 to 700, which is a perspective view and an enlarged cross-sectional view of what is called a conventional cylindrical horizontal stripe SOFC. In FIG. 5, (10) is a cylindrical unit cell, and (20) is a connection unit for connecting the unit cell (10). As described above, a plurality of unit cells (10) are connected in series to one cylinder to form a fuel cell stack. In this example, the fuel gas (a) is supplied to the inside of the cylindrical tube, and the oxidizing gas (b) is supplied to the outer surface of the cylinder. FIG. 6 is a partially enlarged cross-sectional view of FIG. 5, in which (11) is a solid electrolyte portion made of yttria-stabilized zirconia (YSZ);
2) Fuel electrode part composed of cermet of Ni and YSZ, (13)
Is an oxygen electrode portion made of LaCoO 3 , (14) is an intermediate connector made of Ni, and (15) is a porous substrate tube made of alumina (Al 2 O 3 ). On the surface of the base tube (15), a solid layer constituting each of the above battery elements and the like is formed as a thin film by a thermal spraying method or the like.
FIG. 7 is a perspective view including a cross section of an embodiment of a cylindrical SOFC called a vertical stripe type described in, for example, JP-A-57-130381. In the figure, (21) is a solid electrolyte part made of yttria-stabilized zirconia (YSZ), (22) is a fuel electrode part made of a cermet of nickel (Ni) and zirconia (YSZ), and (23) is strontium, for example. An oxygen electrode portion made of LaMnO 3 or the like doped with, and (24) is a base layer made of calcia-stabilized zirconia (CSZ), on which a solid layer constituting a battery element or the like is formed as a thin film. (2
5) is an intermediate connection layer made of LaCrO 3 doped with magnesium (Mg) or the like, and (26) is an arcuate layer made of the same material as the fuel electrode section (22). FIG. 8 is a side view showing an example of a stack in which the unit cells formed of one cylinder are arranged and connected via a Ni metal felt (27). In this example, since the metal felt (27) is Ni and a reducing atmosphere is desirable, the oxidizing gas (b) is supplied inside the cylinder and the fuel gas (a) is supplied outside the cylinder. Calcia stabilized zirconia (CSZ) is used as the base layer (24).
第9図は以上に示したようなSOFCの基体構成をまとめ
て示す断面図である。第9図(イ)は基体を有さないタ
イプのものである。このタイプのものは、電解質部(1
1)、燃料電極部(12)、酸素電極部(13)からなる3
層構造の機械的強度を維持するため、燃料電極部(1
2),酸素電極部(13)のいずれかを厚くすることもあ
る。第9図(ロ),(ハ)はそれぞれ支持基体(15)を
有するものであり、第9図(ロ)のものは支持基体(1
5)が燃料電極部(12)側にあり、これは第6図に示す
従来例と同様のものである。第9図(ハ)のものは支持
基体(15)が酸素電極部(13)側にあり、これは第7図
に示す従来例と同様のものである。第9図(イ),
(ロ),(ハ)のいずれの場合でも、電解質部(11)の
両側に電極もしくは基体の多孔質膜が存在するという点
で一致している。FIG. 9 is a sectional view collectively showing the structure of the substrate of the SOFC as described above. FIG. 9 (a) shows a type having no base. In this type, the electrolyte part (1
1) consisting of a fuel electrode (12) and an oxygen electrode (13)
In order to maintain the mechanical strength of the layer structure, the fuel electrode (1
2) In some cases, one of the oxygen electrode sections (13) may be made thicker. 9 (b) and (c) each have a supporting base (15), and FIG. 9 (b) shows a supporting base (1).
5) is on the side of the fuel electrode section (12), which is the same as the conventional example shown in FIG. In FIG. 9 (c), the support base (15) is on the side of the oxygen electrode portion (13), which is the same as the conventional example shown in FIG. Fig. 9 (a),
Both cases (b) and (c) are consistent in that electrodes or a porous film of the base are present on both sides of the electrolyte part (11).
[発明が解決しようとする課題] 従来の固体電解質燃料電池は以上のように構成されて
おり、多孔質基体管あるいはいずれかの電極を強度保持
材とし、その上に電解質部や電極などの電池構成要素の
薄膜を形成しているが、動作時、燃料ガス及び酸化剤ガ
スは、上記基体管や多孔電極内を横切って電解質界面に
運ばれねばならない。このため、一般に多孔材料の両
端、つまりガス流路部と電解質との界面では異なる圧力
を示す。従って燃料ガス流路と酸化剤ガス流路の圧力が
同じであっても、電解質両界面には、大きな圧力差が発
生し、もし電解質に微小な欠陥があった場合に、上記圧
力差を駆動力としたガスの流れ(漏れ)が生じ、本来完
全に分離されるべき燃料ガスと酸化剤ガスとが混合し、
さらに燃焼してしまう。このことは発電効率を減ずるの
みでなく、燃焼に伴う発熱による局所的な熱応力の発生
など、多くの問題点があった。[Problems to be Solved by the Invention] A conventional solid electrolyte fuel cell is configured as described above, and a porous substrate tube or any one of the electrodes is used as a strength retaining material, and a battery such as an electrolyte portion or an electrode is formed thereon. Although forming a thin film of components, during operation, fuel gas and oxidant gas must be transported across the substrate tube and porous electrode to the electrolyte interface. For this reason, different pressures generally appear at both ends of the porous material, that is, at the interface between the gas flow path and the electrolyte. Therefore, even if the pressure of the fuel gas flow path and the pressure of the oxidizing gas flow path are the same, a large pressure difference occurs at both interfaces of the electrolyte, and if there is a minute defect in the electrolyte, the pressure difference is driven. The flow of gas (leakage) generated by the force occurs, and the fuel gas and oxidant gas, which should be completely separated, mix,
It will burn more. This not only reduces the power generation efficiency, but also causes many problems such as generation of local thermal stress due to heat generated by combustion.
この発明は上記のような問題点を解消するためになさ
れたもので、燃料ガス流路内及び酸化剤ガス流路内の圧
力を予め定められた適正な値に維持することにより、電
解質部の両界面におけるガスの全圧を実質的に等しくす
ることにより電解質部にかかる圧力をなくしている。よ
って電解質部に万一欠陥が生じても、そこからのガスの
漏れを最小限度に抑制して、発電効率の低下が防止で
き、信頼性の高い固体電解質燃料電池を得ることを目的
とする。The present invention has been made to solve the above-described problems, and maintains the pressure in the fuel gas flow path and the oxidizing gas flow path at a predetermined appropriate value to thereby reduce the electrolyte portion. The pressure on the electrolyte is eliminated by making the total pressure of the gas at both interfaces substantially equal. Therefore, even if a defect occurs in the electrolyte portion, it is an object of the present invention to obtain a highly reliable solid electrolyte fuel cell in which gas leakage therefrom can be suppressed to a minimum and a decrease in power generation efficiency can be prevented.
[課題を解決するための手段] この発明に係わる固体電解質燃料電池は、電解質部を
介在して燃料電極部と酸素電極部を備え、燃料電極部に
燃料ガスを供給し、酸素電極部に酸化剤ガスを供給して
電気化学反応を起こす固体電解質燃料電池において、出
力電流密度を検出する出力電流密度検出手段、この出力
電流密度検出手段により検出された電流密度に基いて電
解質部の燃料電極部側と酸素電極部側の両界面における
ガスの全圧を等しくする予め求められた電流密度とガス
流路の圧力データから上記燃料ガスと酸化剤ガスの圧力
を決定する圧力決定手段、及びこの圧力決定手段に従っ
て燃料ガスと酸化剤ガスの一方あるいは両方の圧力を調
整する圧力調整手段を備えたものである。[Means for Solving the Problems] A solid electrolyte fuel cell according to the present invention includes a fuel electrode portion and an oxygen electrode portion with an electrolyte portion interposed therebetween, supplies fuel gas to the fuel electrode portion, and oxidizes the oxygen electrode portion. Output current density detecting means for detecting an output current density in a solid electrolyte fuel cell in which an electrochemical reaction is caused by supplying an agent gas, and a fuel electrode section of an electrolyte section based on the current density detected by the output current density detecting means Determining means for determining the pressures of the fuel gas and the oxidizing gas from the current density and the pressure data of the gas flow path, which equalize the total pressure of the gas at both interfaces of the gas electrode and the oxygen electrode part, and this pressure. The apparatus is provided with pressure adjusting means for adjusting the pressure of one or both of the fuel gas and the oxidizing gas in accordance with the determining means.
[作用] この発明における固体電解質燃料電池は、燃料ガス流
路内及び酸化剤ガス流路内のガス圧力を所定の値に保持
する様に制御することにより、電解質の燃料電極側及び
酸素電極側の両側界面におけるガスの全圧を等しくする
ことができる。[Operation] The solid electrolyte fuel cell according to the present invention controls the gas pressure in the fuel gas passage and the oxidizing gas passage so as to maintain the gas pressure at a predetermined value. The total pressure of the gas at the two-sided interface can be equalized.
[実施例] 以下、この発明の一実施例を図について説明する。第
1図はこの発明の一実施例による固体電解質燃料電池を
示す構成図である。図において、(11)は固体電解質部
(以下、電解質と記す)、(12)は燃料電極部(以下、
燃料電極と記す)、(13)は酸素電極部(以下、酸素電
極と記す)、(17)は負荷、(40)は燃料ガス流路、
(41)は酸化剤ガス流路である。(50)は基体、(60)
は燃料供給系に備えられ圧力調整弁、(61)は空気供給
系に備えられた圧力調整弁、(62)は出力電流密度を検
出する出力電流密度検出手段で、この場合は電流計であ
る。(63)はコントローラで、圧力決定手段と圧力調整
手段の働きを兼ね備えている。即ち、電流計(62)によ
り検出された電流密度に基いて電解質(11)の燃料電極
側と酸素電極側の両界面におけるガスの全圧を実質的に
等しくするように、メモリ(64)に予め格納してあるデ
ータに基いて燃料ガスと酸化剤ガスの圧力を決定する。
さらに、コントローラ(63)はこの決定した圧力値に従
って燃料ガスと酸化剤ガスの一方あるいは両方の圧力を
調整するために、圧力調整弁(60),(61)の開度をコ
ントロールする。Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a solid oxide fuel cell according to one embodiment of the present invention. In the figure, (11) is a solid electrolyte part (hereinafter, referred to as an electrolyte), and (12) is a fuel electrode part (hereinafter, referred to as an electrolyte).
(Referred to as fuel electrode), (13) is an oxygen electrode part (hereinafter referred to as oxygen electrode), (17) is a load, (40) is a fuel gas flow path,
(41) is an oxidizing gas passage. (50) is the substrate, (60)
Is a pressure regulating valve provided in the fuel supply system, (61) is a pressure regulating valve provided in the air supply system, and (62) is output current density detecting means for detecting an output current density. In this case, it is an ammeter. . (63) is a controller having both functions of a pressure determining means and a pressure adjusting means. That is, based on the current density detected by the ammeter (62), the memory (64) is set in the memory (64) so that the total pressure of the gas at both the fuel electrode side and the oxygen electrode side interface of the electrolyte (11) is made substantially equal. The pressures of the fuel gas and the oxidizing gas are determined based on data stored in advance.
Further, the controller (63) controls the opening of the pressure regulating valves (60) and (61) in order to regulate the pressure of one or both of the fuel gas and the oxidizing gas according to the determined pressure value.
この実施例では、電解質(11)としては酸素イオン導
電性を有するイットリア安定化ジルコニア(YSZ)、燃
料ガスとしては水素、酸化剤ガスとしては空気を用いて
いる。図中、矢印(a),(b)は燃料ガス,空気の流
れ、矢印(c),(d),(e)は酸素ガス,水素ガ
ス,水蒸気の拡散、矢印(f)は電解質(11)内での酸
素イオンの拡散を示す。なお、この実施例は第9図
(ハ)に相当するSOFCを示している。In this embodiment, yttria-stabilized zirconia (YSZ) having oxygen ion conductivity is used as the electrolyte (11), hydrogen is used as the fuel gas, and air is used as the oxidant gas. In the figure, arrows (a) and (b) indicate the flow of fuel gas and air, arrows (c), (d) and (e) indicate diffusion of oxygen gas, hydrogen gas and water vapor, and arrow (f) indicates the electrolyte (11). 2) shows the diffusion of oxygen ions inside. This embodiment shows a SOFC corresponding to FIG. 9 (c).
次に動作について説明する。基本的な発電動作につい
ては従来の燃料電池の場合と同様である。以下にはこの
発明の主要部であるコントローラ(63)における圧力制
御について説明する。第1図におけるPA,F,PC,Fはガス
流路(40),(41)中の圧力(全圧)を示し、PA,PCは
電解質の燃料電極(12)側界面,酸素電極(13)側界面
におけるガスの全圧を示している。Next, the operation will be described. The basic power generation operation is the same as that of the conventional fuel cell. Hereinafter, pressure control in the controller (63) which is a main part of the present invention will be described. In FIG. 1, P A, F , P C, F indicate the pressure (total pressure) in the gas flow paths (40), (41), and P A , P C are the interface between the electrolyte and the fuel electrode (12). It shows the total gas pressure at the oxygen electrode (13) side interface.
この実施例に係るSOFCにおいてはPA=PCが満足される
ようにPA,F及びPC,Fが圧力調整弁(60),(61)によ
り調整されるわけである。酸素イオン導電性の電解質を
用いた燃料電池においては、燃料電極(12)側では水素
が燃料ガス流路(40)から電解質(11)のほうに向かっ
て、燃料電極(12)中を拡散し、燃料電極(12)と電解
質(11)の界面で下の反応が生じる。P A as P A = P C is satisfied in SOFC according to this embodiment, F and P C, F is the pressure adjusting valve (60) is not adjusted by (61). In a fuel cell using an oxygen ion conductive electrolyte, hydrogen diffuses in the fuel electrode (12) from the fuel gas flow path (40) toward the electrolyte (11) on the fuel electrode (12) side. The following reaction occurs at the interface between the fuel electrode (12) and the electrolyte (11).
H2+O2-→H2O+2e- この反応により生成した水蒸気H2Oが水素とは逆の方
向に燃料電極(12)中を拡散し、燃料ガス流路(40)中
に排出される。また、酸素電極(13)側においては酸素
ガスが酸化剤ガス流路(41)から電解質(11)のほうに
向かって基体(50)及び酸素電極(13)中を拡散し、下
の反応によって2O2-となって電解質(11)に取り込まれ
る。H 2 + O 2− → H 2 O + 2e — The water vapor H 2 O generated by this reaction diffuses in the fuel electrode (12) in a direction opposite to that of hydrogen and is discharged into the fuel gas flow path (40). On the oxygen electrode (13) side, oxygen gas diffuses through the substrate (50) and the oxygen electrode (13) from the oxidizing gas flow path (41) toward the electrolyte (11), and is reacted by the following reaction. It becomes 2O 2- and is taken into the electrolyte (11).
O2+4e-→2O2- この時、界面における圧力には次のような関係が成り
立つ。O 2 + 4e − → 2O 2− At this time, the following relationship holds for the pressure at the interface.
燃料電極(12)側:PA,F<PA 酸素電極(13)側:PC,F>PC 従って、もし燃料電池に供給する2種のガス(燃料ガ
スと空気)の圧力が等しい場合、つまり、 PA,F=PC,F となる場合には、電解質界面での圧力PA,PCは、 PA>PC となる。電解質(11)界面では燃料電極(12)側の圧力
が高くなり、もし電解質(11)が完全に緻密でない場合
には燃料ガスが酸素電極(13)側に漏出し、そこで燃え
てしまい、発電効率が低下する。従って、上述のような
不具合を解消するには、 PA,F<PC,F となるように2種のガスを供給する必要がある。Fuel electrode (12) side: P A, F <P A oxygen electrode (13) side: P C, F> P C Therefore, if the pressure of the two gases supplied to the fuel cell (fuel gas and air) is equal to In this case, that is, when P A, F = P C, F , the pressures P A , P C at the electrolyte interface are P A > P C. At the electrolyte (11) interface, the pressure on the fuel electrode (12) side increases, and if the electrolyte (11) is not completely dense, the fuel gas leaks to the oxygen electrode (13) side and burns there, generating electricity. Efficiency decreases. Therefore, in order to solve the above-mentioned problems, it is necessary to supply two kinds of gases so that P A, F <P C, F.
以下、どの程度の圧力差を2つの供給ガスにつければ
良いかについて述べる。この予測にあったってこの実施
例では、細孔内非等圧拡散の理論を用いる。第2図は細
孔内非等圧拡散を説明するためのモデルを示す説明図で
あり、多孔材料中の2種のガスの輸送を表している。
(65)は多孔材料、(66)は電解質界面、矢印gはガス
の流れを示す。2種のガスとしては酸素電極(13)で
は、酸素(O2)と窒素(N2)を、燃料電極(12)では水
素(H2)と水蒸気(H2O)を考える。多好材料として
は、第1図に示したSOFCでは燃料電極側において多孔燃
料電極(12)とし、酸素電極側では多孔基体(50)と多
孔酸素電極(13)を合せたものとなる。以下の説明にお
いて、添字1,2は2種のガスを表わし、添字0,Lは多孔材
料(65)の厚み方向にとった座標Zに関し、Z=0は多
孔材料(65)のガス流れ側の界面、Z=Lは多孔材料
(65)の電解質側の界面(66)を表わすものとする。
又、Pは全圧を示し、Jはガスのモル流束を示す。The following describes how much pressure difference should be applied to the two supply gases. For this prediction, this embodiment uses the theory of non-isobaric diffusion in the pores. FIG. 2 is an explanatory diagram showing a model for explaining non-isobaric diffusion in pores, and shows the transport of two types of gas in a porous material.
(65) indicates a porous material, (66) indicates an electrolyte interface, and arrow g indicates a gas flow. As the two types of gases, oxygen (O 2 ) and nitrogen (N 2 ) are considered for the oxygen electrode (13), and hydrogen (H 2 ) and water vapor (H 2 O) are considered for the fuel electrode (12). As a preferred material, in the SOFC shown in FIG. 1, a porous fuel electrode (12) is provided on the fuel electrode side, and a porous substrate (50) and a porous oxygen electrode (13) are combined on the oxygen electrode side. In the following description, the suffixes 1 and 2 represent two types of gas, the suffixes 0 and L relate to the coordinate Z taken in the thickness direction of the porous material (65), and Z = 0 represents the gas flow side of the porous material (65). And Z = L represents the interface (66) on the electrolyte side of the porous material (65).
P indicates the total pressure, and J indicates the molar flux of the gas.
次に計算方法について述べる。第2図に示した2成分
非等圧細孔内拡散系は、次の2元連立微分方程式で表わ
される。Next, a calculation method will be described. The two-component non-equal pressure pore diffusion system shown in FIG. 2 is expressed by the following binary simultaneous differential equation.
J1=(1/e1)・[−(P/RT)・D1K・(dx1/dz)− (x1/RT)・{D12+D2K+D2K(x1/D1K+x2/D2K) ・(B0P/η)}・∂P/∂Z] J2=(1/e2)・[−(P/RT)・D2K・(dx2/dz)− (x2/RT)・{D12+D1K+D1K(x1/D1K+x2/D2K) ・(B0P/η)}・∂P/∂Z] 上式中、Rはガス定数、Tは絶対温度、ηは混合ガス
の粘性係数、x1,x2はガス1,2のモル分率(x1+x2=
1),D1K,D2Kはガス1,2の細孔内の有効クヌッセン拡散
係数で、 DiK=(d/3)・(ε/τ)・(8RT/πM1)1/2 (i=1,2) で表される。ここで、d,ε,τは多孔材料(65)の特性
パラメータで、dは代表細孔径、εは気孔率、τは迷路
因子である。又、Miはガスiの分子量である。D12はガ
ス1,2の有効相互拡散係数、B0は多孔材料(65)の粘性
流れに関するパラメータである。又、 e1=x2+x1(D2K/D1K)+(D12/D1K) e2=x1+x2(D1K/D2K)+(D12/D2K) である。この連立微分方程式を境界条件、即ちZ=0に
おける全圧P0(これはガス流れ中の圧力に相当する)、
及びZ=0でのモル分率x1,0,x2,0(=1−x1,0)の
下で与えられたモル流束J1,J2に対して解くことにより
Z=Lにおける全圧PLが得られる。 J 1 = (1 / e 1 ) · [- (P / RT) · D 1K · (dx 1 / dz) - (x 1 / RT) · {D 12 + D 2K + D 2K (x 1 / D 1K + x 2 / D 2K ) ・ (B 0 P / η)} ・ ∂P / ∂Z] J 2 = (1 / e 2 ) ・ [-(P / RT) ・ D 2K・ (dx 2 / dz)-(x 2 / RT) · {D 12 + D 1K + D 1K (x 1 / D 1K + x 2 / D 2K ) · (B 0 P / η)} · ∂P / ∂Z] where R is the gas constant and T Is the absolute temperature, η is the viscosity coefficient of the mixed gas, and x 1 and x 2 are the mole fraction of gas 1 and 2 (x 1 + x 2 =
1), D 1K, D 2K is effective Knudsen diffusion coefficient of the pores of the gas 1,2, D iK = (d / 3) · (ε / τ) · (8RT / πM 1) 1/2 (i = 1,2). Here, d, ε, τ are characteristic parameters of the porous material (65), d is a representative pore diameter, ε is a porosity, and τ is a maze factor. Further, M i is the molecular weight of the gas i. D 12 is the effective mutual diffusion coefficient of the gas 1, 2, B 0 is a parameter relating to viscosity flow of the porous material (65). Further, e 1 = x 2 + x 1 (D 2K / D 1K ) + (D 12 / D 1K ) e 2 = x 1 + x 2 (D 1K / D 2K ) + (D 12 / D 2K ). This simultaneous differential equation is defined as a boundary condition, that is, the total pressure P 0 at Z = 0 (this corresponds to the pressure in the gas flow),
And Z = L by solving for a given molar flux J 1 , J 2 under the mole fraction x 1,0 , x 2,0 (= 1−x 1,0 ) at Z = 0. total pressure P L is obtained in the.
次にJ1,J2の与え方に対して記述する。まず、燃料電
極(12)の場合について説明する。燃料電極(12)では
添字1を水素、添字2を水蒸気とする。発電時において
は、等モルの水素と水蒸気が逆方向に拡散しているはず
であるから、次式が成り立つ。Next, how to give J 1 and J 2 will be described. First, the case of the fuel electrode (12) will be described. In the fuel electrode (12), the suffix 1 is hydrogen and the suffix 2 is steam. At the time of power generation, equimolar hydrogen and water vapor should have diffused in the opposite directions, so the following equation holds.
J2=−J1 J1の値はSOFCの重要な動作パラメータの1つである電
流密度iから与えられる。つまり、 J1=i/2F となり、ここでFはファラデー定数である。J 2 = −J 1 The value of J 1 is given from the current density i, which is one of the important operating parameters of the SOFC. That is, J 1 = i / 2F, where F is a Faraday constant.
次に酸素電極(13)の場合について説明する。酸素電
極(13)では、添字1を酸素、添字2と窒素とする。発
電時には電流密度に応じた酸素がガス流れ中から電解質
界面(66)へ多孔材料(65)中の拡散している。しかし
窒素は反応に関与しないため、この正味モル流束は0で
ある。Next, the case of the oxygen electrode (13) will be described. In the oxygen electrode (13), the subscript 1 is oxygen and the subscript 2 is nitrogen. During power generation, oxygen according to the current density is diffused in the porous material (65) from the gas flow to the electrolyte interface (66). However, since nitrogen does not participate in the reaction, this net molar flux is zero.
J2=0 となり、J1は燃料電極(12)と同様に、 J1=i/4F で与えられる。J 2 = 0, and J 1 is given by J 1 = i / 4F similarly to the fuel electrode (12).
次に計算結果の一例について述べる。第3図はアルミ
ナ(Al2O3,図中実線)及びカルシア安定化ジルコニア
(CSZ,図中点線)の2種の多孔基体管をSOFCに用いた場
合の電解質界面(66)における圧力を示したものであ
る。横軸は電流密度(A/cm2)、縦軸は電解質界面にお
ける圧力(atm)である。この多孔基体管の特性につい
て表に示す。温度は1000℃とし、種々のガスの物性値も
所定の物性定数推算の主峰により求める。Next, an example of a calculation result will be described. FIG. 3 shows the pressure at the electrolyte interface (66) when two kinds of porous base tubes of alumina (Al 2 O 3 , solid line in the figure) and calcia-stabilized zirconia (CSZ, dotted line in the figure) were used for SOFC. It is a thing. The horizontal axis is the current density (A / cm 2 ), and the vertical axis is the pressure (atm) at the electrolyte interface. The properties of this porous substrate tube are shown in the table. The temperature is set to 1000 ° C., and the physical properties of various gases are also determined from the main peaks for estimating predetermined physical constants.
第2図中、Case1は多孔管が燃料電極(12)側にある
場合(第9図(ロ)に相当),Case2は多孔管が酸素電極
(13)側にある場合(第1図及び第9図(ハ)に相当)
を示している。計算条件はガス流れ中の圧力を1気圧と
し、ガス流れ中のモル分率を、Case1の場合にはxH2=0.
425(xH2O=0.575),Case2の場合にはxO2=0.21(xN2=
0.79)とした。電流密度の増加と共に電解質界面(66)
での圧力がガス流れ中の圧力(=1)からずれていく様
子が判る。これより、例えばAl2O3管を基体管として燃
料電極(12)側に備えた様なSOFCにおいて、電流密度を
0.5A/cm2とした場合には燃料電極(12)側の電解質界面
(66)では燃料ガス流路中より圧力が約0.03atmも高く
なる。同様な計算を酸素電極(13)側についても行な
い、酸素電極(13)側での電解質界面(66)でどの程度
酸化剤ガス流路中より圧力が下がるかを計算する。これ
らの値を基にして、2つの供給ガスの流路中の圧力をい
かに設定すれば電解質(11)の両界面における圧力差を
実質的に0にすることができるかを知る。 In FIG. 2, Case 1 is a case where the porous tube is on the fuel electrode (12) side (corresponding to FIG. 9 (b)), and Case 2 is a case where the porous tube is on the oxygen electrode (13) side (FIGS. 1 and 2). (Corresponds to Fig. 9 (c))
Is shown. The calculation conditions are as follows: the pressure in the gas flow is 1 atm, and the mole fraction in the gas flow is xH2 = 0.
425 (x H2O = 0.575), in the case of Case2 x O2 = 0.21 (x N2 =
0.79). Electrolyte interface with increasing current density (66)
It can be seen that the pressure at the point deviates from the pressure (= 1) in the gas flow. Thus, for example, in an SOFC in which an Al 2 O 3 tube is provided as a base tube on the fuel electrode (12) side, the current density is reduced.
When the pressure is 0.5 A / cm 2 , the pressure at the electrolyte interface (66) on the fuel electrode (12) side is higher than that in the fuel gas flow channel by about 0.03 atm. The same calculation is performed on the oxygen electrode (13) side to calculate how much the pressure drops in the oxidizing gas channel at the electrolyte interface (66) on the oxygen electrode (13) side. Based on these values, it is known how to set the pressure in the flow path of the two supply gases so that the pressure difference at both interfaces of the electrolyte (11) can be made substantially zero.
上記の計算を予め行ない、電流密度に対するガス流路
の圧力をメモリ(64)に格納しておく。発電時にコント
ローラ(63)は電流計(62)で検出した電流密度を入力
し、これに対応する圧力値をメモリ(64)から知り、圧
力調整弁(60),(61)を制御し、ガス流路中の圧力を
所定の圧力になるように制御している。これにより、燃
料ガス流路及び酸化剤ガス流路内のガス圧力を所定の圧
力に保持でき、電解質の燃料電極側及び酸化剤電極側の
両側界面におけるガスの全圧を等しくすることができ
る。従って、電解質(11)が完全に緻密でない場合にも
電解質(11)を通るガスの漏れを最小限度に抑えること
ができ、ガスの混合による燃焼を低減でき、信頼性が向
上できるとともに、効率の低下を防止できる。The above calculation is performed in advance, and the pressure of the gas flow path with respect to the current density is stored in the memory (64). During power generation, the controller (63) inputs the current density detected by the ammeter (62), knows the corresponding pressure value from the memory (64), controls the pressure regulating valves (60) and (61), The pressure in the flow path is controlled to a predetermined pressure. Thereby, the gas pressure in the fuel gas flow path and the oxidizing gas flow path can be maintained at a predetermined pressure, and the total pressure of the gas at both interfaces of the electrolyte on the fuel electrode side and the oxidizing electrode side can be equalized. Therefore, even when the electrolyte (11) is not completely dense, gas leakage through the electrolyte (11) can be minimized, combustion due to gas mixing can be reduced, reliability can be improved, and efficiency can be improved. Drop can be prevented.
なお、上記実施例では燃料ガス及び酸化剤ガス供給流
路の両方に圧力調整弁を設けたが、一方の圧力を一定に
保ち、他方の流路にのみ圧力調整弁を備えてもよい。
又、上記実施例では予め計算された設定圧力に両ガス流
路を保つように構成しているが、負荷変動に応じて両ガ
ス流路の圧力を動的に制御するようにしてもよい。In the above embodiment, the pressure regulating valves are provided in both the fuel gas and the oxidizing gas supply channels. However, the pressure regulating valve may be provided only in the other channel while keeping one pressure constant.
Further, in the above-described embodiment, the configuration is such that both gas flow paths are maintained at a preset pressure calculated in advance. However, the pressure in both gas flow paths may be dynamically controlled according to a load change.
[発明の効果] 以上のようにこの発明によれば、電解質部を介在して
燃料電極部と酸素電極部を備え、燃料電極部に燃料ガス
を供給し、酸素電極部に酸化剤ガスを供給して電気化学
反応を起こす固体電解質燃料電池において、出力電流密
度を検出する出力電流密度検出手段、この出力電流密度
検出手段により検出された電流密度に基いて電解質部の
燃料電極部側と酸素電極部側の両界面におけるガスの全
圧を等しくする予め求められた電流密度とガス流路の圧
力データから上記燃料ガスと酸化剤ガスの圧力を決定す
る圧力決定手段、及びこの圧力決定手段に従って燃料ガ
スと酸化剤ガスの一方あるいは両方の圧力を調整するガ
ス圧力調整手段を備えたことにより、電解質部が完全に
緻密でない場合にも電解質部を通るガスの漏れを最小限
度に抑えることができ、ガスの混合による燃焼が少なく
なり、信頼性が向上できるとともに、効率の低下を防止
できる固体電解質燃料電池が得られる効果がある。[Effects of the Invention] As described above, according to the present invention, a fuel electrode portion and an oxygen electrode portion are provided with an electrolyte portion interposed therebetween, a fuel gas is supplied to the fuel electrode portion, and an oxidant gas is supplied to the oxygen electrode portion. Output current density detecting means for detecting an output current density in a solid electrolyte fuel cell causing an electrochemical reaction, and a fuel electrode side of an electrolyte part and an oxygen electrode based on the current density detected by the output current density detecting means. Pressure determining means for determining the pressures of the fuel gas and the oxidizing gas from the current density and the pressure data of the gas flow path, which equalize the total pressure of the gas at both interfaces on the side of the unit, and the fuel according to the pressure determining means Gas pressure adjusting means for adjusting the pressure of one or both of the gas and the oxidizing gas minimizes gas leakage through the electrolyte even when the electrolyte is not completely dense. Thus, there is an effect that a solid electrolyte fuel cell can be obtained, in which combustion due to gas mixing is reduced, reliability can be improved, and a decrease in efficiency can be prevented.
【図面の簡単な説明】 第1図はこの発明の一実施例による固体電解質燃料電池
を示す構成図、第2図はこの発明の一実施例に係る圧力
決定手段における設定圧力計算を説明するための説明
図、第3図はこの発明の一実施例に係る計算結果を、電
流密度と電解質界面における圧力の関係として示すグラ
フ、第4図は固体電解質燃料電池の動作原理を示す説明
図、第5図及び第6図は従来の円筒型横縞型固体電解質
燃料電池を示す斜視図及び断面図、第7図及び第8図は
従来の円筒型横縞型固体電解質燃料電池を示す斜視図及
び側面図、第9図は固体電解質燃料電池をタイプ別に示
す断面図である。 (11)……固体電解質、(12)……燃料電極、(13)…
…酸素電極、(60),(61)……圧力調整弁、(62)…
…電流計、(63)……コントローラ。 なお、同一符号は同一、又は相当部分を示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a solid oxide fuel cell according to an embodiment of the present invention, and FIG. 2 is for explaining calculation of a set pressure in a pressure determining means according to an embodiment of the present invention. FIG. 3 is a graph showing a calculation result according to one embodiment of the present invention as a relationship between a current density and a pressure at an electrolyte interface. FIG. 4 is an explanatory diagram showing an operation principle of a solid electrolyte fuel cell. 5 and 6 are a perspective view and a cross-sectional view showing a conventional cylindrical horizontal stripe type solid electrolyte fuel cell, and FIGS. 7 and 8 are a perspective view and a side view showing a conventional cylindrical horizontal stripe type solid electrolyte fuel cell. FIG. 9 is a sectional view showing a solid oxide fuel cell by type. (11) ... solid electrolyte, (12) ... fuel electrode, (13) ...
... oxygen electrode, (60), (61) ... pressure regulating valve, (62) ...
... ammeter, (63) ... controller. The same reference numerals indicate the same or corresponding parts.
Claims (1)
部を備え、上記燃料電極部に燃料ガスを供給し、上記酸
素電極部に酸化剤ガスを供給して電気化学反応を起こす
固体電解質燃料電池において、出力電流密度を検出する
出力電流密度検出手段、この出力電流密度検出手段によ
り検出された電流密度に基いて、上記電解質部の燃料電
極部側と酸素電極部側の両界面におけるガスの全圧を等
しくする予め求められた電流密度とガス流路の圧力デー
タから上記燃料ガスと上記酸化剤ガスの圧力を決定する
圧力決定手段、及びこの圧力決定手段に従って上記燃料
ガスと上記酸化剤ガスの一方あるいは両方の圧力を調製
するガス圧力調製手段を備えたことを特徴とする固体電
解質燃料電池。1. A solid material comprising a fuel electrode portion and an oxygen electrode portion with an electrolyte portion interposed therebetween, supplying a fuel gas to the fuel electrode portion, and supplying an oxidizing gas to the oxygen electrode portion to cause an electrochemical reaction. In the electrolyte fuel cell, output current density detecting means for detecting the output current density, based on the current density detected by the output current density detecting means, at both interfaces of the electrolyte part on the fuel electrode part side and the oxygen electrode part side Pressure determining means for determining the pressures of the fuel gas and the oxidizing gas from the current density and the pressure data of the gas flow path which make the total pressure of the gas equal, and the fuel gas and the oxidizing agent according to the pressure determining means. A solid electrolyte fuel cell comprising gas pressure adjusting means for adjusting the pressure of one or both of the agent gases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2063052A JP2770541B2 (en) | 1990-03-13 | 1990-03-13 | Solid electrolyte fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2063052A JP2770541B2 (en) | 1990-03-13 | 1990-03-13 | Solid electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03263763A JPH03263763A (en) | 1991-11-25 |
JP2770541B2 true JP2770541B2 (en) | 1998-07-02 |
Family
ID=13218178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2063052A Expired - Lifetime JP2770541B2 (en) | 1990-03-13 | 1990-03-13 | Solid electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2770541B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101405778B1 (en) * | 2012-05-07 | 2014-06-10 | 현대자동차주식회사 | Fuel cell system operating method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475651B1 (en) | 2000-07-31 | 2002-11-05 | Ballard Power Systems Inc. | Method and apparatus for detecting transfer leaks in fuel cells |
US7655331B2 (en) | 2003-12-01 | 2010-02-02 | Societe Bic | Fuel cell supply including information storage device and control system |
-
1990
- 1990-03-13 JP JP2063052A patent/JP2770541B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101405778B1 (en) * | 2012-05-07 | 2014-06-10 | 현대자동차주식회사 | Fuel cell system operating method |
Also Published As
Publication number | Publication date |
---|---|
JPH03263763A (en) | 1991-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6616054B1 (en) | Fuel cell system, combined power generation system, and control method for fuel cell system | |
US5213910A (en) | Solid electrolyte type fuel cell having gas from gas supply ducts impinging perpendicularly on electrodes | |
US7157169B2 (en) | Fuel cell | |
JP6219953B2 (en) | Hybrid device and hybrid system | |
JP2003243000A (en) | Solid oxide fuel cell system and its control method | |
JP2007311288A (en) | Fuel cell power generation device, control program, and control method of fuel cell power generation device | |
JP4934950B2 (en) | Fuel cell power generator and operation control method | |
JP4736309B2 (en) | Preheating method at the start of operation of solid oxide fuel cell | |
US20230411648A1 (en) | Fuel cell power generation system | |
JP2004335163A (en) | Solid oxide type fuel cell and its operation method | |
US20220376275A1 (en) | Fuel cell system and control method therefor | |
JP2018006003A (en) | Fuel cell control device and control method, and power generating system | |
JP4300947B2 (en) | Solid oxide fuel cell | |
JP2770541B2 (en) | Solid electrolyte fuel cell | |
JP2009245693A (en) | Fuel cell power generation device, and control method and control program during stoppage | |
JP2017117550A (en) | Fuel cell cartridge, fuel cell module, and control device and control method of fuel cell cartridge | |
JP6749799B2 (en) | Fuel cell control device, control method, and power generation system | |
JP4418196B2 (en) | Fuel cell module | |
JP4678115B2 (en) | Operation method and operation system of solid oxide fuel cell | |
JP6993488B1 (en) | Fuel cell power generation system and control method of fuel cell power generation system | |
TWI804207B (en) | Fuel gas supply device for fuel cell | |
JPH04292866A (en) | Generating set | |
US20230395830A1 (en) | Fuel cell power generation system and control method for fuel cell power generation system | |
JP7057731B2 (en) | Fuel cell and fuel cell manufacturing method | |
US20220190377A1 (en) | Fuel cell cartridge, fuel cell module, and combined power generation system |