JP2766998B2 - Measurement device for third-order nonlinear optical constant - Google Patents

Measurement device for third-order nonlinear optical constant

Info

Publication number
JP2766998B2
JP2766998B2 JP29763589A JP29763589A JP2766998B2 JP 2766998 B2 JP2766998 B2 JP 2766998B2 JP 29763589 A JP29763589 A JP 29763589A JP 29763589 A JP29763589 A JP 29763589A JP 2766998 B2 JP2766998 B2 JP 2766998B2
Authority
JP
Japan
Prior art keywords
light
optical
sample
refractive index
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29763589A
Other languages
Japanese (ja)
Other versions
JPH03160343A (en
Inventor
憲一 久保寺
秀紀 小林
浩久 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29763589A priority Critical patent/JP2766998B2/en
Publication of JPH03160343A publication Critical patent/JPH03160343A/en
Application granted granted Critical
Publication of JP2766998B2 publication Critical patent/JP2766998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、3次非線形光学定数の測定装置に関し、特
に光ゲート光スイッチや光双安定素子などを実現するた
めに用いられる非線形光学材料の3次の非線形光学特
性、すなわち非線形屈折率や3次の非線形感受率を測定
する測定装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a third-order nonlinear optical constant, and in particular, to a nonlinear optical material used for realizing an optical gate optical switch, an optical bistable element, and the like. The present invention relates to a measuring device for measuring a third-order nonlinear optical characteristic, that is, a nonlinear refractive index or a third-order nonlinear susceptibility.

[従来の技術] 非線形光学効果とは、物質中の電気分極Pが、下記
(1)式のように光の電界Eに比例する項以外にE2,E3
に比例する高次項を持つために起こる効果である。
[Prior Art] The nonlinear optical effect means that the electric polarization P in a substance is E 2 , E 3 other than a term proportional to the electric field E of light as shown in the following equation (1).
This is an effect caused by having a higher-order term proportional to.

P=X(1)E+X(2)E2+X(3)E3+… (1) ここで、X(1)は線形感受率、X(2)およびX(3)はそれぞ
れ2次および3次の非線形感受率と呼ばれる。第3項
は、下記(2)式で示される光の強度Iに依存した屈折
率変化(非線形屈折率効果と呼ぶ)をもたらす。
P = X (1) E + X (2) E 2 + X (3) E 3 + (1) where X (1) is the linear susceptibility, X (2) and X (3) are quadratic and 3 respectively. It is called the following non-linear susceptibility. The third term causes a change in the refractive index (referred to as a nonlinear refractive index effect) depending on the light intensity I shown in the following equation (2).

n=n0+n2I (2) (2)式の非線形屈折率定数n2(単位:cm2/W)は3
次非線形感受率X(3)(単位:esu)に対して、 で与えられる。但しn0は通常の(弱励起時の)屈折率、
cは光速である。
n = n 0 + n 2 I (2) The nonlinear refractive index constant n 2 (unit: cm 2 / W) in the equation (2) is 3
For the non-linear susceptibility X (3) (unit: esu), Given by Where n 0 is the normal (low excitation) refractive index,
c is the speed of light.

この非線形屈折率効果を有する光学媒質と、偏光子、
光共振器、あるいは反射鏡などの他の光学素子とを組み
合わせると、光ゲート光スイッチや光双安定素子、ある
いは位相共役波発生装置など、光情報処理や光通信シス
テムにおいて将来的に用いられる重要なデバイスを構築
し得る。
An optical medium having this nonlinear refractive index effect, a polarizer,
When combined with other optical elements such as optical resonators or reflecting mirrors, optical gated optical switches, optical bistable elements, or phase conjugate wave generators can be used in optical information processing and optical communication systems in the future. Devices can be built.

非線形屈折率を示す光学材料には、InSb,GaAsなどの
半導体材料(メカニズム(作用)はバンドフィリング効
果による)、ZnS,ZnSeなどの半導体材料(熱効果によ
る)、GaAs/AIGaAsなどの半導体超格子材料(励起子ス
ペクトルの吸収飽和効果による)、液晶材料(液晶配向
効果による)、CS2などの分子性液体(分子配向効果に
よる)、有機材料(非線形分極効果による)、フォトリ
フラクティブ誘電体材料(吸収飽和効果および電気光学
効果による)、CdSSeなどの微粒子をガラス中に含む半
導体ドープガラス材料(バンドフィリング効果による)
などが挙げられる。
Optical materials exhibiting a non-linear refractive index include semiconductor materials such as InSb and GaAs (the mechanism (action) is based on the band-filling effect), semiconductor materials such as ZnS and ZnSe (by the thermal effect), and semiconductor superlattices such as GaAs / AIGaAs. material (due to absorption saturation effect of exciton spectrum), a liquid crystal material (by the liquid crystal orientation effect), (due to molecular orientation effect) molecular liquids such as CS 2, (due to the nonlinear polarization effect) organic materials, photorefractive dielectric material ( Semiconductor-doped glass material containing fine particles such as CdSSe in glass (due to band-filling effect)
And the like.

ところで、上記の非線形屈折率材料はメカニズム(作
用)が異なるため、材料の応答速度が大幅に異なる。例
えば、液晶材料やフォトリフラクティブ材料は非線形屈
折率定数n2が大きく(n210-3cm2/W)、従って効率は
良いが、応答速度は約1msと遅い。一方、半導体ドープ
ガラスや有機材料はn210-11cm2/Wと効率は悪いが、応
答速度は10ps程度以下と極めて速い。従って、非線形屈
折率効果を利用した光非線形素子を実現するためには、
応答速度が必要とされる速度よりも充分に速い材料を選
択することと、その定数n2値を精密に測定し、素子を設
計することが重要である。
By the way, since the above-mentioned nonlinear refractive index materials have different mechanisms (actions), the response speeds of the materials are significantly different. For example, a liquid crystal material or a photorefractive material has a large nonlinear refractive index constant n 2 (n 2 10 −3 cm 2 / W) and is therefore efficient, but has a slow response speed of about 1 ms. On the other hand, semiconductor-doped glass and organic materials have a poor efficiency of n 2 10 −11 cm 2 / W, but have a very fast response speed of about 10 ps or less. Therefore, in order to realize an optical nonlinear element using the nonlinear refractive index effect,
It is important to select a material whose response speed is sufficiently higher than the required speed, and to precisely measure the constant n 2 value to design a device.

本発明は、これらの光非線形素子のうちでも、特に高
速性が必要とされるものにおいて、従来測定が難しかっ
た半導体ドープガラスや有機材料などの高速非線形材料
の非線形屈折率n2の値を精密に測定する装置に関するも
のである。
The present invention, among these optical nonlinear element, particularly in those high speed is required, precise values of the nonlinear refractive index n 2 of the high-speed non-linear materials such as conventional measurement difficult semiconductor doped glass or organic material The present invention relates to an apparatus for performing measurement at a time.

以下、高速非線形材料である半導体ドープガラスの非
線形屈折率を測定した測定装置の従来例を説明する。
Hereinafter, a conventional example of a measuring apparatus for measuring the nonlinear refractive index of a semiconductor-doped glass which is a high-speed nonlinear material will be described.

第3図はアリゾナ大学で開発された、干渉計を用いた
従来の測定装置の原理を示す(文献:G.R.Olbright an
d N.Peyghambarian;Appl.Phys.Lett.Vol.48,(1986)p.
48を参照)。入力光のレーザ光は半透過鏡12によって2
つの光路に分岐され、それぞれ全反射鏡13,14にほぼ垂
直に入射し、反射される。この反射光は半透過鏡12によ
って再度合波され、出力光となる。この出力光には干渉
縞が現われる。この干渉縞の観測のために、テレビカメ
ラ等のパターン観測器が用いられる。なお、この光学系
はトワイマンーグリーン干渉計と呼ばれる。
FIG. 3 shows the principle of a conventional measuring device using an interferometer developed at the University of Arizona (Reference: GROlbright an
d N. Peyghambarian; Appl. Phys. Lett. Vol. 48, (1986) p.
48). The laser light of the input light is
The light is branched into two optical paths, and enters the total reflection mirrors 13 and 14 almost perpendicularly, and is reflected. This reflected light is recombined by the semi-transmissive mirror 12 to become output light. Interference fringes appear in this output light. For observing the interference fringes, a pattern observer such as a television camera is used. This optical system is called a Twyman-Green interferometer.

半導体ドープガラスの被測定サンプル1は片方の全反
射鏡(例えば14)の直前に置かれる。サンプル1を置い
たことにより片方の光路長(屈折率×長さ)が変化し、
その結果、出力光の干渉縞の位置や間隔に変化が生ず
る。サンプル1が非線形屈折率を有する場合には、この
変化は入力光強度に依存するから、逆に、この干渉縞の
空間的シフト量を観測すれば、非線形屈折率が測定され
る。
The sample 1 to be measured made of semiconductor-doped glass is placed immediately before one total reflection mirror (for example, 14). One of the optical path lengths (refractive index x length) changes by placing sample 1,
As a result, the positions and intervals of the interference fringes of the output light change. When the sample 1 has a nonlinear refractive index, this change depends on the input light intensity. Conversely, when the spatial shift amount of the interference fringes is observed, the nonlinear refractive index is measured.

上記文献での報告例では、半導体ドープガラスサン
プルについて、入力光波長0.49〜0.52μmにおいてn2
2×10-11cm2/Wの値が決定された。
In the example reported in the above document, the semiconductor doped glass sample has n 2 at an input light wavelength of 0.49 to 0.52 μm.
A value of 2 × 10 −11 cm 2 / W was determined.

第4図は日本電信電話(株)の本願発明者らから報告
された第2の従来例であり、光共振器を用いた測定装置
の原理を示す(文献:J.Yumoto,S.Fukushima,and K.Ku
bodera;Opt.Lett.Vol.12,(1987)p.832を参照)。入力
光のレーザー光は相対向する2つの反射鏡2,3(反射率
は90%程度)からなる光共振器に入射し、多重反射を繰
り返して出力光として出射される。このときの光共振器
の透過率(出力光強度/入力光強度)は2つの反射鏡2,
3の間隔lcavに極めて敏感に依存し、この鏡の間隔(共
振器長)が丁度入射光波長λの1/2の整数倍のとき(l
cav=mλ/2:mは整数)、高い透過率を示すことが知ら
れている。この様子を第5図に示した。第4図の4は電
圧印加によって微細に厚さが変わるピエゾ素子であり、
反射鏡3はこのピエゾ素子に取り付けられて固定されて
いる。すなわち、ピエゾ素子4の印加電圧の調整によ
り、第5図の共振器長lcavは任意に変えられる。
FIG. 4 is a second conventional example reported by the inventors of the present invention of Nippon Telegraph and Telephone Corporation, and shows the principle of a measuring device using an optical resonator (literature: J. Yumoto, S. Fukushima, and K.Ku
Bodera; Opt. Lett. Vol. 12, (1987) p. 832). The laser light of the input light is incident on an optical resonator composed of two reflecting mirrors 2 and 3 facing each other (having a reflectivity of about 90%), and is emitted as output light by repeating multiple reflections. At this time, the transmittance (output light intensity / input light intensity) of the optical resonator is two reflecting mirrors 2,
It depends very sensitively on the spacing l cav of 3 when the spacing (resonator length) of this mirror is just an integral multiple of 1/2 of the incident light wavelength λ (l
cav = mλ / 2: m is an integer), and is known to exhibit high transmittance. This is shown in FIG. 4 in FIG. 4 is a piezo element whose thickness is minutely changed by applying a voltage.
The reflecting mirror 3 is attached and fixed to the piezo element. That is, by adjusting the voltage applied to the piezo element 4, the cavity length lcav in FIG. 5 can be arbitrarily changed.

半導体ドープガラスの被測定サンプル1は上記の光共
振器内に置かれる。この場合の共振器長はlcav=nls+l
a(但しnはサンプル1の屈折率、lsおよびlaはサンプ
ル1および空気層の厚さ)で表わされる。サンプル1の
屈折率が前記(2)式の様に入射光の強度Iに依存して
変わると、第5図の横軸の値が変わるから、共振器長l
cavの初期値(入射光の強度Iが0のときの値)をうま
く設定しておけば、僅かな屈折率変化を高感度に測定す
ることができる。
The sample 1 to be measured made of semiconductor-doped glass is placed in the above-described optical resonator. Cavity length in this case is l cav = nl s + l
a (where n is the refractive index of the sample 1, l s, and l a sample 1 and the thickness of the air layer) is represented by. When the refractive index of the sample 1 changes depending on the intensity I of the incident light as in the above equation (2), the value on the horizontal axis in FIG.
If the initial value of the cav (the value when the intensity I of the incident light is 0) is properly set, a slight change in the refractive index can be measured with high sensitivity.

上記文献での報告例では、半導体ドープガラスサン
プルについて、入射光波長−0.53μmにおいてn23×
10-11cm2/Wの値が決定された。この測定装置は、簡単な
共振器構成ですむこと、多重反射の効果により屈折率変
化が増強されて、第3図の従来例よりも低出力光源で測
定できることの特徴がある。
In the example reported in the above-mentioned document, the semiconductor doped glass sample has n 2 3 × at an incident light wavelength of −0.53 μm.
A value of 10 -11 cm 2 / W was determined. This measuring device is characterized in that it can be measured with a light source having a lower output than the conventional example shown in FIG.

[発明が解決しようとする課題] しかしながら、第3図に示す従来の測定装置において
は、極めて大型の高精度干渉計が必要とされること、ま
た、干渉縞のシフト量が現実には小さいために、入力光
として極めて高出力のレーザが要求されること、さらに
高出力レーザとして手軽なパルス発振のレーザを用いよ
うとすると、干渉縞の瞬間的なシフト量を検出するため
の大がかりなパターン観測器が必要とされること等の欠
点があった。
[Problems to be Solved by the Invention] However, the conventional measuring device shown in FIG. 3 requires an extremely large high-precision interferometer, and the shift amount of interference fringes is actually small. However, extremely high-power lasers are required as input light, and if a simple pulsed laser is used as the high-power laser, a large pattern observation for detecting the instantaneous shift amount of interference fringes is required. There were drawbacks such as the need for a vessel.

これに対し、第4図に示す従来の測定装置において
は、簡単な構成で低出力光源で測定できることの特徴が
あるものの、多重反射の精密な見積りが難しく、結局測
定精度を大幅に低下させるという問題点があった。
On the other hand, the conventional measuring device shown in FIG. 4 has a feature that it can be measured with a low-power light source with a simple configuration, but it is difficult to accurately estimate multiple reflections, and as a result, the measurement accuracy is greatly reduced. There was a problem.

本発明は、これらの点に鑑みてなされたもので、その
目的とするところは、簡単な構成で低パワのレーザ光源
を用い、かつ高精度の非線形屈折率定数が決定できる測
定装置を提供することにある。
The present invention has been made in view of these points, and an object of the present invention is to provide a measuring apparatus which can use a low-power laser light source with a simple configuration and can determine a highly accurate nonlinear refractive index constant. It is in.

[課題を解決するための手段] 上記目的を達成するため、本発明は、波長λprobeに
おいて90%程度の高い反射率をもち、かつ該波長λprob
eとは異なる波長λgateにおいて充分に低い反射率をも
つ鏡を2枚相対向させて構成した光共振器と、該光共振
器の内部に被測定サンプルを設置した後で、該光共振器
に前記波長λprobeのプローブ光と、前記波長λgateの
パルス状のゲート光を入射する光学系と、該プローブ光
の前記光共振器からの透過光量の時間変化から前記被測
定サンプルの非線形屈折率を決定する測定手段とを具備
したことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention has a high reflectivity of about 90% at a wavelength λprobe and the wavelength λprob
e, an optical resonator in which two mirrors having sufficiently low reflectivity at a wavelength λgate opposite to each other are configured to face each other, and a sample to be measured is placed inside the optical resonator. The non-linear refractive index of the sample to be measured is determined from an optical system for injecting the probe light of the wavelength λprobe, the pulsed gate light of the wavelength λgate, and the time change of the amount of light transmitted from the optical resonator of the probe light. And measuring means for performing the measurement.

[作用] 第4図の従来例では、入力光が1つのビームであった
のに対し、本発明では被測定サンプルの屈折率変化を生
じさせるための光(ゲート光と呼ぶ)と、その屈折率変
化を検出するための光(プローブ光と呼ぶ)を別々の光
として光共振器に入射し、この光共振器をプローブ光の
みに対する光共振器として用いるように構成したので、
従来例と異なり、ゲート光の多重反射の影響を考慮する
必要がなく、従って、簡単な構成で低パワのレーザ光源
を用い、非線形屈折率定数の高精度の測定を実現でき
る。
[Operation] In the conventional example shown in FIG. 4, the input light is a single beam, whereas in the present invention, light (called gate light) for causing a change in the refractive index of the sample to be measured and its refraction are generated. Since the light for detecting the rate change (called probe light) is incident on the optical resonator as separate light, and this optical resonator is configured to be used as an optical resonator for only the probe light,
Unlike the conventional example, there is no need to consider the influence of multiple reflections of the gate light, and therefore, a highly accurate measurement of the nonlinear refractive index constant can be realized with a simple configuration using a low-power laser light source.

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明す
る。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

実施例の構成 第1図は本発明の一実施例(実施例1)を示す3次非
線形光学定数の測定装置の構成図である。本図におい
て、1は300μmの厚さに光学研磨された被測定サンプ
ルの半導体ドープガラス、2,3はプローブ光の波長λpro
be=0.83μmにおいて反射率90%、かつゲート光の波長
λgate=0.675μmにおいて反射率12%を示す光学反射
鏡、4は電圧印加によって微細に厚さが変わるピエゾ素
子である。5は波長0.675μm、パルス時間巾9nsのゲー
ト光を発生する色素パルスレーザ、6は波長0.83μmの
プローブ光を発生する定常発振半導体レーザである。7,
8はレンズ、9はゲート光をカットし、プローブ光のみ
を透過させる光学フィルタ、10は光電子増倍管、11はオ
シロスコープである。被測定サンプル1は光学反射鏡2,
3の間に置かれる。
FIG. 1 is a configuration diagram of an apparatus for measuring a third-order nonlinear optical constant according to an embodiment (Example 1) of the present invention. In this figure, 1 is a semiconductor-doped glass of a sample to be measured optically polished to a thickness of 300 μm, and 2 and 3 are wavelengths λpro
An optical reflector 4 having a reflectivity of 90% at be = 0.83 μm and a reflectivity of 12% at a wavelength of gate light of λgate = 0.675 μm, 4 is a piezo element whose thickness is minutely changed by voltage application. Reference numeral 5 denotes a dye pulse laser that generates gate light having a wavelength of 0.675 μm and a pulse time width of 9 ns, and reference numeral 6 denotes a steady oscillation semiconductor laser that generates probe light having a wavelength of 0.83 μm. 7,
Reference numeral 8 denotes a lens, 9 denotes an optical filter that cuts gate light and transmits only probe light, 10 denotes a photomultiplier, and 11 denotes an oscilloscope. The sample to be measured 1 is an optical reflecting mirror 2,
Put between three.

光共振器を構成する鏡2および鏡3の間隔は約800μ
mであり、従って、共振器の光学長(共振器長)lcav
サンプル1を含めてlcav=nols+la=1.56×300μm+5
00μm=970μmである(但しn0はサンプルの屈折率、l
sおよびlaはサンプルおよび空気層の厚さ)。
The distance between the mirrors 2 and 3 constituting the optical resonator is about 800 μm.
m, and thus, the optical length (resonator length) of the resonator l cav, including the sample 1 l cav = nol s + l a = 1.56 × 300μm + 5
00 μm = 970 μm (where n 0 is the refractive index of the sample, l
s and l a the thickness of the sample and the air layer).

後方の反射鏡3はピエゾ素子4に取り付けられて固定
されており、ピエゾ素子4の印加電圧を変えることによ
り、共振器長lcavの値を波長オーダの精度で変化させる
ことができる。
The rear reflecting mirror 3 is attached to and fixed to the piezo element 4, and by changing the voltage applied to the piezo element 4, the value of the resonator length l cav can be changed with the accuracy of the order of wavelength.

実施例の作用 第2図(A)は半導体レーザ6の光(プローブ光)を
レンズ7で集光して、共振器の鏡2,3に入射させたとき
の共振器の透過率特性を示す。プローブ光は共振器内で
多重反射し、その結果、λprobe/2間隔の鋭い共鳴ピー
クを呈している。横軸のlcavはピエゾ素子4の印加電圧
に対応している。
FIG. 2A shows the transmittance characteristics of the resonator when the light (probe light) of the semiconductor laser 6 is condensed by the lens 7 and is incident on the mirrors 2 and 3 of the resonator. . The probe light is reflected multiple times in the resonator, and as a result, exhibits a sharp resonance peak at an interval of λprobe / 2. L cav on the horizontal axis corresponds to the voltage applied to the piezo element 4.

本例でのサンプル1の非線形屈折率の測定手順は以下
のとおりである。まず、第2図(A)の共振器長lcav
ある長さに固定し、この状態でパルスレーザ5から発生
するゲート光のパルスレーザ光をレンズ7を通してプロ
ーブ光のスポットと同位置に照射する。この照射によっ
て、サンプル1の屈折率は前記の(2)式に従って変化
するから、従って共振器長はlcav=(n0+n2I)ls+la
に変わり、ゲート光を照射しないOFF時と比べて、 Δlcav=n2I l5 (4) だけの光学長変化を生ずる。但し、Iはゲート光のパワ
密度である。プローブ光に対する共振器の透過率はこれ
に伴って第2図(A)に従ってパルス状に変化するか
ら、プローブ光の変化波形を解析することによってn2
値を算出することができる。
The procedure for measuring the nonlinear refractive index of Sample 1 in this example is as follows. First, the cavity length l cav in FIG. 2A is fixed to a certain length, and in this state, the pulse laser beam of the gate light generated from the pulse laser 5 is irradiated through the lens 7 to the same position as the spot of the probe light. I do. Due to this irradiation, the refractive index of the sample 1 changes according to the above equation (2), so that the cavity length is l cav = (n 0 + n 2 I) l s + l a
And the optical length changes by Δl cav = n 2 I 15 (4) as compared to the OFF state where no gate light is applied. Here, I is the power density of the gate light. Since the transmittance of the resonator with respect to the probe light changes in a pulse shape according to FIG. 2A, the value of n 2 can be calculated by analyzing the change waveform of the probe light.

第2図(B)はゲート光強度のピーク値がI=6.6MW/
cm2のときのフィルタ9、レンズ8、光電子増倍管10を
通じてオシロスコープ11により観測されたゲート光およ
びプローブ光の透過光(出力光)の時間波形を示す。出
力光強度のOFF時およびON時の値は第2図(A)の縦軸
と対応している筈であるから、このOFF時およびON時の
共振器状態は第2図(A)の矢印のように定められる。
すなわち、第2図(A)の波形からON-OFF時の共振器長
変化はΔlcav=0.18×(λprobe/2)=0.0747μmと読
み取れる。この値と上記の(4)式から、サンプル1の
非線形屈折率はn2=3.8×10-11cm2/Wと決定される。さ
らに(3)式からX(3)=1.76×10-9esuと算出される。
FIG. 2 (B) shows that the peak value of the gate light intensity is I = 6.6 MW /
The time waveform of the transmitted light (output light) of the gate light and the probe light observed by the oscilloscope 11 through the filter 9, the lens 8, and the photomultiplier tube 10 at cm 2 is shown. Since the values of the output light intensity at the time of OFF and at the time of ON should correspond to the vertical axis of FIG. 2 (A), the state of the resonator at the time of OFF and ON is indicated by the arrow in FIG. 2 (A). It is determined as follows.
That is, from the waveform of FIG. 2 (A), the change in the resonator length during ON-OFF can be read as Δl cav = 0.18 × (λprobe / 2) = 0.0747 μm. From this value and the above equation (4), the nonlinear refractive index of Sample 1 is determined to be n 2 = 3.8 × 10 −11 cm 2 / W. Further, X (3) = 1.76 × 10 −9 esu is calculated from equation (3) .

本発明実施例においては、共振器鏡2,3のゲート光に
対する反射率は12%と小さいので、ゲート光は共振器内
で多重反射を起こさないことが第4図の従来例と根本的
に異なる特徴の1つである。従って、(4)式のIの値
の見積りにおいて、従来問題とされた共振器内の多重反
射の解析は全く不要であり、その結果、高い測地精度が
実現できる。さらに、本発明実施例では、プローブ光に
対しては多重反射を利用しており、その結果、高精度な
測定がなされることは第3図の従来例と比べて大きな特
徴の1つである。従って、本発明実施例では入力光発生
源として低パワーのパルスレーザを用いることができ、
装置の小型化を実現できる。
In the embodiment of the present invention, since the reflectance of the resonator mirrors 2 and 3 with respect to the gate light is as small as 12%, the fact that the gate light does not cause multiple reflection in the resonator is fundamentally different from the conventional example shown in FIG. One of the different features. Therefore, in estimating the value of I in the equation (4), the analysis of the multiple reflection in the resonator, which has been a problem in the past, is completely unnecessary, and as a result, high geodetic accuracy can be realized. Furthermore, in the embodiment of the present invention, multiple reflection is used for the probe light, and as a result, high-precision measurement is one of the major features as compared with the conventional example of FIG. . Therefore, in the embodiment of the present invention, a low-power pulse laser can be used as an input light source,
The device can be reduced in size.

他の実施例 ところで、第1図の本発明実施例においては、ゲート
光はプローブ光と異なる光路で被測定サンプル1に照射
されているが、これを改め、半透過鏡(図示しない)を
用いてこれらの2つの光を合波し、ゲート光をプローブ
光と全く同一の光路で被測定サンプル1に入射させるこ
とも勿論可能である。さらに、上述の光電子増倍管10に
代えて、半導体検出器や高速ストリークカメラを用いる
こともできる。また、第1図の被測定サンプル1とし
て、半導体ドープカメラの例を述べたが、同程度の3次
非線形光学定数を持つ有機材料に対しても、全く同様の
測定が可能である。
1. Other Embodiments In the embodiment of the present invention shown in FIG. 1, the gate light is irradiated on the sample 1 to be measured through an optical path different from that of the probe light, but this is changed to use a semi-transmissive mirror (not shown). It is, of course, also possible to combine these two lights and make the gate light incident on the sample 1 to be measured on the exactly same optical path as the probe light. Further, a semiconductor detector or a high-speed streak camera can be used instead of the photomultiplier tube 10 described above. Although the example of the semiconductor-doped camera has been described as the sample 1 to be measured in FIG. 1, exactly the same measurement is possible for an organic material having the same third-order nonlinear optical constant.

[発明の効果] 以上説明したように、本発明によれば、その基本要素
として、共振器の鋭い共鳴特性を示す波長のプローブ光
と、ほとんど共鳴特性を示さない波長のゲート光を用い
ているので、測定精度が高くかつデータの解析が容易で
あり、その結果、小型単純な構成にして高精度な非線形
光学定数の測定装置を実現できる。従って、本発明の測
定装置は、種々の非線形光学材料、特に従来測定が難し
かった半導体ドープガラスや有機材料などの高速応答性
材料に対して、その威力を発揮するものであり、将来の
高速光ゲート光スイッチや光双安定素子などのデバイス
の開発に不可欠な測定装置となると期待できるものであ
る。
[Effects of the Invention] As described above, according to the present invention, probe light having a wavelength showing sharp resonance characteristics of a resonator and gate light having a wavelength showing almost no resonance characteristics are used as its basic elements. Therefore, the measurement accuracy is high and the data analysis is easy. As a result, a highly accurate nonlinear optical constant measuring apparatus with a simple configuration can be realized. Therefore, the measuring apparatus of the present invention exerts its power on various nonlinear optical materials, especially high-speed responsive materials such as semiconductor-doped glass and organic materials, which have been difficult to measure in the past. It is expected to be an indispensable measuring device for the development of devices such as gate optical switches and optical bistable elements.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す3次非線形光学定数の
測定装置の構成図、 第2図は第1図の実施例における光共振器の透過率(同
図(A))と、ゲート光ならびに出力光のパルス波形
(同図(B))を示す波形図、 第3図は従来の3次非線形光学定数の測定装置の一例を
示す原理図、 第4図は別の従来の3次非線形光学定数の測定装置の例
を示す原理図、 第5図は第4図の光共振器の透過率を示す特性図であ
る。 1……被測定サンプル、2,3……反射率90%の反射鏡、
4……ピエゾ素子、5……パルスレーザ、6……定常発
振レーザ、7,8……レンズ、9……光学フィルタ、10…
…光電子増倍管、11……オシロスコープ、12……半透過
鏡、13,14……全反射鏡。
FIG. 1 is a configuration diagram of an apparatus for measuring a third-order nonlinear optical constant showing an embodiment of the present invention. FIG. 2 is a diagram showing the transmittance of the optical resonator in the embodiment of FIG. FIG. 3 is a waveform diagram showing pulse waveforms of the gate light and the output light (FIG. 3B). FIG. 3 is a principle diagram showing an example of a conventional measuring device for a third-order nonlinear optical constant. FIG. FIG. 5 is a principle diagram showing an example of an apparatus for measuring a nonlinear optical constant, and FIG. 5 is a characteristic diagram showing the transmittance of the optical resonator shown in FIG. 1 ... Sample to be measured, 2,3 ... Reflector with 90% reflectivity,
4 ... Piezo element, 5 ... Pulse laser, 6 ... Stable oscillation laser, 7,8 ... Lens, 9 ... Optical filter, 10 ...
… Photomultiplier tube, 11… Oscilloscope, 12… Semi-transmissive mirror, 13,14 …… Reflective mirror.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】波長λprobeにおいて90%程度の高い反射
率をもち、かつ該波長λprobeとは異なる波長λgateに
おいて充分に低い反射率をもつ鏡を2枚相対向させて構
成した光共振器と、 該光共振器の内部に被測定サンプルを設置した後で、該
光共振器に前記波長λprobeのプローブ光と、前記波長
λgateのパルス状のゲート光を入射する光学系と、 該プローブ光の前記光共振器からの透過光量の時間変化
から前記被測定サンプルの非線形屈折率を決定する測定
手段と を具備したことを特徴とする3次非線形光学定数の測定
装置。
1. An optical resonator comprising two mirrors having a high reflectance of about 90% at a wavelength λprobe and a sufficiently low reflectance at a wavelength λgate different from the wavelength λprobe; After the sample to be measured is set inside the optical resonator, a probe light having the wavelength λprobe and the pulsed gate light having the wavelength λgate are incident on the optical resonator. Measuring means for determining a non-linear refractive index of the sample to be measured from a temporal change in the amount of light transmitted from the optical resonator.
JP29763589A 1989-11-17 1989-11-17 Measurement device for third-order nonlinear optical constant Expired - Fee Related JP2766998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29763589A JP2766998B2 (en) 1989-11-17 1989-11-17 Measurement device for third-order nonlinear optical constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29763589A JP2766998B2 (en) 1989-11-17 1989-11-17 Measurement device for third-order nonlinear optical constant

Publications (2)

Publication Number Publication Date
JPH03160343A JPH03160343A (en) 1991-07-10
JP2766998B2 true JP2766998B2 (en) 1998-06-18

Family

ID=17849131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29763589A Expired - Fee Related JP2766998B2 (en) 1989-11-17 1989-11-17 Measurement device for third-order nonlinear optical constant

Country Status (1)

Country Link
JP (1) JP2766998B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920373B2 (en) * 2006-11-08 2012-04-18 日本電信電話株式会社 Measuring device for refractive index change

Also Published As

Publication number Publication date
JPH03160343A (en) 1991-07-10

Similar Documents

Publication Publication Date Title
Friberg et al. Nonlinear optical glasses for ultrafast optical switches
US7679750B2 (en) Cavity ring-down apparatus and method for measuring reflectivity of highly reflective mirrors
Pang et al. Third‐order nonlinearity and two‐photon‐induced molecular dynamics: Femtosecond time‐resolved transient absorption, Kerr gate, and degenerate four‐wave mixing studies in poly (p‐phenylene vinylene)/sol‐gel silica film
Smith et al. Experimental studies of a nonlinear interface
US4571085A (en) Reflectometer based on optical cavity decay time
EP0468632A2 (en) A narrow bandwidth pulsed light source and a voltage detection apparatus using it
JPS59171819A (en) Optical fiber hydrophone
US4968881A (en) Voltage detector using electro-optic material having anti-reflective coatings
JP3072814B2 (en) Electro-optic probe and method of manufacturing the same
Trebino et al. Measuring ultrashort laser pulses
JP2766998B2 (en) Measurement device for third-order nonlinear optical constant
US4871235A (en) Optical system including etalon for optically processing electromagnetic radiation at a repetition rate greater than about 1.25×104 Hz
US4787714A (en) Optical system including device for optically processing electromagnetic radiation at a repetition rate greater than about 1.25×104 Hz
US7551267B2 (en) Systems and methods for measuring ultra-short light pulses
JP3167189B2 (en) Voltage measuring device
EP0924507B1 (en) Interferometer for measurements of optical properties in bulk samples
JPH0792434B2 (en) A method for measuring the nonlinear refractive index coefficient of a bistable resonant cavity optical device.
CA2257034A1 (en) Interferometer for measurements of optical properties in bulk samples
US11815404B2 (en) High accuracy frequency measurement of a photonic device using a light output scanning system and a reference wavelength cell
Tschanz et al. Transmission Modulation of a Single-Mode Planar Waveguide by Spectral Hole Burning
JPH037062B2 (en)
Kutas et al. Terahertz quantum sensing with visible light
EP0269730B1 (en) Optical system
Wasylczyk Compact, alignment-free autocorrelator for femtosecond laser pulses
Yavrian et al. Single-mirror interferometer for nonlinear optical characterization

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees