JP2766866B2 - Replenishment method of working medium for binary cycle - Google Patents

Replenishment method of working medium for binary cycle

Info

Publication number
JP2766866B2
JP2766866B2 JP1238688A JP23868889A JP2766866B2 JP 2766866 B2 JP2766866 B2 JP 2766866B2 JP 1238688 A JP1238688 A JP 1238688A JP 23868889 A JP23868889 A JP 23868889A JP 2766866 B2 JP2766866 B2 JP 2766866B2
Authority
JP
Japan
Prior art keywords
working medium
concentration
component
temperature
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1238688A
Other languages
Japanese (ja)
Other versions
JPH03100307A (en
Inventor
博之 住友
章 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HISAKA SEISAKUSHO KK
Original Assignee
HISAKA SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HISAKA SEISAKUSHO KK filed Critical HISAKA SEISAKUSHO KK
Priority to JP1238688A priority Critical patent/JP2766866B2/en
Publication of JPH03100307A publication Critical patent/JPH03100307A/en
Application granted granted Critical
Publication of JP2766866B2 publication Critical patent/JP2766866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、作動媒体として非共沸混合物を使用した
バイナリーサイクルにおける作動媒体の補給方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a method for replenishing a working medium in a binary cycle using a non-azeotropic mixture as a working medium.

〔従来の技術〕[Conventional technology]

二成分系または多成分系の非共沸混合物を作動媒体と
して用いるバイナリーサイクルは知られている(例え
ば、特開昭61−79810号公報、同61−93212公報等参
照)。
A binary cycle using a two-component or multi-component non-azeotropic mixture as a working medium is known (see, for example, JP-A-61-79810 and JP-A-61-93212).

非共沸混合物とは、沸点が異なる2以上の流体の混合
物をいうものとする。第3図は、一定圧力のもとにおけ
る成分Aおよび成分Bの単独の飽和温度をそれぞれTA
及びTBとするとき、高沸点成分Aと低沸点成分Bから
なる二成分系非共沸混合物の濃度と温度の関係を示す。
ここに濃度とは、成分Aと成分Bの重量をそれぞれGA
及びGBとするとき、この非共沸混合物の単位重量当た
りに含まれる成分Bの重量ξをいうものとする。すなわ
ち、 もし、温度Tのもとで液相と気相とが平衡状態にある
ときは、液相線および気相線上の温度Tに相当する点の
位置から、液相の温度はξlであり、気相の濃度はξg
である。さらに、液相と気相の合成の濃度をξとすれ
ば、この混合物の状態は点Mで表され、そのときの溶液
の重量と蒸気の重量との割合は、点Mから液相線および
気相線に至る水平距離aおよびbに逆比例する。
A non-azeotropic mixture refers to a mixture of two or more fluids having different boiling points. FIG. 3 shows the saturation temperatures of the components A and B alone under a constant pressure, respectively, as TA
And TB, the relationship between the concentration of the binary non-azeotropic mixture composed of the high boiling component A and the low boiling component B and the temperature is shown.
Here, the concentration refers to the weight of the component A and the weight of the component B, respectively.
And GB, the weight of component B contained per unit weight of this non-azeotropic mixture. That is, If the liquid phase and the gas phase are in an equilibrium state at the temperature T, the temperature of the liquid phase is Δl from the position of the point corresponding to the temperature T on the liquidus line and the gas phase line. Phase concentration is ξg
It is. Further, assuming that the concentration of the synthesis of the liquid phase and the gas phase is ξ, the state of this mixture is represented by a point M, and the ratio of the weight of the solution to the weight of the vapor at that time is calculated from the point M by the liquidus line and It is inversely proportional to the horizontal distances a and b to the vapor line.

次に、点Mが液相線と気相線とで囲まれる領域内に存
在するときは、混合物は気液両相に分かれるが、点Mが
それらの両線と一致するとき、または、その領域外に出
るときは、気・液のどちらか1つの相のみとなる。例え
ば、点Mは不飽和な液体を示すし、点M2は過熱蒸気を示
している。しかし、温度が変わると混合物の状態も変化
する。例えば、点M1で示される不飽和の液体の温度をT2
まで上げると飽和溶液となり、それ以上に温度を上げる
と蒸発を始める。要するに、温度ξlの溶液を定圧のも
とで加熱していくと、点Cで沸騰(蒸発)が始まり、そ
のとき平衡にある気相(蒸気)の組成と状態は点C′で
示される。さらに加熱して温度T1になると、点hで示さ
れる状態の気相と点jで示される状態の溶液がji:ihの
割合で共存する。加熱をさらに続けて温度T2になると点
dの状態の気相のみとなり、それから後も加熱を行えば
単に蒸気を過熱することになる。
Next, when the point M exists in the region surrounded by the liquidus line and the gaseous line, the mixture separates into gas and liquid phases, but when the point M coincides with both lines, or When going out of the region, only one of the gas and liquid phases is present. For example, the point M is an unsaturated liquid, the point M 2 represents the superheated steam. However, when the temperature changes, the state of the mixture also changes. For example, the temperature of the unsaturated liquid represented by point M 1 T 2
When it is raised to a saturated solution, it evaporates when the temperature is raised further. In short, when the solution at a temperature of ξl is heated under a constant pressure, boiling (evaporation) starts at a point C, and the composition and state of the gas phase (vapor) in equilibrium at that time are indicated by a point C ′. Further becomes the temperatures T 1 by heating, a solution of the state represented by the gas phase and the point j in the state indicated by the point h is ji: coexist in a ratio of ih. Heating further serves as only gas phase state of point becomes a temperature T 2 d continue, also simply be performed after heating and then will superheat the steam.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

バイナリーサイクルにおいては、作動媒体が漏れたり
してそのホールド量が減少したときは補給をして所定の
ホールド量を維持しなければならない。ところが、非共
沸混合媒体の場合、どの成分がどれだけ漏れたのか不明
であるため、単に設定濃度の非共沸混合物を補給しても
媒体全体としては所定の濃度に維持することができな
い。このため、サイクルの運転を停止して作動媒体を全
部抜き取り、改めて設定濃度の非共沸混合物を所定量充
填するか、あるいは、完全に漏れのない構造とするしか
ない。しかし、これでは実用に適さない。
In the binary cycle, when the holding amount decreases due to leakage of the working medium, replenishment must be performed to maintain a predetermined holding amount. However, in the case of a non-azeotropic mixed medium, since it is unknown which component has leaked and how much, simply replenishing the non-azeotropic mixture of a set concentration cannot maintain the medium as a whole at a predetermined concentration. For this reason, the operation of the cycle is stopped, the working medium is entirely removed, and a predetermined amount of the non-azeotropic mixture having the set concentration is filled again, or the structure is completely leak-free. However, this is not practical.

この発明の目的は、したがって、漏れが生じたとき、
作動媒体を全量入れ換えすることなく、非共沸混合物の
各成分につき所定の割合の追加充填量を決めて補給をす
ることにより、設定濃度の非共沸混合媒体の所定のホー
ルド量をキープしうるようにすることである。
The object of the present invention is therefore to
A predetermined holding amount of a non-azeotropic mixed medium of a set concentration can be maintained by determining and replenishing a predetermined ratio of an additional filling amount for each component of the non-azeotropic mixture without replacing the entire working medium. Is to do so.

〔課題を解決するための手段〕[Means for solving the problem]

この発明のバイナリーサイクルの作動媒体補給方法
は、2以上の成分からなる非共沸混合物を作動媒体とし
て使用するバイナリーサークルにおいて作動媒体を補給
するにあたり、作動媒体の液レベルをモニターし、液レ
ベルが低下したとき液レベルの変化量に基づいて作動媒
体全体の所要補給量を計算し、蒸発器における作動媒体
蒸気の温度および圧力を計測してそれらの計測値から作
動媒体の現在の濃度を計算し、現在の濃度を設定濃度と
比較して上記所要補給量にて設定濃度を得るために必要
な各成分の割合を求めることによって成分ごとの追加充
填量を決めるようにした。
The working medium replenishment method of the binary cycle according to the present invention monitors the liquid level of the working medium when replenishing the working medium in a binary circle that uses a non-azeotropic mixture composed of two or more components as the working medium, and the liquid level of the working medium is monitored. Calculate the required replenishment amount of the entire working medium based on the amount of change in the liquid level when it drops, measure the temperature and pressure of the working medium vapor in the evaporator, and calculate the current concentration of the working medium from those measured values. The additional concentration for each component is determined by comparing the current concentration with the set concentration and determining the proportion of each component necessary to obtain the set concentration at the required supply amount.

〔実施例〕〔Example〕

第1図は非共沸混合物を作動媒体として使用するバイ
ナリー発電システムを示す。このシステムにおいて、作
動媒体は、蒸発器(2)、タービン(4)、凝縮器
(6)、および、ポンプ(8)を直列に接続して構成さ
れる系内を循環する。すなわち、作動媒体は蒸発器
(2)にて熱源から熱を奪って蒸発し、発生した蒸気は
タービン(4)で膨張して仕事をし、タービン(4)か
ら排出された蒸気は凝縮器(6)で冷却されて凝縮した
後、ポンプ(8)で再び蒸発器(2)へ送られる。以
後、上述のサイクルを反復する。タービン(4)の出力
軸は、適当な負荷、この場合発電機(10)に連結されて
いる。
FIG. 1 shows a binary power generation system using a non-azeotropic mixture as a working medium. In this system, the working medium circulates in a system constituted by connecting an evaporator (2), a turbine (4), a condenser (6), and a pump (8) in series. That is, the working medium evaporates by removing heat from the heat source in the evaporator (2), the generated steam expands and works in the turbine (4), and the steam discharged from the turbine (4) is condensed ( After being cooled and condensed in 6), it is sent again to the evaporator (2) by the pump (8). Thereafter, the above cycle is repeated. The output shaft of the turbine (4) is connected to a suitable load, in this case a generator (10).

蒸発器(2)の出口側には気液分離器(12)を設けて
ある。蒸発器(2)で発生した作動媒体の蒸気はこの気
液分離器(12)にて蒸気と液とに分離し、蒸気はタービ
ン(4)に供給され、下部に貯った液は蒸発器(2)の
入口側へ戻される。気液分離器(12)には作動媒体の液
レベルをモニターする液レベルセンサ(14)が設けられ
ている。また、気液分離器(12)からタービン(4)へ
向かう管路には、それぞれ作動媒体蒸気の温度および圧
力を計測するための温度センサ(16)および圧力センサ
(18)が設けられている。これらのセンサ(14、16、1
8)は制御装置(20)に接続されており、それぞれ情報
を制御装置(20)に出力する。
A gas-liquid separator (12) is provided at the outlet side of the evaporator (2). The vapor of the working medium generated in the evaporator (2) is separated into vapor and liquid by the gas-liquid separator (12), the vapor is supplied to the turbine (4), and the liquid stored in the lower part is the evaporator. It is returned to the entrance side of (2). The gas-liquid separator (12) is provided with a liquid level sensor (14) for monitoring the liquid level of the working medium. Further, a temperature sensor (16) and a pressure sensor (18) for measuring the temperature and the pressure of the working medium vapor are provided in a pipeline from the gas-liquid separator (12) to the turbine (4). . These sensors (14, 16, 1
8) is connected to the control device (20) and outputs information to the control device (20).

ポンプ(8)の上流側に成分充填装置(22)が設けら
れている。それぞれ流量制御弁(24a、24b)を介してラ
インに接続された各成分を収容するタンク(26a、(26
b)を有する。流量制御弁(24a、24b)は制御装置(2
0)に接続されている。
A component filling device (22) is provided upstream of the pump (8). Respective tanks (26a, (26a) containing each component connected to the line via flow control valves (24a, 24b)
b). The flow control valves (24a, 24b)
0).

液レベルセンサ(14)は気液分離器(12)内の液レベ
ルをモニターしており、制御装置(20)に液レベルに関
する情報を出力する。液レベルが低下して許容範囲を超
えるに至ったとき、補強指示信号が発せられ、これに応
答して、第2図に示されるような一連の操作が制御装置
(20)においてなされる。
The liquid level sensor (14) monitors the liquid level in the gas-liquid separator (12), and outputs information on the liquid level to the control device (20). When the liquid level falls below the allowable range, a reinforcement instruction signal is issued, and in response, a series of operations as shown in FIG. 2 are performed in the control device (20).

まず、液レベルの変化量に基づいて作動媒体全体の所
要供給量を計算する。例えば気液分離器(12)の断面積
と液レベルの変化量との積から所要補給量が与えられ
る。続いて、あるいはこれと併行してして、圧力センサ
(18)によって与えられる現在の作動媒体圧力の計測値
Pnから、その圧力Pnにおける設定濃度に対する蒸気温度
Toを求める。これは、第3図に示されるような気液平衡
線図の内容を数値データとして記憶させておくことによ
り、制御装置(20)によって演算処理で求めることがで
きる。そして、この温度Toと、温度センサ(16)によっ
て与えられる現在の作動媒体の温度Tnとを比較する。温
度Tnが温度Toと等しいか許容範囲内にあるならば、現在
の作動媒体の濃度は設定濃度ξにほぼ等しい。したがっ
て、この場合は成分A、Bをそれぞれ設定濃度の割合
で、所要補給量が零になるまで追加充填すればよいこと
になる。
First, the required supply amount of the entire working medium is calculated based on the amount of change in the liquid level. For example, the required replenishment amount is given from the product of the cross-sectional area of the gas-liquid separator (12) and the amount of change in the liquid level. Subsequently or concurrently, the current measured value of the working medium pressure provided by the pressure sensor (18)
From Pn, the vapor temperature for the set concentration at that pressure Pn
Ask for To. This can be obtained by arithmetic processing by the control device (20) by storing the contents of the vapor-liquid equilibrium diagram as shown in FIG. 3 as numerical data. Then, this temperature To is compared with the current temperature Tn of the working medium provided by the temperature sensor (16). If the temperature Tn is equal to or within the allowable range of the temperature To, the current concentration of the working medium is substantially equal to the set concentration ξ. Therefore, in this case, the components A and B may be additionally filled at the set concentration ratios until the required supply amount becomes zero.

一方、温度Tnが温度Toの許容範囲を越えているとき
は、作動媒体の濃度が設定濃度からずれていることを意
味するので、単に設定濃度の割合で各成分を追加充填し
てみても、系内の作動媒体全体としては設定濃度が得ら
れない。それゆえ、この場合温度Tn、圧力Pnから現在の
作動媒体の濃度を計算し、設定濃度を得るために必要
な、所要補給量に占めるべき各成分の割合を決める必要
がある。すなわち、TnがToより高いときは成分Bを成分
Aより多く追加充填しなければならないし、逆にTnがTo
より低いときは成分Aを成分Bより多く追加充填しなけ
ればならない。
On the other hand, when the temperature Tn exceeds the allowable range of the temperature To, it means that the concentration of the working medium is deviated from the set concentration. The set concentration cannot be obtained for the entire working medium in the system. Therefore, in this case, it is necessary to calculate the current concentration of the working medium from the temperature Tn and the pressure Pn, and to determine the proportion of each component necessary for obtaining the set concentration and occupying the required supply amount. That is, when Tn is higher than To, component B must be additionally charged more than component A, and conversely,
If lower, component A must be refilled more than component B.

このようにして各成分につき定まった追加充填量を、
それぞれ対応するタンク(26a、26b)から系内に注入す
るべく、制御装置(20)が流量制御弁(24a、24b)に制
御信号を発する。
The additional filling amount determined for each component in this way,
The control device (20) issues a control signal to the flow control valves (24a, 24b) to inject into the system from the respective tanks (26a, 26b).

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明は、作動媒体の濃度に
応じて作動媒体全体の所要補給量に占めるべき各成分の
割合を定めて成分ごとに追加充填するようにしたから、
設定濃度を維持しつつ補給を行うことができる。したが
って、この発明によれば、作動媒体が漏れても運転を停
止することなく随時、補給を行うことができ、それゆえ
にまた、配管系統での漏れを完全に防止する必要がなく
なるので、設置設計上の制約も緩和され、非共沸混合媒
体の実用的利用を可能ならしめる。
As described above, according to the present invention, the proportion of each component to be occupied in the required replenishment amount of the entire working medium is determined according to the concentration of the working medium, so that each component is additionally charged.
Replenishment can be performed while maintaining the set concentration. Therefore, according to the present invention, even when the working medium leaks, replenishment can be performed at any time without stopping the operation, and hence it is not necessary to completely prevent leakage in the piping system. The above restrictions are also alleviated, and the practical use of a non-azeotropic mixed medium becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明を実施するために使用する装置を例示
するブロック線図、 第2図はこの発明の方法を説明するフローチャート、 第3図は非共沸混合物の気液平衡線図である。 14:液レベルセンサ 16:温度センサ 18:圧力センサ 20:制御装置 24a、24b:流量制御弁 26b、26b:タンク
FIG. 1 is a block diagram illustrating an apparatus used to carry out the present invention, FIG. 2 is a flowchart illustrating a method of the present invention, and FIG. 3 is a vapor-liquid equilibrium diagram of a non-azeotropic mixture. . 14: Liquid level sensor 16: Temperature sensor 18: Pressure sensor 20: Control device 24a, 24b: Flow control valve 26b, 26b: Tank

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2以上の成分からなる非共沸混合物を作動
媒体として使用するバイナリーサイクルにおいて作動媒
体を補給するにあたり、作動媒体の液レベルをモニター
し、液レベルが低下したとき液レベルの変化量に基づい
て作動媒体全体の所要補給量を計算し、蒸発器における
作動媒体蒸気の温度および圧力を計測してそれらの計測
値から作動媒体の現在の濃度を計算し、現在の濃度を設
定濃度と比較して上記所要補給量にて設定濃度を得るた
めに必要な各成分の割合を求めることによって成分ごと
の追加充填量を決めるようにしたバイナリーサイクルの
作動媒体補給方法。
In a binary cycle using a non-azeotropic mixture composed of two or more components as a working medium, when replenishing the working medium, the liquid level of the working medium is monitored, and when the liquid level decreases, the liquid level changes. Calculate the required supply amount of the entire working medium based on the amount, measure the temperature and pressure of the working medium vapor in the evaporator, calculate the current concentration of the working medium from those measured values, and set the current concentration to the set concentration. A working medium replenishment method for a binary cycle, wherein the additional replenishment amount for each component is determined by calculating the proportion of each component necessary to obtain the set concentration at the required replenishment amount as compared with the above.
JP1238688A 1989-09-13 1989-09-13 Replenishment method of working medium for binary cycle Expired - Fee Related JP2766866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1238688A JP2766866B2 (en) 1989-09-13 1989-09-13 Replenishment method of working medium for binary cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1238688A JP2766866B2 (en) 1989-09-13 1989-09-13 Replenishment method of working medium for binary cycle

Publications (2)

Publication Number Publication Date
JPH03100307A JPH03100307A (en) 1991-04-25
JP2766866B2 true JP2766866B2 (en) 1998-06-18

Family

ID=17033824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1238688A Expired - Fee Related JP2766866B2 (en) 1989-09-13 1989-09-13 Replenishment method of working medium for binary cycle

Country Status (1)

Country Link
JP (1) JP2766866B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294894B1 (en) * 2011-12-26 2013-08-08 재단법인 포항산업과학연구원 Apparatus for Converting Thermal Energy
KR101294885B1 (en) * 2011-12-26 2013-08-08 재단법인 포항산업과학연구원 Apparatus for Converting Thermal Energy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922864A (en) * 2010-09-26 2010-12-22 中冶赛迪工程技术股份有限公司 Waste heat recycling system of distributed pure low temperature coal gas from iron and steel enterprises

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683505A (en) * 1979-12-10 1981-07-08 Agency Of Ind Science & Technol Power plant utilizing waste heat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294894B1 (en) * 2011-12-26 2013-08-08 재단법인 포항산업과학연구원 Apparatus for Converting Thermal Energy
KR101294885B1 (en) * 2011-12-26 2013-08-08 재단법인 포항산업과학연구원 Apparatus for Converting Thermal Energy

Also Published As

Publication number Publication date
JPH03100307A (en) 1991-04-25

Similar Documents

Publication Publication Date Title
Conde Estimation of thermophysical properties of lubricating oils and their solutions with refrigerants: an appraisal of existing methods
Sutton Measurement of the dissociation rates of hydrogen and deuterium
CN102527194B (en) Carbon dioxide separation recovery system and method of measuring amount of reboiler input heat
Garone et al. A water-ammonia heat transformer to upgrade low-temperature waste heat
Michel et al. Performances of grooved plates falling film absorber
Táboas et al. Pool boiling of ammonia/water and its pure components: comparison of experimental data in the literature with the predictions of standard correlations
Bilicki et al. Evaluation of the relaxation time of heat and mass exchange in the liquid-vapour bubble flow
JP2766866B2 (en) Replenishment method of working medium for binary cycle
JP2001271998A (en) Shipping metering apparatus and method for ultra-low temperature liquefied gas
Pysz et al. Experimental study of flow boiling pressure drop and heat transfer of R1233zd (E) at moderate and high saturation temperatures
Greco et al. Experimental two-phase pressure gradients during evaporation of pure and mixed refrigerants in a smooth horizontal tube. Comparison with correlations
Bayani et al. Online measurement of oil concentrations of R-134a/oil mixtures with a density flowmeter
Fisher et al. Dryout in serpentine evaporators
Verma et al. Thermal effects in gas absorption
Mills et al. Experimental study of condensation from steam-air mixtures flowing over a horizontal tube: overall condensation rates
RU2152556C1 (en) Method and device for check of feed water supply to steam generator
US5242272A (en) Method and device for pumping a liquid at high temperature through a pipe
Hanson et al. ECC performance in the semiscale geometry
KR102037579B1 (en) Apparatus and Method for Controlling Concentration of Working Fluid of Waste Heat Power Generation
Kim et al. Thermal property measurements and enthalpy calculation of the lithium bromide+ lithium iodide+ 1, 3-propanediol+ water system
SU1054573A2 (en) Method of cavitation tests of pumps
Mehendale Experimental and theoretical investigation of annular film flow reversal in a vertical pipe
Zheng et al. High-pressure vapor-liquid equilibrium data of the HFC 134a+ HCFC 141b system
Raal et al. 13 Measurement of limiting activity coefficients: Non-analytical tools
JP2021116869A (en) Liquefied gas measuring device, liquefied gas measuring method, gas supply device and gas supply method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees