JP2764648B2 - Load transfer mechanism for fixing steel to solidified material such as concrete - Google Patents

Load transfer mechanism for fixing steel to solidified material such as concrete

Info

Publication number
JP2764648B2
JP2764648B2 JP2213015A JP21301590A JP2764648B2 JP 2764648 B2 JP2764648 B2 JP 2764648B2 JP 2213015 A JP2213015 A JP 2213015A JP 21301590 A JP21301590 A JP 21301590A JP 2764648 B2 JP2764648 B2 JP 2764648B2
Authority
JP
Japan
Prior art keywords
concrete
reinforcing
steel
axial force
dowel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2213015A
Other languages
Japanese (ja)
Other versions
JPH0497063A (en
Inventor
富喜男 渡井
正昭 加倉井
清 山下
富男 土屋
佳彦 栗田
毅 山田
賢司 高橋
尋恒 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2213015A priority Critical patent/JP2764648B2/en
Publication of JPH0497063A publication Critical patent/JPH0497063A/en
Application granted granted Critical
Publication of JP2764648B2 publication Critical patent/JP2764648B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

この発明は、例えば第8図に例示した建物の鉄骨鉄筋
コンクリート造(SRC造)構造体における鉄骨aが周囲
のコンクリートbへ定着する部分A、又は第9図に例示
したように鉄骨造柱aの下部が梁コンクリートbの中へ
定着する部分A、又は第10図に例示したように鉄骨柱a
の下端が地中のコンクリート杭bへ定着する部分A、又
は第11図に例示したように鋼杭aの下部が地下のセメン
トミルク埋め込み根固め部bへ定着する部分Aなど、鋼
製の柱や梁、ブレース、杭体などであって主に卓越する
軸力を負担し、場合によっては曲げモーメントも負担す
る鋼材を軸力の伝達が可能に定着する場合に、周囲のコ
ンクリート、モルタル又はセメントミルク等の固化材料
との関係において実施される荷重伝達機構に関する。
The present invention relates to, for example, a portion A in which a steel frame a is fixed to surrounding concrete b in a steel reinforced concrete (SRC) structure of a building illustrated in FIG. 8 or a steel frame column a as illustrated in FIG. Part A where the lower part is settled into beam concrete b, or steel column a as illustrated in FIG.
A steel column, such as a part A where the lower end of the steel pile a anchors to the underground concrete pile b or a part A where the lower part of the steel pile a anchors to the underground cement milk embedding root part b as illustrated in FIG. Steel, beams, braces, piles, etc., which mainly bear the predominant axial force and, in some cases, the bending moment, when the steel is fixed so that the axial force can be transmitted, the surrounding concrete, mortar or cement The present invention relates to a load transmission mechanism implemented in relation to a solidified material such as milk.

【従来の技術】[Prior art]

従来、上述したように鋼材をコンクリート等の固化材
料へ定着する場合の荷重伝達機構としては、第12図のよ
うに鋼材aをそのまま固化材料bの中へ所定の定着長さ
mだけ挿入した単純定着構造、又は第13図のように鋼材
aの定着部分にスタッドジベルcを突設させた上で固化
材料bの中に挿入したスタッドジベル補強定着構造など
が広く一般的に実施されている。
Conventionally, as described above, as a load transmission mechanism for fixing a steel material to a solidified material such as concrete, as shown in FIG. 12, a simple material in which a steel material a is directly inserted into a solidified material b by a predetermined fixing length m as shown in FIG. A fixing structure or a stud dowel reinforced fixing structure in which a stud dowel c is projected from a fixing portion of a steel material a and inserted into a solidified material b as shown in FIG.

【本発明が解決しようとする課題】 第12図に示した単純定着構造の場合は、無補強のた
め、その荷重変形性能は第15図に曲線A1で示したよう
に、付着力(初期値最大荷重)はあまり大きくない。靭
性(変形量)もさほどに大きくはなく、初期の最大荷重
以降は変形の増大と共に伝達荷重(耐力)の低下が著し
い。このため荷重伝達能力を大きくするには鋼材aの定
着長さmを長くしなければならず、鋼材使用量が多くな
る。 第13図に示したスタッドジベル補強定着構造の場合
は、スタッドジベルcの1本当りの耐力効果は比較的小
さく、またスタッドジベルcの下側にブリージングを生
じ易い欠点がある。スタッドジベルcの本数を十分に多
くすると、その荷重変形性能は第16図に曲線F1で示した
ように、付着力(初期値荷重)はさほど大きくはないも
のの、その後の変形の増加に伴う伝達荷重(耐力)はス
タッドジベルの支圧効果でむしろ上昇する傾向を示し、
最大荷重を発揮するまでに大きな変形を許容する。 ところで、本発明者らは、第14図に示したように、
鋼材aの定着部分mに同鋼材の軸力の作用方向にほぼ平
行な配置で付着面積を増大する補強プレートdを付設し
て固化材料bの中へ定着させたプレート補強定着構造に
ついて、その荷重変形性能を試験した。その結果、第15
図中に曲線A3で示したように、付着面積が増加した分だ
け初期値最大荷重(付着耐力)は極端に大きいが、変形
の発生と共に伝達荷重(耐力)は急激に下落する傾向が
判明した。 従って、本発明の目的は、プレート補強定着構造の
初期値最大荷重がすこぶる大きい特性と、スタッドジベ
ル補強定着構造の支圧効果で最大荷重を発揮するまでに
大きな変形を許容する特性、或いは斜め鉄筋等によるダ
ボ補強材定着構造も、変形が増加しても伝達荷重が低下
しない特性をそれぞれ組合せることにより、効率的で合
理的な荷重伝達機構を提供することにある。
For [object of the present invention is to provide a simple fixing structure shown in FIG. 12, for unreinforced, as the load variations performance shown in curve A 1 in FIG. 15, adhesion (initial Value maximum load) is not very large. The toughness (deformation amount) is not so large, and after the initial maximum load, the transmission load (proof strength) decreases remarkably as the deformation increases. For this reason, in order to increase the load transmission capability, the fixing length m of the steel material a must be increased, and the amount of steel material used increases. In the case of the stud dowel reinforced fixing structure shown in FIG. 13, there is a drawback that the stabilizing effect per stud dove c is relatively small, and that the stud dove c is liable to cause breathing below the stud dove c. With sufficient number, the number of studs dowels c, although the load deformation performance as indicated by the curve F 1 in FIG. 16, the adhesive force (initial value load) so large not, with increasing subsequent deformation The transmitted load (proof strength) tends to increase due to the bearing effect of the stud dowel,
Allows large deformations before exerting the maximum load. By the way, the present inventors, as shown in FIG.
A reinforcing plate d, which is disposed substantially parallel to the direction of action of the axial force of the steel material and is attached to the fixing portion m of the steel material a so as to increase the adhesion area, is fixed to the solidified material b. The deformation performance was tested. As a result, the fifteenth
As indicated by curve A 3 in the figure, the initial value the maximum load (adhesion strength) by an amount corresponding to adhesion area is increased is extremely large, the transmitted load (strength) the occurrence of deformation find tend to fall rapidly did. Therefore, an object of the present invention is to provide an extremely large initial value maximum load of the plate-reinforcement fixing structure, a characteristic of allowing a large deformation until the maximum load is exerted by the bearing effect of the stud dowel reinforcement fixing structure, or an oblique reinforcing bar. Another object of the present invention is to provide an efficient and rational load transmitting mechanism by combining the characteristics that the transmitted load does not decrease even if the deformation increases.

【課題を解決するための手段】[Means for Solving the Problems]

上記従来技術の課題を解決するための手段として、請
求項1記載の発明に係る鋼材をコンクリート等の固化材
料へ定着する荷重伝達機構は、 主に軸力を負担する鋼材1とこれを埋め込んで定着し
た周囲のコンクリート等の固化材料2との荷重伝達機構
において、 鋼材1の定着部分に、軸力の作用方向にほぼ平行な配
置でコンクリート等の付着面積を増大する補強プレート
3を付設し、また、軸力の作用方向とほぼ直角な向きに
スタッドジベル4等の支圧補強材を突設し、これらを鋼
材1と共にコンクリート等の固化材料の中に埋め込まれ
定着することを特徴とする。 請求項2記載の発明は、やはり主に軸力を負担する鋼
材1とこれを埋め込んで定着した周囲のコンクリート等
の固化材料2との荷重伝達機構において、 鋼材1の定着部分に、軸力の作用方向にほぼ平行な配
置でコンクリート等の付着面積を増大する補強プレート
3を付設し、また、鋼材1及び補強プレート2のいずれ
か一方又は双方の表面に、斜め鉄筋等によるダボ補強材
5が軸力の作用方向に対しほぼ左右対称なハの字形の配
置で付設し、前記の補強プレート及びダボ補強材が鋼材
と共にコンクリート等の固化材料の中に埋め込み定着す
ることを特徴とする。 さらに、請求項3記載の発明は、同じく主に軸力を負
担する鋼材1とこれを埋め込んで定着した周囲のコンク
リート等の固化材料2との荷重伝達機構において、 鋼材の定着部分に、軸力の作用方向にほぼ平行な配置
でコンクリート等の付着面積を増大する補強プレート2
を付設し、また、軸力の作用方向とほぼ直角な向きにス
タッドジベル3等の支圧補強材を突設し、更に鋼材1及
び補強プレート2のいずれか一方又は双方の表面に、斜
め鉄筋等によるダボ補強材5を軸力の作用方向に対しほ
ぼ左右対称なハの字形の配置で付設し、前記補強プレー
ト、支圧補強材及びダボ補強材を鋼材と共にコンクリー
ト等の固化材料の中に埋め込み定着することを特徴とす
る。
As means for solving the problems of the prior art, a load transmitting mechanism for fixing a steel material to a solidified material such as concrete according to the first aspect of the present invention comprises a steel material 1 that mainly bears an axial force and a steel material 1 embedded therein. In the load transmission mechanism with the solidified material 2 such as the concrete around the fixed material, a reinforcing plate 3 for increasing the adhesion area of the concrete or the like is provided at the fixing portion of the steel material 1 in an arrangement substantially parallel to the direction of action of the axial force, Further, a bearing reinforcing material such as a stud dowel 4 is protruded in a direction substantially perpendicular to the direction of action of the axial force, and is embedded and fixed together with the steel material 1 in a solidified material such as concrete. The invention according to claim 2 provides a load transmission mechanism between a steel material 1 which also mainly bears an axial force and a solidified material 2 such as concrete which is embedded and fixed therein, wherein the fixing portion of the steel material 1 A reinforcing plate 3 for increasing the adhesion area of concrete or the like is provided in an arrangement substantially parallel to the direction of action, and a dowel reinforcing material 5 such as an oblique reinforcing bar is provided on one or both surfaces of the steel material 1 and the reinforcing plate 2. The reinforcing plate and the dowel reinforcing material are provided and fixed in a solidified material such as concrete together with the steel together with the reinforcing plate and the dowel reinforcing material, which are provided in a substantially C-shaped arrangement substantially symmetrical with respect to the acting direction of the axial force. Further, the invention according to claim 3 provides a load transmission mechanism between a steel material 1 that also mainly bears an axial force and a solidified material 2 such as concrete embedded with the steel material embedded therein and fixed thereto. Plate 2 that increases the area of adhesion of concrete, etc., in an arrangement substantially parallel to the direction of action
Further, a bearing reinforcing material such as a stud dowel 3 is protruded in a direction substantially perpendicular to the direction of action of the axial force, and an oblique reinforcing bar is provided on one or both surfaces of the steel material 1 and the reinforcing plate 2. A dowel reinforcing material 5 is provided in a substantially C-shape arrangement symmetrical with respect to the direction of action of the axial force, and the reinforcing plate, the bearing reinforcing material and the dowel reinforcing material are put together with steel into a solidified material such as concrete. It is characterized by being embedded and fixed.

【作用】[Action]

請求項1記載の発明は、第1図A、Bに示したよう
に、補強プレート3によるプレート補強定着構造(第14
図を参照)と、スタッドジベル4によるスタッドジベル
補強定着構造(第13図を参照)を併用した荷重伝達機構
であるから、その荷重変形性能は、第7図に曲線B1で示
したとおり、補強プレート3による付着面積の増加に起
因して初期値荷重(付着耐力)が飛躍的に上昇し(約50
tf)、その後も荷重の増加と共に変位が増加する。因み
に、第7図は変位量15mm近辺で一旦試験を中断し、その
後再び同じ試験を次の変位量20mmまで続けた経緯を示し
ているが、前記中断にもかかわらず、荷重変形性能は前
歴を継続する傾向を示すことが明らかである。従って、
第1に云えることは、補強プレート3による付着面積の
増加によって初期伝達荷重が増大し、相対的に鋼材1の
定着長さ(埋め込み長さ)の短縮が可能である。また、
初期変位が大きくなる(滑り時)範囲までの許容伝達荷
重を設定すれば、鋼材1と周辺の固化材料2との相対変
位を小さくできる。しかも、初期変位が大きくなる(滑
り時)荷重以降では、スタッドジベル4の支圧効果によ
って伝達荷重(耐力)はむしろ上昇して最大耐力に至
る。そして、変形が増加しても耐力(伝達荷重)はほと
んど低下することなく優れた靭性を発揮する。 その上、第1図BのようにH形鋼1のウエブに両側の
フランジと平行な配置で補強プレート3を取付けると共
に、補強プレート同士又は補強プレートとフランジの間
隔を小さく狭めると、固化材料2の収縮量を低減でき、
鋼材1及び補強プレート3との付着力の低下防止にも効
果を奏する。 次に、請求項2記載の発明は、第2図A、B、Cに示
したように、補強プレート3によるプレート補強定着構
造と、斜め鉄筋等のダボ補強材5による定着構造を併用
した荷重伝達機構であるから、その荷重変形性能は、第
7図に曲線B2で示したとおり、補強プレート3による付
着面積の増加に起因して初期値荷重(付着耐力)が上記
の発明と同様に上昇する。そして、初期変位が大きくな
る(滑り時)荷重以降では、斜め鉄筋等のダボ補強材5
によるダボ効果によって耐力(伝達荷重)は上昇傾向を
示す。最大耐力を含めて、伝達荷重は上記スタッドジベ
ル補強定着構造の場合ほど大きくはないが、変形が増加
しても伝達荷重はほとんど低下せず優れた靭性を発揮す
る。 鉄筋を左右対称なハの字形の配置とした斜め鉄筋など
によるダボ補強材5(第2図c参照)は、打設コンクリ
ートのブリージングの発生を防止する。また、鋼材1に
作用した軸力(左縮力)によって固化材料2を内側へ締
め込む(拘束する)くさび効果も奏し、固化材料2の割
裂や剥離等が起きにくい特性も発揮する。 請求項3記載の発明は、前記補強プレート3によるプ
レート補強定着構造と、スタッドジベル4によるスタッ
ドジベル補強定着構造、及び斜め鉄筋等のダボ補強材5
による定着構造の三者を組合せたものであるから、具体
的に特性図まで示していないが、前記三様の定着構造の
特性が組合わさって優れた荷重変形性能を示すことは当
業者に明解であろう。
As shown in FIGS. 1A and 1B, a plate-reinforcing fixing structure using a reinforcing plate 3 (14th embodiment) is shown in FIGS.
And Referring to FIG.), Because it is the load transfer mechanism in combination with stud dowels reinforcement fixing structure (see FIG. 13) by a stud dowels 4, the load deformation capacity, as indicated by the curve B 1 in FIG. 7, The initial load (adhesion strength) increases dramatically due to the increase in the adhesion area due to the reinforcing plate 3 (about 50).
tf) After that, the displacement increases as the load increases. By the way, FIG. 7 shows how the test was interrupted once at the displacement of about 15 mm, and then the same test was continued again until the next displacement of 20 mm. It is clear that it shows a tendency to continue. Therefore,
First, the initial transmission load increases due to the increase in the attachment area by the reinforcing plate 3, and the fixing length (embedding length) of the steel material 1 can be relatively shortened. Also,
By setting the allowable transmission load up to the range where the initial displacement becomes large (during slip), the relative displacement between the steel material 1 and the surrounding solidified material 2 can be reduced. In addition, after the load at which the initial displacement becomes large (during sliding), the transmitted load (proof strength) is rather increased due to the bearing effect of the stud dowel 4 to reach the maximum proof strength. And even if the deformation increases, the proof stress (transmitted load) exhibits excellent toughness without substantially decreasing. In addition, as shown in FIG. 1B, when the reinforcing plates 3 are mounted on the web of the H-section steel 1 in parallel with the flanges on both sides, and the interval between the reinforcing plates or between the reinforcing plate and the flange is narrowed, the solidified material 2 is formed. Can reduce the amount of shrinkage of
This is also effective in preventing a decrease in the adhesive force between the steel material 1 and the reinforcing plate 3. Next, as shown in FIGS. 2A, 2B, and 2C, the invention according to claim 2 employs a load using both a plate reinforcing fixing structure using a reinforcing plate 3 and a fixing structure using a dowel reinforcing material 5 such as a diagonal reinforcing bar. since a transmission mechanism, the load deformation capacity, as indicated by the curve B 2 in FIG. 7, similarly to the due to the increase of the adhesion area by the reinforcing plate 3 initial value load (adhesion strength) of the above invention To rise. After the load at which the initial displacement becomes large (during slip), the dowel reinforcing material 5 such as a diagonal reinforcing bar is used.
Due to the dowel effect, the proof stress (transmitted load) shows an increasing tendency. Although the transmitted load, including the maximum proof stress, is not as large as in the case of the stud dowel reinforced fixing structure, even if the deformation increases, the transmitted load hardly decreases and exhibits excellent toughness. The dowel reinforcing material 5 (see FIG. 2c) made of diagonal reinforcing bars in which reinforcing bars are arranged symmetrically in a C-shape prevents occurrence of breathing of cast concrete. In addition, a wedge effect of tightening (constraining) the solidified material 2 inward due to the axial force (left contraction force) applied to the steel material 1 is exerted, and the solidified material 2 also exhibits characteristics in which splitting, peeling, and the like are less likely to occur. The invention according to claim 3 is a plate reinforcing fixing structure by the reinforcing plate 3, a stud dowel reinforcing structure by the stud dowel 4, and a dowel reinforcing member 5 such as a diagonal reinforcing bar.
It is clear to a person skilled in the art that the characteristics of the above three types of fixing structures are combined to exhibit excellent load deformation performance, although not specifically shown in the characteristic diagram, since the three types of fixing structures are combined. Will.

【実施例】【Example】

次に、図示した本発明の実施例を説明する。 第1図A、Bに示した荷重伝達機構は、請求項1記載
の発明の実施例である。鋼材として採用したH形鋼1の
ウエブの中央部の両側に、フランジと略同じ高さの補強
プレート3が、軸力の作用方向(軸線方向)にフランジ
とほぼ平行な配置で溶接等の方法で定着長さの範囲に一
体的に付設されている。しかもH形鋼1のウエブには、
前記補強プレート3とフランジとの略中間位置に、ウエ
ブ面に対して直角、つまり軸力の作用方向(軸線)と直
角な向きのスタッドジベル5…が、図示例では鋼材の定
着長さmの範囲を3等分したピッチ(但し、等分ピッチ
数及び本数はこの限りではない)で溶接、溶着、接着等
の方法により一体的に突設されている。各スタッドジベ
ル5は頭付である。 次に、第2図A、B、Cに示した荷重伝達機構は、請
求項2記載の発明の実施例である。鋼材として採用した
H形鋼1のウエブの中央部の両側に、フランジと略同じ
高さの補強プレート3が、軸力の作用方向にフランジと
ほぼ平行な配置で定着長さの範囲に一体的に付設されて
いる。そして、H形鋼1のフランジ内面及び前記補強プ
レート3の両側面に、第2図Cに示したように、鉄筋又
はこれに類似な棒状材料を短く切断したダボ補強材5、
5が、ほぼ左右対称なハの字形(斜めの)配置で、やは
り溶接等の方法で一体的に付設されている。ダボ補強材
5の傾斜角度は、少なくとも打設されたコンクリートの
ブリージングを防止できる大きさとされる。 第3図に示した荷重伝達機構は、請求項2記載の発明
の他の実施例である。鋼材として採用した角形鋼管11の
外面の各コーナー部及び各辺の中央部に補強プレート3
…がそれぞれ軸力の作用方向とほぼ平行に付設されてい
る。そして、角形鋼管11の四辺における前記補強プレー
ト3、3間のほぼ中間部にスタッドジベル4…を突設し
た構成を特徴とする。 第4図に示した荷重伝達機構は、請求項3記載の発明
の実施例である。鋼材として採用したフランジ12付きの
十字鉄骨13の前記フランジ12よりも少し内側の位置に、
軸力の作用方向及びフランジ12と略平行な配置で補強プ
レート3が付設されている。また、同フランジ12の外面
の中央部には、フランジ面に直角な向きにスタッドジベ
ル4が突設されている。さらに各補強プレート3の内側
面には、ウエブを中心にほぼ左右対称なハの字形の配置
(第2図C参照)で斜め鉄筋等によるダボ補強材5、5
が付設された構成である。 第5図に示した荷重伝達機構も請求項3記載の発明の
異なる実施例である。鋼材として採用した丸鋼管14の外
周面に、その円周を等分した位置毎に放射状の配置で補
強プレート3…が軸力の作用方向と平行な配置で付設さ
れ、前記補強プレート3、3間の略中央部にスタッドジ
ベル4…が各々突出されている。更に、丸鋼管14の直径
線方向に対称な補強プレート3、3の関係において、同
丸鋼管14の中心線を対称軸とするほぼ左右対称なハの字
形の配置(第2図C参照)で斜め鉄筋等によるダボ補強
材5、5が付設された構成である。 第6図に示した荷重伝達機構も請求項3記載の発明の
他の実施例である。鋼材として採用したH形鋼1には、
第1図A、Bの実施例と同様にウエブの中央部の両側に
補強プレート3が軸力の作用方向及びフランジと平行な
配置に付設されている。そして、補強プレート3とフラ
ンジとの間のほぼ中間部に、ウエブと直角な向きのスタ
ッドジベル4が突設されている。更に、フランジの外面
のほぼ中央部にもウエブと略平行な配置で補強プレート
3が付設され、この補強プレート3の両面に、当該H形
鋼1の中心線を対称軸としてほぼ左右対称なハの字形の
配置で斜め鉄筋等によるダボ補強材5が付設された構成
である。
Next, the illustrated embodiment of the present invention will be described. The load transmitting mechanism shown in FIGS. 1A and 1B is an embodiment of the first aspect of the present invention. A reinforcing plate 3 having substantially the same height as the flange is provided on both sides of the central portion of the web of the H-section steel 1 employed as the steel material by welding or the like in an arrangement substantially parallel to the flange in the direction of axial force (axial direction). And is integrally provided in the range of the fixing length. Moreover, the web of H-section steel 1
At a substantially intermediate position between the reinforcing plate 3 and the flange, stud dowels 5 perpendicular to the web surface, that is, perpendicular to the direction of action of the axial force (axial line), have a fixing length m of the steel material in the illustrated example. Projections are integrally formed at a pitch obtained by dividing the range into three equal parts (however, the number of equal pitches and the number of pieces are not limited thereto) by a method such as welding, welding, or bonding. Each stud dowel 5 is headed. Next, the load transmitting mechanism shown in FIGS. 2A, 2B, and 2C is an embodiment of the present invention. On both sides of the central portion of the web of the H-section steel 1 adopted as the steel material, reinforcing plates 3 having substantially the same height as the flanges are disposed substantially parallel to the flanges in the direction of action of the axial force and integrated with the fixing length range. It is attached to. Then, as shown in FIG. 2C, a dowel reinforcing material 5 in which a reinforcing bar or a rod-like material similar thereto is cut short, on the inner surface of the flange of the H-section steel 1 and on both side surfaces of the reinforcing plate 3,
Reference numeral 5 denotes a substantially symmetric C-shaped (oblique) arrangement, which is also integrally provided by a method such as welding. The angle of inclination of the dowel reinforcing material 5 is set to a size that can prevent at least breathing of the poured concrete. The load transmitting mechanism shown in FIG. 3 is another embodiment of the second aspect of the present invention. A reinforcing plate 3 is provided at each corner of the outer surface of the square steel pipe 11 adopted as the steel material and at the center of each side.
Are provided substantially parallel to the acting direction of the axial force. And, it is characterized in that stud dowels 4 are protrudingly provided substantially at the intermediate portions between the reinforcing plates 3 on the four sides of the rectangular steel pipe 11. The load transmitting mechanism shown in FIG. 4 is an embodiment of the third aspect of the present invention. At a position slightly inside the flange 12 of the cross steel frame 13 with the flange 12 adopted as a steel material,
The reinforcing plate 3 is provided in an arrangement substantially parallel to the direction of action of the axial force and the flange 12. Further, a stud dowel 4 is protruded from a central portion of the outer surface of the flange 12 in a direction perpendicular to the flange surface. Furthermore, on the inner surface of each reinforcing plate 3, dowel reinforcing members 5, 5 made of diagonal reinforcing bars or the like are arranged in a substantially C-shape (see FIG. 2C) which is substantially symmetrical about the web.
Is provided. The load transmitting mechanism shown in FIG. 5 is another embodiment of the present invention. On the outer peripheral surface of the round steel pipe 14 adopted as a steel material, reinforcing plates 3 are provided radially at every equally-divided position on the outer circumference thereof in an arrangement parallel to the direction of action of the axial force. The stud dowels 4 are projected at substantially central portions between the studs. Further, in the relationship between the reinforcing plates 3 and 3 symmetrical in the diameter line direction of the round steel pipe 14, a substantially symmetric C-shaped arrangement with the center line of the round steel pipe 14 as the axis of symmetry (see FIG. 2C). This is a configuration in which dowel reinforcing materials 5 and 5 made of diagonal reinforcing bars and the like are provided. The load transmitting mechanism shown in FIG. 6 is another embodiment of the third aspect of the present invention. The H-section steel 1 adopted as the steel material includes:
As in the embodiment shown in FIGS. 1A and 1B, reinforcing plates 3 are provided on both sides of the central portion of the web in a direction parallel to the action direction of the axial force and the flange. A stud dowel 4 is provided at a substantially intermediate portion between the reinforcing plate 3 and the flange in a direction perpendicular to the web. Further, a reinforcing plate 3 is provided substantially at the center of the outer surface of the flange so as to be substantially parallel to the web, and both sides of the reinforcing plate 3 are substantially bilaterally symmetric with respect to the center line of the H-shaped steel 1 as a symmetric axis. This is a configuration in which a dowel reinforcing material 5 such as a diagonal reinforcing bar is attached in a V-shaped arrangement.

【本発明が奏する効果】[Effects of the present invention]

請求項1〜3に記載した発明に係る、鋼材をコンクリ
ート等の固化材料へ定着する荷重伝達機構は、プレート
補強定着構造と、スタッドジベル補強定着構造、斜め鉄
筋等のダボ補強材による定着構造をそれぞれ組合せて、
荷重の伝達を合理的に効率的に行なう構成であるから、
補強プレートの付着力により初期変位までの伝達荷重が
大きく、しかもその後変位が増加しても伝達荷重はさら
に増加する傾向を示すなど、大きな荷重伝達能力と優れ
た靭性を発揮する。従って、その分相対的に鋼材の定着
長さを縮小でき、鋼材使用量を節減でき経済性の向上に
寄与する。 また、本発明の荷重伝達機構は、構造的に簡単で、さ
したる加工を要さずに既存の技術で容易に安価に実施で
きる利点を有する。
The load transmitting mechanism for fixing a steel material to a solidified material such as concrete according to the invention described in any one of claims 1 to 3, includes a plate-reinforced fixing structure, a stud dowel reinforcing fixing structure, and a fixing structure using a dowel reinforcing material such as a diagonal reinforcing bar. In combination,
Because it is a configuration to transmit the load reasonably and efficiently,
Due to the adhesive force of the reinforcing plate, the transmitted load up to the initial displacement is large, and the transmitted load tends to further increase even if the displacement increases thereafter. Accordingly, the fixing length of the steel material can be relatively reduced, and the amount of steel material used can be reduced, thereby contributing to an improvement in economic efficiency. Further, the load transmitting mechanism of the present invention is structurally simple, and has an advantage that it can be easily and inexpensively implemented by existing technology without requiring any additional processing.

【図面の簡単な説明】[Brief description of the drawings]

第1図Aはこの発明に係る荷重伝達機構の実施例を示し
た主要部の立面図、第1図Bは第1図AのI−I線矢視
の断面図、第2図Aは異なる実施例の主要部を示した立
面図、第2図Bは第1図AのII−II線矢視の断面図、第
2図Cは鋼材におけるダボ補強材の配置を示した正面
図、第3図〜第6図はこの発明の更に異なる実施例を示
した平面図、第7図は第1図A及び第2図Aに示した荷
重伝達機構の荷重変形性能図、第8図〜第11図は本発明
の荷重伝達機構を適用する鋼材定着例を示した説明図、
第12図〜第14図は鋼材をコンクリート等の固化材料へ定
着する場合の荷重変形性能を試験するモデル図、第15図
と第16図は荷重変形線図である。
FIG. 1A is an elevation view of a main part showing an embodiment of a load transmitting mechanism according to the present invention, FIG. 1B is a sectional view taken along the line II of FIG. 1A, and FIG. FIG. 2B is a sectional view taken along the line II-II of FIG. 1A, and FIG. 2C is a front view showing the arrangement of the dowel reinforcing material in the steel material. 3 to 6 are plan views showing still another embodiment of the present invention, FIG. 7 is a view showing the load deformation performance of the load transmitting mechanism shown in FIGS. 1A and 2A, and FIG. FIG. 11 is an explanatory diagram showing an example of fixing a steel material to which the load transmission mechanism of the present invention is applied,
12 to 14 are model diagrams for testing the load deformation performance when fixing a steel material to a solidified material such as concrete, and FIGS. 15 and 16 are load deformation diagrams.

【符号の説明】[Explanation of symbols]

1、11、13、14……鋼材 2……固化材料 3……補強プレート 5……ダボ補強材 4……スタッドジベル 1, 11, 13, 14 ... steel material 2 ... solidified material 3 ... reinforcing plate 5 ... dowel reinforcing material 4 ... stud dowel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土屋 富男 東京都江東区南砂2丁目5番14号 株式 会社竹中工務店技術研究所内 (72)発明者 栗田 佳彦 東京都江東区南砂2丁目5番14号 株式 会社竹中工務店技術研究所内 (72)発明者 山田 毅 東京都江東区南砂2丁目5番14号 株式 会社竹中工務店技術研究所内 (72)発明者 高橋 賢司 東京都中央区銀座8丁目21番1号 株式 会社竹中工務店東京本店内 (72)発明者 寺田 尋恒 東京都中央区銀座8丁目21番1号 株式 会社竹中工務店東京本店内 (56)参考文献 特開 昭50−114017(JP,A) 実開 昭52−87006(JP,U) 実開 昭56−159526(JP,U) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomio Tsuchiya 2-5-114 Minamisuna, Koto-ku, Tokyo Inside Takenaka Corporation Technical Research Institute Co., Ltd. (72) Yoshihiko Kurita 2-5-1-14 Minamisuna, Koto-ku, Tokyo No. Takenaka Corporation Technical Research Institute Co., Ltd. (72) Inventor Takeshi Yamada 2-5-1-14 Minamisuna, Koto-ku, Tokyo Inside Co., Ltd. Takenaka Corporation Technical Research Institute (72) Inventor Kenji Takahashi 8-21 Ginza, Chuo-ku, Tokyo No. 1 Inside Takenaka Corporation Tokyo Main Store (72) Inventor Hirone Terada 8-21-1, Ginza, Chuo-ku, Tokyo Inside Takenaka Corporation Tokyo Main Store (56) References JP 50-114017 ( JP, A) Japanese Utility Model Showa 52-87006 (JP, U) Japanese Utility Model Showa 56-159526 (JP, U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主に軸力を負担する鋼材とこれを埋め込ん
で定着した周囲のコンクリート等の固化材料との荷重伝
達機構において、 鋼材の定着部分に、軸力の作用方向にほぼ平行な配置で
コンクリート等の付着面積を増大する補強プレートが付
設され、軸力の作用方向とほぼ直角な向きにスタッドジ
ベル等の支圧補強材が突設されており、これらが鋼材と
共にコンクリート等の固化材料の中に埋め込まれ定着さ
れていることを特徴とする、鋼材をコンクリート等の固
化材料へ定着する荷重伝達機構。
In a load transmission mechanism between a steel material which mainly bears an axial force and a solidified material such as a concrete in which the steel material is embedded and fixed, an arrangement substantially parallel to a direction in which the axial force acts on a fixing portion of the steel material. There is a reinforcing plate that increases the area of adhesion of concrete, etc., and bearing support reinforcing materials such as stud dowels project in a direction substantially perpendicular to the direction of action of the axial force. These are solidified materials such as concrete together with steel. A load transmission mechanism for fixing a steel material to a solidified material such as concrete, wherein the load transmission mechanism is embedded and fixed in the inside.
【請求項2】主に軸力を負担する鋼材とこれを埋め込ん
で定着した周囲のコンクリート等の固化材料との荷重伝
達機構において、 鋼材の定着部分に、軸力の作用方向にほぼ平行な配置で
コンクリート等の付着面積を増大する補強プレートが付
設され、鋼材及び補強プレートのいずれか一方又は双方
の表面に、斜め鉄筋等によるダボ補強材が軸力の作用方
向に対しほぼ左右対称なハの字形の配置で付設されてお
り、前記の補強プレート及びダボ補強材が鋼材と共にコ
ンクリート等の固化材料の中に埋め込まれ定着されてい
ることを特徴とする、鋼材をコンクリート等の固化材料
へ定着する荷重伝達機構。
2. A load transmission mechanism between a steel material that mainly bears an axial force and a solidified material such as concrete embedded and fixed therein, wherein a substantially parallel direction of action of the axial force is provided at a fixing portion of the steel material. A reinforcing plate that increases the adhesion area of concrete, etc. is attached, and a dowel reinforcing material such as an oblique reinforcing bar is provided on the surface of one or both of the steel material and the reinforcing plate. The reinforcing plate and the dowel reinforcing material are embedded and fixed in a solidified material such as concrete together with steel, and the steel is fixed to a solidified material such as concrete. Load transmission mechanism.
【請求項3】主に軸力を負担する鋼材とこれを埋め込ん
で定着した周囲のコンクリート等の固化材料との荷重伝
達機構において、 鋼材の定着部分に、軸力の作用方向にほぼ平行な配置で
コンクリート等の付着面積を増大する補強プレートが付
設され、軸力の作用方向とほぼ直角な向きにスタッドジ
ベル等の支圧補強材が突設され、さらに鋼材及び補強プ
レートのいずれか一方又は双方の表面に、斜め鉄筋等に
よるダボ補強材が軸力の作用方向に対しほぼ左右対称な
ハの字形の配置で付設されており、前記の補強プレー
ト、支圧補強材及びダボ補強材が鋼材と共にコンクリー
ト等の固化材料の中に埋め込まれ定着されていることを
特徴とする、鋼材をコンクリート等の固化材料へ定着す
る荷重伝達機構。
3. A load transmission mechanism between a steel material that mainly bears an axial force and a solidified material such as concrete embedded and fixed therein, wherein a portion substantially parallel to a direction in which the axial force acts is disposed at a fixing portion of the steel material. In addition, a reinforcing plate that increases the adhesion area of concrete etc. is attached, a bearing reinforcing material such as a stud dowel is projected in a direction substantially perpendicular to the direction of action of the axial force, and one or both of the steel material and the reinforcing plate The surface of the dowel is provided with a dowel reinforcing material such as a diagonal reinforcing bar in a substantially C-shaped arrangement substantially symmetrical with respect to the direction of action of the axial force, and the reinforcing plate, the bearing support reinforcing material and the dowel reinforcing material are combined with steel. A load transmitting mechanism for fixing a steel material to a solidified material such as concrete, wherein the load transmitting mechanism is embedded and fixed in a solidified material such as concrete.
JP2213015A 1990-08-10 1990-08-10 Load transfer mechanism for fixing steel to solidified material such as concrete Expired - Fee Related JP2764648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2213015A JP2764648B2 (en) 1990-08-10 1990-08-10 Load transfer mechanism for fixing steel to solidified material such as concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2213015A JP2764648B2 (en) 1990-08-10 1990-08-10 Load transfer mechanism for fixing steel to solidified material such as concrete

Publications (2)

Publication Number Publication Date
JPH0497063A JPH0497063A (en) 1992-03-30
JP2764648B2 true JP2764648B2 (en) 1998-06-11

Family

ID=16632092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213015A Expired - Fee Related JP2764648B2 (en) 1990-08-10 1990-08-10 Load transfer mechanism for fixing steel to solidified material such as concrete

Country Status (1)

Country Link
JP (1) JP2764648B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6224420B2 (en) * 2013-11-07 2017-11-01 大成建設株式会社 Connection structure between CFT column and concrete bottom slab

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225176B2 (en) * 1974-02-18 1977-07-06
JPS5287006U (en) * 1975-12-24 1977-06-29
JPS56159526U (en) * 1980-04-30 1981-11-27

Also Published As

Publication number Publication date
JPH0497063A (en) 1992-03-30

Similar Documents

Publication Publication Date Title
JP2764648B2 (en) Load transfer mechanism for fixing steel to solidified material such as concrete
JPS5943385B2 (en) Device for anchoring fixed members to concrete members
US3771884A (en) Wedge-held u-bolt clamp
JP2568951B2 (en) Connection between reinforced concrete columns and steel beams
JP2698959B2 (en) Rigid joint of underground continuous wall
JP2000096834A (en) Reinforcing structure of concrete member
JPH10204993A (en) Concrete structure column with filled steel pipe
JP2001073390A (en) Pile head structure
JP3859218B2 (en) Seismic reinforcement structure for steel column bases in buildings, and seismic reinforcement method for steel column bases in buildings
CN212561876U (en) Mechanical anchoring joint of reinforced concrete beam and steel pipe concrete column
JP3844139B2 (en) Reinforcing member and reinforcing method for soil stabilization
JP3208682B2 (en) Joint structure between core wall and steel beam
JPH09111720A (en) Reinforcing structure of steel pipe column
JPH06272304A (en) Junction structure of reinforced concrete column and steel framed beam
JP2002004494A (en) H-steel with projection
US3340664A (en) Concrete structure with butt spliced compression and tension reinforcement
JPH11200395A (en) Earthquake-resistant reinforcing structure of structure
KR102685205B1 (en) Compressive precast element strengthen above a top flange in H-shapes Steel Beam
JP2004316073A (en) Joint structure of column and beam with floor slab composite function
JP2003155707A (en) Diagonal member fixing part reinforcing structure for cable stayed bridge
JP2627707B2 (en) Joint structure between underground continuous wall and underground skeleton
JP2971043B2 (en) Truss bridge
JP2878382B2 (en) Frame structure of structure consisting of PC steel column and PC steel beam or PS steel beam
JP2544851Y2 (en) Composite structural members
JP2631600B2 (en) Joint method between underground continuous walls

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees