JP2762609B2 - Near infrared shielding glass - Google Patents
Near infrared shielding glassInfo
- Publication number
- JP2762609B2 JP2762609B2 JP1241466A JP24146689A JP2762609B2 JP 2762609 B2 JP2762609 B2 JP 2762609B2 JP 1241466 A JP1241466 A JP 1241466A JP 24146689 A JP24146689 A JP 24146689A JP 2762609 B2 JP2762609 B2 JP 2762609B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- film
- mixture
- infrared
- oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Surface Treatment Of Glass (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は近赤外線の透過率の小さい近赤外線遮断ガラ
スに関し特に可視光線透過率の大きい近赤外線遮断ガラ
スに関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a near-infrared blocking glass having a small near-infrared transmittance, and particularly to a near-infrared blocking glass having a large visible light transmittance.
[従来の技術] 近年冷房負荷の軽減あるいは太陽光線熱暑感の低減を
目的に熱線吸収ガラスおよび熱線反射ガラスが建築物あ
るいは自動車・車輌等に対して広く用いられてきてい
る。ここで熱線吸収ガラスとは通常のソーダライム組成
のガラス板に対して酸化鉄、酸化コバルト、酸化ニッケ
ル、セレン等の着色成分をそのガラス組成中に含ませた
ものであり可視光線及び近赤外線を吸収することにより
太陽輻射エネルギーの建築物内あるいは自動車・車輌等
への流入を防止するものである。また熱線反射ガラスと
は通常ガラス板表面に光屈折率の高い酸化物例えば鉄、
コバルト、クロム、チタンなどの酸化物の薄膜を形成し
その光干渉効果を用いて表面反射率を高め太陽エネルギ
ーを反射することで建築物内あるいは自動車・車輌への
太陽輻射エネルギーの流入を防止するものである。[Related Art] In recent years, heat ray absorbing glass and heat ray reflecting glass have been widely used for buildings, automobiles, vehicles, and the like for the purpose of reducing the cooling load or the feeling of heat and sun rays. Here, the heat ray absorbing glass is a glass plate having a normal soda lime composition in which coloring components such as iron oxide, cobalt oxide, nickel oxide, and selenium are included in the glass composition. The absorption prevents solar radiation energy from flowing into buildings or into automobiles and vehicles. Heat ray reflective glass is usually an oxide having a high refractive index such as iron,
Forming a thin film of oxide such as cobalt, chromium, titanium, etc. and using the light interference effect to increase the surface reflectivity and reflect solar energy to prevent the inflow of solar radiation energy into buildings or automobiles / vehicles Things.
更には近年スパッタリング法による薄膜形成技術の発
展にともない、チタン、ニッケル、ステンレスなどの金
属薄膜あるいはこれらの窒化物薄膜の反射・吸収を利用
した熱線反射ガラスも広く用いられている。Furthermore, in recent years, with the development of a thin film forming technique by a sputtering method, a heat ray reflective glass utilizing reflection / absorption of a metal thin film such as titanium, nickel, and stainless steel or a nitride thin film thereof has been widely used.
ところで太陽輻射エネルギーとは一般にエネルギー構
成で紫外線約4%、可視光線約50%、近赤外線約46%か
らなる。従って先の熱線吸収ガラス、熱線反射ガラスが
主として可視光線領域の吸収または反射により太陽輻射
エネルギーを遮断していることを考えれば、これらのガ
ラスが太陽輻射エネルギーを遮断する効果は可視光線透
過率の点から限界があった。すなわち建築用の場合には
太陽エネルギー遮断効果を高めれば高めるほど内部が暗
くなり快適さが損なわれる他に、エネルギー経済性の面
からも建築物内の照明エネルギーの増大を招くとの問題
があった。一方自動車・車輌用では可視光透過率が小さ
いと透視安全性の面で著しく商品特性を損なうことは明
白である。By the way, solar radiation energy is generally composed of about 4% of ultraviolet rays, about 50% of visible rays, and about 46% of near-infrared rays in energy composition. Therefore, considering that the heat-absorbing glass and the heat-reflecting glass mainly block the solar radiation energy by absorption or reflection in the visible light region, the effect of blocking the solar radiation energy by these glasses is the visible light transmittance. There was a limit from the point. In other words, in the case of buildings, the more the solar energy blocking effect is increased, the darker the interior and the less comfortable it is, and also from the viewpoint of energy economy, there is a problem that the lighting energy in the building will increase. Was. On the other hand, in the case of automobiles and vehicles, if the visible light transmittance is small, it is obvious that the characteristics of products are significantly impaired in terms of see-through safety.
このため、近赤外線領域で太陽エネルギーを遮断する
(すなわち太陽光透過率Tgが低い)、一方で可視光透過
率(TL)は高い明るい熱線反射ガラス、いわゆる近赤外
線遮断ガラスが強く望まれてきた。Therefore, there is a strong demand for a bright heat ray reflective glass that blocks solar energy in the near-infrared region (that is, has a low sunlight transmittance Tg), but has a high visible light transmittance (T L ), that is, a so-called near-infrared blocking glass. Was.
またこれらの材料を実際に使用する際、多くの場合ガ
ラスの強度が問題とされる。すなわち、まず建築用の場
合太陽光輻射エネルギーのうち膜(及びガラス)によっ
て吸収されたエネルギーは熱になって温度を高め熱膨張
による歪を発生しいわゆる熱割れの原因となる。また一
方自動車・車輌用の場合では衝突時の安全性確保のため
にガラスは合わせガラスとするか、さもなくば強化する
必要があるのは明らかである。特に自動車の側面窓の様
にガラスを上下させて窓を開閉する必要性がある場合、
合わせガラスは適当でなく単板強化ガラスが求められ
る。更に塗布の均一性を考慮にいれれば、ガラスに膜を
塗布した後で強化・曲げを行なうほうが都合がよい。When these materials are actually used, the strength of the glass is often a problem. That is, first, in the case of architectural use, of the solar radiation energy, the energy absorbed by the film (and glass) becomes heat to increase the temperature and generate distortion due to thermal expansion, which causes so-called thermal cracking. On the other hand, in the case of automobiles and vehicles, it is clear that the glass must be laminated or otherwise strengthened to ensure safety in the event of a collision. Especially when it is necessary to open and close the window by raising and lowering the glass like a side window of a car,
Laminated glass is not suitable and single-pane tempered glass is required. In consideration of the uniformity of application, it is more convenient to strengthen and bend the glass after applying the film.
かかる背景から選択的に近赤外線を吸収あるいは反射
するガラスの提供に関し、いくつかの試みがなされてき
た。例えばその一つに特開昭60-235746に見られる酸化
タングステンあるいは酸化モリブデン等の遷移金属酸化
物の原子価遷移によると思われる近赤外線領域での吸収
を利用する方法があげられる。あるいは他の方法として
特公昭59-44993で提案されている金・銀の金属薄膜層の
片面あるいは両面を透明高屈折率層で覆った積層体例え
ばTiO2/Ag/TiO2、Bi2O3/Au/Bi2O3、ZnS/Ag/ZnSなどがあ
げられる。Some attempts have been made to provide a glass that selectively absorbs or reflects near-infrared light from such a background. For example, there is a method utilizing absorption in a near-infrared region, which is considered to be caused by a valence transition of a transition metal oxide such as tungsten oxide or molybdenum oxide, which is disclosed in JP-A-60-235746. Alternatively, as another method, a laminate in which one or both surfaces of a metal thin film layer of gold and silver proposed in Japanese Patent Publication No. 59-44993 is covered with a transparent high refractive index layer, for example, TiO 2 / Ag / TiO 2 , Bi 2 O 3 / Au / Bi 2 O 3 and ZnS / Ag / ZnS.
しかしながら遷移金属酸化物の場合、水にわずかなが
ら溶解する性質があり、合わせガラス、複層ガラスとい
った水分の侵入が完全に防止できる形態でしか使えない
との制約があった。更には加熱処理により近赤外線遮断
効果が著しく低下するため曲げ、強化処理ができないと
の難点があった。However, the transition metal oxide has a property of being slightly soluble in water, and has a limitation that it can be used only in a form such as a laminated glass or a multi-layer glass that can completely prevent the penetration of moisture. Furthermore, the heat treatment significantly reduces the near-infrared ray blocking effect, so that bending and strengthening cannot be performed.
一方、金、銀の金属薄膜を用いた積層体においても熱
・光・水分・ガスなどあらゆる環境条件が積層体の劣化
の原因となり単板使用はおろか合わせガラス複層ガラス
使用条件下においても性能・寿命に不安が残るとの問題
があった。On the other hand, even in a laminated body using a thin metal film of gold and silver, various environmental conditions such as heat, light, moisture, and gas cause deterioration of the laminated body. -There was a problem that the life was uneasy.
また古くは米国特許第2,564,708号にSn-Sbの酸化物か
らなる膜の抵抗体としての応用に関する記載がみられ
る。しかしこの特許内容には可視光透過率に関する記載
が見あたらず、また膜付け後の強化に関わる条件などの
記載もない。A description of the application of a film made of a Sn—Sb oxide as a resistor has been found in US Pat. No. 2,564,708. However, there is no description about the visible light transmittance in this patent content, and there is no description about conditions related to strengthening after film formation.
このため、本発明者らはかかる高耐久性でかつ高性能
の近赤外遮断ガラスの目的にかなう薄膜材料のうちSnお
よびSbの酸化物の混合物被膜が最も有効に使用でき、特
に混合物被膜中のSbの含有割合(重量%)がSb2O3換算
で2〜20%の時、可視光線透過率が高く効果的なことを
見いだした。For this reason, the present inventors can most effectively use a mixed film of an oxide of Sn and Sb among thin film materials meeting the purpose of such a highly durable and high-performance near-infrared shielding glass, It was found that when the content ratio (% by weight) of Sb was 2 to 20% in terms of Sb 2 O 3 , the visible light transmittance was high and effective.
更にこの場合強化処理により、風冷強化時のガラスと
被膜の熱膨張係数の差から被膜に無数のクラックが時と
して発生し、特に高強度の近赤外線遮断ガラスを提供す
る上で問題となっていた。また可視光領域における透過
率を高く維持するための膜付け温度、Sb組成も明らかで
はなかった。Furthermore, in this case, due to the tempering treatment, countless cracks are sometimes generated in the coating due to the difference in the coefficient of thermal expansion between the glass and the coating at the time of air cooling, which is a problem particularly in providing high-intensity near-infrared shielding glass. Was. Neither the film formation temperature nor the Sb composition for maintaining high transmittance in the visible light region was clear.
[発明が解決しようとする問題点] 本発明はかかる近赤外線遮断ガラスの問題点に鑑み、
単板ガラス条件下でも使用できる高耐久性・高性能かつ
強化処理を施した高強度の近赤外線遮断ガラスを提供す
ることを目的とする。[Problems to be Solved by the Invention] The present invention has been made in view of the problems of such near-infrared shielding glass,
It is an object of the present invention to provide a highly durable, high-performance, high-strength, near-infrared shielding glass which has been subjected to a tempering treatment and which can be used even under a single glass condition.
[問題を解決するための手段] 本発明での近赤外線遮断ガラスはガラスを近赤外線吸
収性能を有する被膜で被覆した後、強化処理を施しガラ
スを著しく高めたことを特徴とする。[Means for Solving the Problem] The near-infrared blocking glass of the present invention is characterized in that the glass is coated with a film having near-infrared absorption performance, and then the glass is remarkably enhanced by a tempering treatment.
この場合、近赤外線吸収性能を有する被膜はSnおよび
Sbの酸化物の混合物被膜(以下Sn-Sb酸化物膜と記す
る)から成り、該混合物被膜中のSbの含有割合(重量
%)が、Sb2O3換算で2〜20%のものが求められる。Sb
の含有量がSb2O3換算(重量%)で2%以下の時には、
近赤外線の遮断性能に乏しく、一方この上限を超えてSb
混合割合を高めてもTLは急激に減少し、むしろ次第に耐
酸性・耐熱性が低下してしまう。なお、被膜中の組成は
プラズマ発光分析および蛍光X線分析(Phillips製PW14
00型)を併用して分析した。In this case, the coating having near infrared absorption performance is Sn and
A mixture of Sb oxides (hereinafter referred to as Sn-Sb oxide film), wherein the content (% by weight) of Sb in the mixture coating is 2 to 20% in terms of Sb 2 O 3 Desired. Sb
When the content of Sb 2 O 3 (% by weight) is 2% or less,
Poor near-infrared blocking performance, while exceeding this upper limit Sb
Even if the mixing ratio is increased, the TL sharply decreases, and the acid resistance and heat resistance gradually decrease. The composition in the film was determined by plasma emission analysis and fluorescent X-ray analysis (PW14 manufactured by Phillips).
(Type 00).
ところでこのようなSn-Sb酸化物膜の成膜法として
は、高温のガラスにSnおよびSbの化合物を含む溶液、ま
たはこれらの蒸気あるいは粉末を含む気体と接触させ
て、ガラス表面にSn-Sb酸化物膜を形成したものがよ
い。具体的にはSn原料としてはモノブチル錫トリクロラ
イド(C4H9SnCl3)、Sb原料には三塩化アンチモン(SbC
l3)またはSbCl5を適切な溶媒に溶かして500℃以上に加
熱されたガラスに霧化して吹き付ける方法が考えられ
る。なお、アンチモン原料としてSb2O5、HClを加えた溶
媒の組合せでもかまわない。また、得られる被膜の色調
や光学特性を調整するために、V,Biなどの金属塩を上記
混合液中に溶解させ、これらの金属酸化物を該被膜中に
含ませてもよい。なお噴霧方法としてはあらかじめ各成
分を混合した液を微小な液滴として噴霧してもよいし、
各成分を別個に液滴として同時に噴霧・反応させてもよ
い。By the way, as a method of forming such a Sn-Sb oxide film, a solution containing a compound of Sn and Sb, or a gas containing a vapor or a powder thereof, is brought into contact with a high-temperature glass to form a Sn-Sb film on the glass surface. An oxide film is preferably used. Specifically, monobutyltin trichloride (C 4 H 9 SnCl 3 ) is used as the Sn material, and antimony trichloride (SbC
l 3) or SbCl 5 a method of blowing and atomizing the glass heated to 500 ° C. or higher are dissolved in a suitable solvent can be considered. Note that a combination of a solvent to which Sb 2 O 5 and HCl are added as an antimony raw material may be used. Further, in order to adjust the color tone and optical characteristics of the obtained coating, a metal salt such as V or Bi may be dissolved in the above-mentioned mixed solution, and these metal oxides may be contained in the coating. In addition, as a spraying method, a liquid in which each component is mixed in advance may be sprayed as fine droplets,
Each component may be separately sprayed and reacted simultaneously as droplets.
このようにして得られたSn-Sb混合酸化物膜において
は近赤外領域にSbの3価と5価の間の遷移が原因と考え
られる吸収ピークが観測されこれによって近赤外領域の
透過率が減少すると考えられる。In the Sn—Sb mixed oxide film thus obtained, an absorption peak is observed in the near-infrared region, which is considered to be caused by the transition between trivalent and pentavalent Sb. The rate is expected to decrease.
以上のように本発明ではガラス組成、Sn-Sb酸化物膜
中の元素比・及び性膜温度を選ぶことで、可視光線透過
率の高いかつ近赤外線吸収の大きいガラスが提供できる
が、この種のガラスを実用に供する場合、強化処理を施
しガラスの強度を高めることがしばしば行われる。強化
処理には種々の方法が存在するが、ガラスを軟化温度以
上に昇温した後、表面だけを固化して表面圧縮応力を発
生させるいわゆる風冷強化法が、経済性あるいは造形性
の点から最適な方法と考えられる。この点本発明のSn-S
b酸化物膜ではかかる処理を行なった後でもその優れた
光学特性は全く変化しないことが明らかとなった。しか
しながら、ソーダライムガラスにおける熱膨張係数はお
およそ1×10-5℃-1と大きいのに比べて上記酸化物の熱
膨張係数は4×10-6℃-1と著しい違いがある。このため
Sn-Sb酸化物膜の膜厚が厚すぎると強化処理の際、膜中
にクラックが発生し著しく外観品質を損なうのが常であ
る。発明者らは強化条件と強化処理後の外観品質との相
関を詳細に検討し、Sn-Sb酸化物膜の膜厚が4000Å以下
で、かつ膜付け後のガラス強化の際のガラスの表面残留
応力が900kg/cm2以上1300kg/cm2以下であれば上記問題
を回避できることを初めて明らかにした。As described above, in the present invention, a glass having a high visible light transmittance and a large near-infrared absorption can be provided by selecting the glass composition, the element ratio in the Sn-Sb oxide film, and the film temperature. When the glass of (1) is put to practical use, the glass is often subjected to a tempering treatment to increase the strength of the glass. There are various methods of tempering, but the so-called air-cooling tempering method, which raises the temperature of the glass above the softening temperature and then solidifies only the surface to generate surface compressive stress, is economically or moldable. This is considered the optimal method. In this regard, the Sn-S of the present invention
It became clear that the excellent optical properties of the b-oxide film did not change at all even after such treatment. However, the coefficient of thermal expansion of soda-lime glass is as large as about 1 × 10 −5 ° C. −1 , while the coefficient of thermal expansion of the oxide is remarkably 4 × 10 −6 ° C. −1 . For this reason
If the thickness of the Sn—Sb oxide film is too large, cracks are generated in the film during the strengthening treatment, and the appearance quality is usually significantly impaired. The inventors examined in detail the correlation between the strengthening conditions and the appearance quality after the strengthening treatment, and found that the Sn-Sb oxide film thickness was 4000 mm or less, and that the glass surface residue during glass strengthening after the film was attached. It has been clarified for the first time that the above problem can be avoided if the stress is 900 kg / cm 2 or more and 1300 kg / cm 2 or less.
[作用] 以上示してきたように本発明の組成・膜厚のSn-Sb酸
化物膜を板ガラス上に形成することによって高可視光透
過、かつ近赤外線カット性能に優れ強化処理の際に膜中
にクラックの発生のないガラスを提供することができる
に至った。[Function] As described above, by forming the Sn—Sb oxide film having the composition and thickness of the present invention on a sheet glass, it has excellent visible light transmission and near-infrared cut performance, and is formed in the film at the time of strengthening treatment. Thus, a glass free from cracks can be provided.
以下、具体的な実施例を説明する。 Hereinafter, specific examples will be described.
[実施例1] 大きさが150×150mm厚みが4mmのソーダライムガラス
を洗浄、乾燥し基板とした。この基板を吊具によって固
定し、所定の温度に設定した電気炉内に5分間保持した
後、取り出して以下に示す原料液を市販のスプレーガン
を用いて基板上に約10秒間、空気圧1.5kg/cm2、空気量5
0l/min、噴霧量120ml/minで吹き付けたものを試料とし
た。原料液は以下の組成であった。Example 1 A soda lime glass having a size of 150 × 150 mm and a thickness of 4 mm was washed and dried to obtain a substrate. This substrate was fixed by a hanging tool, and kept in an electric furnace set at a predetermined temperature for 5 minutes, then taken out and the following raw material liquid was sprayed on the substrate for about 10 seconds using a commercially available spray gun at an air pressure of 1.5 kg. / cm 2 , air volume 5
A sample sprayed at 0 l / min at a spray rate of 120 ml / min was used as a sample. The raw material liquid had the following composition.
C4H9SnCl3 31.8g CH3OH 10.0g H2O 10.0g SbCl3 適当量 ここでSn原料とSb原料の組成比を種々変えて吹き付け
を行なった。膜厚は1800Åと一定にした。得られた膜の
アンチモン組成比を蛍光X線により測定した。第1表に
錫、アンチモンの膜中組成比と得られた膜の光学特性を
比較する。It was carried out C 4 H 9 SnCl 3 31.8g CH 3 OH 10.0g H 2 O 10.0g SbCl 3 suitable amount here variously changed by spraying the composition ratio of Sn material and Sb raw material. The film thickness was kept constant at 1800 °. The antimony composition ratio of the obtained film was measured by fluorescent X-ray. Table 1 compares the composition ratio of tin and antimony in the film and the optical characteristics of the obtained film.
[実施例2] 実施例1と同様の吹き付け条件にてSn-Sb混合酸化物
膜を4mmの厚み、300×300mm の大きさのソーダライムガラスに吹き付けた。吹き付け
時間を調整し、得られた膜の膜厚を1500Å、4000Å、55
00Åとした。このガラスを用いて風冷強化テストを行な
った。出炉温度が高いほど表面残留応力の値は大きく、
強化の程度が強いことがわかった。Example 2 A Sn—Sb mixed oxide film having a thickness of 4 mm and a size of 300 × 300 mm was applied under the same spraying conditions as in Example 1. Size soda lime glass. Adjust the spray time and adjust the thickness of the obtained film to 15001, 4000Å, 55
00 °. An air-cooling strengthening test was performed using this glass. The higher the furnace temperature, the higher the surface residual stress value,
The degree of reinforcement was found to be strong.
第1図には表面残留応力と強化後の膜の外観特性の関
係を図示した。膜厚が5500Åでは残留応力を900kg/cm2
に抑えた場合でも全面にクラックが入り、事実上風冷強
化はできないといえる。一方膜厚を4000Å以下とした場
合、残留応力が1300kg/cm2以下であればクラックは発生
せず通常の強化条件を満足できる。すなわち、強化時に
現れる被膜のクラックは膜厚が厚いほど、あるいは出炉
温度が高いほど顕著に現れる傾向が明らかとなったもの
の、4000Å以下の膜厚を選べば実用域での強化処理によ
るクラックの問題はないことがわかった。FIG. 1 shows the relationship between the surface residual stress and the appearance characteristics of the reinforced film. When the film thickness is 5500 mm, the residual stress is 900 kg / cm 2
Even if it is suppressed, cracks are formed on the entire surface, and it can be said that it is virtually impossible to strengthen the air cooling. On the other hand, when the film thickness is 4,000 mm or less, if the residual stress is 1300 kg / cm 2 or less, no crack occurs and the normal strengthening conditions can be satisfied. In other words, the cracks in the coating appearing during strengthening tend to appear more pronounced as the film thickness increases or as the furnace temperature rises. Turned out not to be.
なお強化処理前後での光学特性の変化は全く認められ
なかった。No change in the optical characteristics before and after the strengthening treatment was observed.
[発明の効果] 本発明によれば、実施例から明かなように高可視光透
過、かつ近赤外線カット性能に優れ強化処理の際に膜中
にクラックの発生のないガラスを得ることができる。[Effects of the Invention] According to the present invention, as is clear from the examples, it is possible to obtain a glass which is excellent in high visible light transmission and near-infrared ray cut performance and does not generate cracks in the film during the strengthening treatment.
第1図は表面残留応力と強化後の膜の外観特性の関係を
図示したものである。FIG. 1 illustrates the relationship between surface residual stress and appearance characteristics of a reinforced film.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−124426(JP,A) 特開 平1−192735(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03C 17/00 - 17/44 C03B 27/04────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-52-124426 (JP, A) JP-A-1-192735 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C03C 17/00-17/44 C03B 27/04
Claims (1)
物の混合物からなる被膜を形成した熱線遮断ガラスにお
いて、 混合物被膜中のSbの含有割合(Sb2O3換算重量%)
が2〜20%、 該混合物被膜の膜厚が4000Å以下で、 該混合物被膜被覆ガラスが膜付け後強化処理を経て
強化され、その時のガラスの表面残留応力として900kg/
cm2以上1300kg/cm2以下の値を有し、 可視光線透過率が40%以上、太陽光透過率が70%以
下であり、 該混合被膜物が、500℃以上の高温のガラスに、Sn
およびSbの化合物を接触させて熱分解酸化反応により得
たものであること を、特徴とする近赤外線遮断ガラス。1. A heat ray shielding glass in which a film mainly composed of a mixture of Sn and Sb oxides is formed on a glass substrate, wherein the content of Sb in the mixture film (% by weight in terms of Sb 2 O 3 ).
Is 2 to 20%, and the thickness of the mixture coating film is 4000 mm or less, and the glass film coated with the mixture coating is strengthened through a tempering treatment after coating, and the surface residual stress of the glass at that time is 900 kg /
cm 2 or more 1300 kg / cm 2 have the following values, the visible light transmittance of 40% or more, solar transmittance of 70% or less, the mixture coating film was found to 500 ° C. or more hot glass, Sn
A near-infrared cut-off glass, which is obtained by a thermal decomposition oxidation reaction of a Sb compound and a Sb compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1241466A JP2762609B2 (en) | 1989-09-18 | 1989-09-18 | Near infrared shielding glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1241466A JP2762609B2 (en) | 1989-09-18 | 1989-09-18 | Near infrared shielding glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03103339A JPH03103339A (en) | 1991-04-30 |
JP2762609B2 true JP2762609B2 (en) | 1998-06-04 |
Family
ID=17074735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1241466A Expired - Fee Related JP2762609B2 (en) | 1989-09-18 | 1989-09-18 | Near infrared shielding glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2762609B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1516032A (en) * | 1976-04-13 | 1978-06-28 | Bfg Glassgroup | Coating of glass |
JPH01192735A (en) * | 1988-01-27 | 1989-08-02 | Nippon Sheet Glass Co Ltd | Production of electrically conductive glass |
-
1989
- 1989-09-18 JP JP1241466A patent/JP2762609B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03103339A (en) | 1991-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2509925B2 (en) | Curved and / or tempered silver coated glass substrate and method of making same | |
JP4787744B2 (en) | Glazing composition provided with a thin film multilayer that reflects infrared radiation and / or solar radiation | |
JP3139031B2 (en) | Heat shielding glass | |
DE69912427T2 (en) | TRANSPARENT SUBSTRATE WITH SILVER COATING | |
US7488538B2 (en) | Coated article including soda-lime-silica glass substrate with lithium and/or potassium to reduce sodium migration and/or improve surface stability and method of making same | |
PL200326B1 (en) | Glazing | |
JP2000192227A (en) | Manufacture of multilayer low-emissivity coating product | |
JPS63248741A (en) | Manufacture of tempered and/or bent glass sheet with silver coating, glass sheet manufactured thereby and application of same | |
CN101060977A (en) | Solar control glazing | |
JPH05195201A (en) | Metal vacuum coating article and preparation thereof | |
DE69905496T2 (en) | IMPROVEMENTS IN THE COATING OF GLASS | |
EP0386993B1 (en) | Heat treatable sputter-coated glass | |
DE1596722B2 (en) | Thermally reflective glass coated with a highly permeable film and process for its manufacture | |
US5894047A (en) | Heat reflecting glass | |
GB2302101A (en) | Aglazing panel having solar screening properties | |
CA2178032A1 (en) | Glazing panel having solar screening properties | |
JPS59182250A (en) | Window glass for panorama roof | |
JP2762609B2 (en) | Near infrared shielding glass | |
JPH0315722B2 (en) | ||
JP3094852B2 (en) | Heat ray shielding glass for vehicles | |
EP1004550A1 (en) | Heat-reflecting glass and double-glazing unit using the same | |
EP1002773A1 (en) | Heat-reflecting glass and double-glazing unit using the same | |
CA1062969A (en) | Coating glass | |
JPH01257150A (en) | Production of plate galss composed of inorganic glass having high transmissivity in visible spectrum and low in solar energy transmissivity and obtained plate glass | |
JP2002509515A (en) | Solar control coated substrate with high reflectivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |