JP2762277B2 - Magnetic field correction method for nuclear magnetic resonance imaging and nuclear magnetic resonance imaging apparatus - Google Patents

Magnetic field correction method for nuclear magnetic resonance imaging and nuclear magnetic resonance imaging apparatus

Info

Publication number
JP2762277B2
JP2762277B2 JP63206126A JP20612688A JP2762277B2 JP 2762277 B2 JP2762277 B2 JP 2762277B2 JP 63206126 A JP63206126 A JP 63206126A JP 20612688 A JP20612688 A JP 20612688A JP 2762277 B2 JP2762277 B2 JP 2762277B2
Authority
JP
Japan
Prior art keywords
magnetic field
correction
resonance imaging
pulse
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63206126A
Other languages
Japanese (ja)
Other versions
JPH0255039A (en
Inventor
勇二 井上
正章 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
GE Yokogawa Medical System Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Yokogawa Medical System Ltd filed Critical GE Yokogawa Medical System Ltd
Priority to JP63206126A priority Critical patent/JP2762277B2/en
Publication of JPH0255039A publication Critical patent/JPH0255039A/en
Application granted granted Critical
Publication of JP2762277B2 publication Critical patent/JP2762277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、静磁場不均一分布を測定し、この不均一情
報に基づいて補正磁場を発生させる方法及び装置に関
し、更に詳しくは、前記測定可能な不均一度の範囲を向
上したMRIの磁場補正方法及び装置に関する。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for measuring a non-uniform distribution of a static magnetic field and generating a correction magnetic field based on the non-uniform information. The present invention relates to an MRI magnetic field correction method and apparatus with an improved range of possible inhomogeneity.

(従来の技術) MRI(Magnetic Resonance Imaging)装置において、
静磁場用マグネットにより磁場均一度は、数十ppmオー
ダー以下の均一度が要求される。しかし、マグネット製
作上での精度及びその設置環境などの理由により、マグ
ネット単体の発生する磁場の均一度は数百ppm以上とな
る。そこで、通常は磁場補正用の電流シムコイルや鉄な
どによる磁性体シムを用いて補正磁場を発生し、磁場を
要求される均一度まで向上させている。一方、この補正
磁場を発生するにあたり、磁場分布をppmのオーダーで
精度良く測定するためには、NMR現象を用いる必要があ
り、通常次の2通りの方法が用いられる。第5図
(a),(b)は従来例のNMRプローブを用いた磁場強
度分布計測方法を表す図である。第5図(a)はNMRプ
ローブの配置方法を表す概略図であり、第5図(b)は
NMRプローブの構成図である。第5図(a)において、
1は磁場強度計測場所に設置されるNMRプローブ、第5
図(b)において、2はNMRプローブ1内に設置される
約1ccの水サンプル、3は水サンプル2からのNMR信号を
送受信するRFコイル、4はRFコイル3に並列接続された
共振用のバリコン、5はRFコイル3に直列接続された送
受信用のT/R(Transmitter/Receiver)回路である。第
5図(a)のように、NMRプローブ1を、磁場計測場所
に配置して、RFコイル3からRFパルスを送受信して、共
振周波数からその場所での磁場強度を測定する。次に、
この位置を磁場計測範囲内で所定の距離を隔てて、例え
ば円筒形状に移動させて各地点での磁場をプロットして
磁場不均一分布を測定する。この方法によると、測定可
能な磁場不均一度の大きさに制限を受けないため、不均
一度がどんなに大きくても測定できるという利点があ
る。この反面、磁場強度を1点1点測定してゆくため、
数百から数千点の計測点を、1点1点NMRプローブ1を
移動しながら測定するために長時間を必要とするという
問題がある。又、この測定データを、最小2乗法により
各シムコイルに流す電流値を計算するために整理する過
程も手間がかかる。更に、通常の測定ではNMRプローブ
1を設置、移動するための治具が必要であり、マグネッ
トにテーブル装置などの他の物があるとこの治具が設置
できないため、システムを組む前のマグネットが空洞の
状態で測定を行なわなければならず、計測が大掛りにな
るという問題もある。
(Prior Art) In an MRI (Magnetic Resonance Imaging) device,
The uniformity of the magnetic field is required to be several tens of ppm or less by the static magnetic field magnet. However, the uniformity of the magnetic field generated by the magnet alone is several hundred ppm or more due to the accuracy in manufacturing the magnet and the installation environment. Therefore, normally, a correction magnetic field is generated using a current shim coil for magnetic field correction or a magnetic shim made of iron or the like to improve the magnetic field to a required uniformity. On the other hand, to generate the correction magnetic field, it is necessary to use the NMR phenomenon in order to accurately measure the magnetic field distribution on the order of ppm, and the following two methods are usually used. FIGS. 5 (a) and 5 (b) are diagrams showing a magnetic field intensity distribution measuring method using a conventional NMR probe. FIG. 5 (a) is a schematic diagram showing a method of arranging NMR probes, and FIG.
It is a block diagram of an NMR probe. In FIG. 5 (a),
1 is an NMR probe installed at a magnetic field strength measurement location,
In FIG. 2B, reference numeral 2 denotes an approximately 1 cc water sample installed in the NMR probe 1, reference numeral 3 denotes an RF coil for transmitting and receiving NMR signals from the water sample 2, and reference numeral 4 denotes a resonance coil connected in parallel to the RF coil 3. A variable condenser 5 is a transmitting / receiving T / R (Transmitter / Receiver) circuit connected in series to the RF coil 3. As shown in FIG. 5 (a), the NMR probe 1 is placed at a magnetic field measurement location, RF pulses are transmitted and received from the RF coil 3, and the magnetic field strength at that location is measured from the resonance frequency. next,
This position is moved at a predetermined distance within the magnetic field measurement range, for example, in a cylindrical shape, and the magnetic field at each point is plotted to measure the magnetic field non-uniform distribution. According to this method, the measurable magnetic field inhomogeneity is not limited, so that there is an advantage that the measurement can be performed even if the inhomogeneity is large. On the other hand, to measure the magnetic field strength one by one,
There is a problem that it takes a long time to measure hundreds to thousands of measurement points while moving the NMR probe 1 one by one. Also, the process of organizing the measured data to calculate the value of the current flowing through each shim coil by the least squares method is troublesome. Furthermore, a jig for installing and moving the NMR probe 1 is necessary for normal measurement, and if there is another object such as a table device in the magnet, the jig cannot be installed. There is also a problem that the measurement must be performed in a hollow state, and the measurement becomes large.

第6図はディクソン(DIXSON)法を用いた磁場強度分
布測定方法のパルスシーケンスを表すタイミングチャー
トであり、tは時間軸、RFは静磁場方向(Z方向に向い
たプロトンの磁化ベクトルを励起するRF(Radio−Frequ
ency)波であり、回転角に応じて90゜パルス、180゜パ
ルスと呼ばれる。SEは90゜パルス印加後、静磁場方向に
垂直な面(XY平面)内に、静磁場不均一及び勾配磁場に
よってばらけた磁化ベクトルの位相を、180゜パルスで
反転して再び収束した時に観測されるスピンエコー信号
(以後SE信号と呼ぶ)である。Gphase及びGreadは各々
位相エンコード勾配磁場、周波数エンコード勾配磁場で
あり、例えば各々X,Y方向を位相、Z方向を周波数情報
に対応させてSE信号に3次元の位置情報を与える。ディ
クソン法では、180゜パルスの印加するタイミングの異
なる2種類のパルスシーケンスを用いる。即ちS1スキャ
ンでは180゜パルスの印加タイミングtpを、90゜パルス
からスピンエコーが得られるまでの時間TEの中間のtp=
TE/2とし、S2スキャンではS1スキャン時よりε早いtp=
TE/2−εとする。S2スキャンもスピンエコーを得るタイ
ミングは、S1スキャンと同じTEとする。この2スキャン
から得られるデータは、S1スキャンにおいては、TEの中
間の時刻TE/2の180゜パルスによって位相が反転される
ため、時刻TEでばらけた磁化ベクトルの位相が一致す
る。S2スキャンにおいては、ε早く180゜パルスによっ
て位相が反転されるため、各磁化ベクトルが2ε時間分
だけ余計に回転し、各場所ごとの磁場強度に応じた位相
ずれを生じる。従って、各スキャンによって得られるデ
ータを3次元フーリエ変換し、画像再構成した各画像デ
ータS1,S2は、次式で表される。
FIG. 6 is a timing chart showing a pulse sequence of a magnetic field intensity distribution measuring method using the DIXSON method, where t is a time axis, and RF is a static magnetic field direction (excitation of a magnetization vector of protons oriented in the Z direction). RF (Radio-Frequ
ency) wave, which is called a 90 ° pulse or a 180 ° pulse depending on the rotation angle. SE is observed when, after application of a 90 ° pulse, the phase of the magnetization vector dispersed by the inhomogeneity of the static magnetic field and the gradient magnetic field is reversed by 180 ° pulse and converges again in the plane (XY plane) perpendicular to the static magnetic field direction. (Hereinafter referred to as SE signal). Gphase and Gread are respectively a phase encoding gradient magnetic field and a frequency encoding gradient magnetic field. For example, three-dimensional position information is given to the SE signal in such a manner that the X and Y directions correspond to the phase and the Z direction corresponds to the frequency information. In the Dickson method, two types of pulse sequences having different 180 ° pulse application timings are used. That is, in the S1 scan, the application timing tp of the 180 ° pulse is set to tp = middle of the time TE from the 90 ° pulse until the spin echo is obtained.
Tp = ε earlier in S2 scan than in S1 scan
TE / 2−ε. S2 scan also obtain spin echo timing, the same T E as S1 scan. In the data obtained from these two scans, in the S1 scan, the phase is inverted by the 180 ° pulse at the time TE / 2, which is the middle of TE, so that the phases of the magnetization vectors separated at the time TE coincide. In the S2 scan, the phase is inverted by a 180 ° pulse earlier by ε, so that each magnetization vector is additionally rotated by 2ε time, and a phase shift occurs according to the magnetic field intensity at each location. Therefore, the image data S1 and S2 obtained by performing three-dimensional Fourier transform on the data obtained by each scan and reconstructing the image are represented by the following equations.

S1=ρ(x,y,z)・exp(i αo) …(1) S2=ρ(x,y,z)・exp(i αo+E(x,y,z)) …
(2) ここで、i2=−1であり、exp(i αo)は受信系な
どで生じる装置固有の0次位相オフセット成分、E(x,
y,z)は静磁場不均一分布である。
S1 = ρ (x, y, z) · exp (i αo) (1) S2 = ρ (x, y, z) · exp (i αo + E (x, y, z))
(2) Here, i 2 = −1, and exp (i αo) is a zero-order phase offset component unique to the device generated in a receiving system or the like, E (x,
(y, z) is the non-uniform distribution of the static magnetic field.

次に、測定FOVの各ピクセル毎に、静磁場不均一分布
E(x,y,z)を次式に従って求める。
Next, a non-uniform static magnetic field distribution E (x, y, z) is obtained for each pixel of the measurement FOV according to the following equation.

このイメージングによる計測手法によれば、数分の時
間で計測でき、前記のNMRプローブのような機械的操作
をすることなく、水ファントムを設置するのみで、テー
ブル等をマグネット内に組み込んだ状態で簡単に測定で
きる。
According to the measurement method by this imaging, it can be measured in a few minutes, without mechanical operation such as the above-mentioned NMR probe, only by installing a water phantom, with a table etc. incorporated in a magnet. Easy to measure.

(発明が解決しようとする課題) しかし、上記のようなイメージングによる計測手法に
おいては以下の問題点がある。前記不均一分布の位相値
の検出範囲は、−πからπまでとなるため、測定可能な
不均一度に制限を受ける。例えば、S2スキャンにおける
180゜ずらし時間εの時間設定の分解能を0.1msec、プロ
トンの共鳴周波数を21.29MHzとすると、得られる不均一
度の範囲E(ppm)は、 2ε・21.29×106・E・2π=±π …(4) より、E≒±110ppmとなる。従って、不均一度がEより
大きいと測定できない。更に、RFパルスの帯域によって
も制限を受ける。第7図(a),(b)はRFパルスのパ
ルス幅と帯域の関係を表す図である。第7図において、
(a)はRFパルス波形を表し、(b)はそのフーリエス
ペクトラムである。第7図(a)のようなパルス幅τの
矩形波形の帯域は、そのフーリエ変換として見積もれ
る。第7図(b)のように、0点は1/τHzとなり、例え
ばパルス幅を0.5msecとするとRFパルスの帯域は2KHzと
なる。0.5Teslaのシステムにおいて、この帯域での測定
レンジLは、 L=±2×103/(21.29×106)≒±90ppm …(5) となる。RFパルスのパルス幅τを狭めるとこの測定レン
ジLを広げることができるが、RFパルスのパワーが1/τ
に比例するため、RFパワーの限界から制限を受ける。
又、励起する磁気モーメントのフリップ角が小さくなる
結果、信号のS/Nが劣化する。一般的に、0.5Teslaのシ
ステムでは、コスト的にRFパワーは約2KW程度が適当で
あり、これから、測定レンズLは約±110ppmの測定レン
ジとなる。
(Problems to be Solved by the Invention) However, the above-described measurement method using imaging has the following problems. Since the detection range of the phase value of the non-uniform distribution is from -π to π, the measurable non-uniformity is limited. For example, in S2 scan
Assuming that the resolution of the time setting of the 180 ° shift time ε is 0.1 msec and the resonance frequency of the proton is 21.29 MHz, the range E (ppm) of the obtained nonuniformity is 2ε · 21.29 × 10 6 · E · 2π = ± π ... (4), E ≒ ± 110 ppm. Therefore, if the degree of non-uniformity is larger than E, it cannot be measured. Furthermore, it is limited by the band of the RF pulse. FIGS. 7A and 7B are diagrams showing the relationship between the pulse width and the band of the RF pulse. In FIG.
(A) shows the RF pulse waveform, and (b) shows its Fourier spectrum. The band of a rectangular waveform having a pulse width τ as shown in FIG. 7A can be estimated as its Fourier transform. As shown in FIG. 7B, the zero point is 1 / τHz. For example, if the pulse width is 0.5 msec, the band of the RF pulse is 2 KHz. In a 0.5 Tesla system, the measurement range L in this band is L = ± 2 × 10 3 /(21.29×10 6 ) ≒ ± 90 ppm (5) The measurement range L can be expanded by reducing the pulse width τ of the RF pulse, but the power of the RF pulse is 1 / τ
Because it is proportional to 2, it is limited by the RF power limit.
Further, as a result of the flip angle of the magnetic moment to be excited being reduced, the signal S / N deteriorates. Generally, in a system of 0.5 Tesla, the RF power is appropriately about 2 KW in terms of cost, so that the measurement lens L has a measurement range of about ± 110 ppm.

このように、イメージングによる計測手法において
は、NMRプローブを用いる手法に比べ簡単に測定できる
利点を有する反面、測定可能な不均一度に制限を受ける
という問題がある。従って、数百ppmのオーダーからの
磁場不均一分布を測定できないため、実用的でなかっ
た。
As described above, the measurement method using imaging has an advantage that the measurement can be performed more easily than the method using the NMR probe, but has a problem that the nonuniformity that can be measured is limited. Therefore, it was not practical because a non-uniform distribution of the magnetic field from the order of several hundred ppm could not be measured.

本発明は、前記問題点を解消し、短時間に磁場計測を
行なうとともに、正確な磁場補正を行なうMRIの磁場補
正方法及び装置を提供することにある。
An object of the present invention is to provide an MRI magnetic field correction method and apparatus that solves the above-mentioned problems, performs magnetic field measurement in a short time, and performs accurate magnetic field correction.

(課題を解決するための手段) 磁場強度分布計測用のイメージングを行ない、このス
キャンデータから静磁場不均一分布を求め、補正磁場強
度を算出して補正磁場を発生するMRIの磁場補正方法に
おいて、前記静磁場不均一分布の不均一度に応じて、前
記算出に用いる不均一分布の領域を変化させることを特
徴とする。又、前記計測する不均一度を、低次から高次
に順次上げてゆき、これに従って、FOVの大きさにより
異なる重み付け関数、又は、前記静磁場不均一分布の信
号強度の大きさに応じた重み付け関数を用いて補正に用
いるFOVを順次大きくしてゆき、更に、前記不均一度に
応じて、前記時間εの値、又は、RFパルスの帯域を変え
ることにより、前記磁場計測の測定精度を上げることを
特徴とする。
(Means for Solving the Problems) In an MRI magnetic field correction method of performing imaging for magnetic field intensity distribution measurement, obtaining a static magnetic field non-uniform distribution from the scan data, calculating a correction magnetic field intensity and generating a correction magnetic field, The region of the non-uniform distribution used for the calculation is changed according to the non-uniformity of the non-uniform distribution of the static magnetic field. Further, the degree of non-uniformity to be measured is sequentially increased from a low order to a high order, and accordingly, a different weighting function depending on the magnitude of the FOV, or according to the magnitude of the signal strength of the static magnetic field non-uniform distribution. By sequentially increasing the FOV used for correction using a weighting function, and further, according to the non-uniformity, the value of the time ε, or by changing the band of the RF pulse, the measurement accuracy of the magnetic field measurement. It is characterized by raising.

(作用) 磁場不均一度は、不均一が大きいときには低次数の場
所依存性を持つ成分が支配的なため、測定領域を小さく
しても、計測値から決定される補正磁場強度に大きな誤
差が生じない、一方、均一度が上がるにつれて高次数の
場所依存性成分が効いてくるため、補正に用いる領域を
広げてゆくことにより、高次成分も精度良く補正でき
る。よって、上記手段により、測定できる不均一度を大
きくすることができる。
(Operation) The magnetic field inhomogeneity is such that when the inhomogeneity is large, a component having a low-order location dependence is dominant. Therefore, even if the measurement area is reduced, a large error occurs in the corrected magnetic field strength determined from the measured value. This does not occur. On the other hand, as the degree of uniformity increases, higher-order location-dependent components become effective. Therefore, by expanding the area used for correction, higher-order components can be corrected with high accuracy. Therefore, the measurable nonuniformity can be increased by the above means.

(実施例) 以下、図面を参照して本発明について詳細に説明す
る。第1図は本願発明の一実施例の磁場補正装置を表わ
す概略図である。第1図において、6はZ方向に静磁場
を発生する主磁場マグネット、7はその内側に配置さ
れ、前記静磁場分布を複数の方向、即ち、X,Y,Z(1
次)、XY,ZX,ZY,Y2,Z2,X2−Z2,Z2−Y2(2次)、X3,Y3,
Z3(3次)、Z4(4次)、Z5(5次)、Z6(6次)の16
チャンネルの方向性を有する磁場によって補正し、その
均一性を高めるシムコイル、8はRF信号に3次元の位置
情報を与える目的でX、Y、Zの各方向に勾配磁場を印
加する勾配磁場コイル、9は更にその内側に配置され、
RFパルスの送受信を行なうRFコイルである。10は静磁場
柱の磁場測定範囲に配置される均質な水を封入したファ
ントム、11はシムコイル7の各チャンネルに補正電流を
流すためのシムコイル電源、12は勾配磁場コイル電源、
13はRFパルス波形の送信及びRFコイルにより受信した信
号を処理するRF回路、14はRFパルス及び勾配磁場パルス
のパルス波形や印加タイミング等のスキャンシーケンス
を制御するスキャンコントローラ、15は得られたスキャ
ンデータから静磁場不均一分布を求め、計測する前記不
均一度に応じて、前記補正に用いる不均一分布の領域を
変化させ、補正磁場強度を決定するコンピュータであ
る。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing a magnetic field correction device according to one embodiment of the present invention. In FIG. 1, reference numeral 6 denotes a main magnetic field magnet for generating a static magnetic field in the Z direction. Reference numeral 7 denotes a magnet disposed inside the main magnetic field magnet, and distributes the static magnetic field distribution in a plurality of directions, that is, X, Y, Z (1).
Next), XY, ZX, ZY, Y 2, Z 2, X 2 -Z 2, Z 2 -Y 2 (2 -order), X 3, Y 3,
Z 3 of (tertiary), Z 4 (4-order), Z 5 (5-order), Z 6 (6-order) 16
A shim coil that corrects by a magnetic field having channel directionality and increases its uniformity; 8, a gradient magnetic field coil that applies a gradient magnetic field in each of X, Y, and Z directions for the purpose of giving three-dimensional position information to an RF signal; 9 is further arranged inside,
An RF coil that transmits and receives RF pulses. Reference numeral 10 denotes a phantom filled with homogeneous water arranged in the magnetic field measurement range of the static magnetic field column, 11 denotes a shim coil power supply for supplying a correction current to each channel of the shim coil 7, 12 denotes a gradient magnetic field coil power supply,
13 is an RF circuit for transmitting an RF pulse waveform and processing a signal received by an RF coil, 14 is a scan controller for controlling a scan sequence such as a pulse waveform and an application timing of an RF pulse and a gradient magnetic field pulse, and 15 is a scan obtained. The computer determines a non-uniform distribution of static magnetic field from data, changes a region of the non-uniform distribution used for the correction according to the non-uniformity to be measured, and determines a correction magnetic field intensity.

以上の構成において、以下、第2図を用いて、本実施
例の磁場計測、補正方法を説明する。第2図は本願発明
の一実施例の磁場補正方法を表すフローチャートであ
る。始めに、S2スキャンにおける180゜ずらし時間ε及
び、RFパルスのパルス幅τを設定する。これらの値は、
測定する不均一度E(ppm)の範囲によって定める。例
えば、Eが±100ppmのときはずらし時間εを0.1msec、
パルス幅τを0.5msecに設定し、Eが±50ppmのときはず
らし時間εを0.2msec、パルス幅τを1.0msecというよう
に設定する。次に、従来と同様のディクソン法を用いた
磁場計測用のイメージングを行なう。スキャンシーケン
スは、第5図(c)のS1,S2スキャン即ち、180゜反転パ
ルスの印加タイミングを90゜のRFパルス印加とスピンエ
コー信号の受信タイミングの中間としたS1スキャンとこ
の中間から時間εずらしたタイミングとしたS2スキャン
を行なう。このときの、撮影領域FOVは最終的に必要な
最大のFOVに設定する。次に、このようにして得られた
各スキャンデータを3Dフーリエ変換によって画像再構成
し、測定FOVの各ピクセル毎に、静磁場不均一分布E
(x,y,z)をtan-1(S2)/(S1)から求める。ここで、
均一度Eが最終的に要求される値以下のときは、補正を
終了し、この値以上のときは静磁場不均一分布E(x,y,
z)のうち、補正電流値算出に用いる計算用データの範
囲を指定する。ここで、このFOVの指定は、前記ε,τ
によって設定した不均一度Eに適応するように決める。
第3図は、本実施例の計算用FOVの設定を表す概略図で
ある。第3図のように、例えばマグネットの仕様が最大
FOV(実線)=φ500mmDSV(Diameter Spher Volume)で
の均一度が300ppmであり、前記設定での均一度を100ppm
とすると、計算用のFOV(点線)をφ200mmDSVというよ
うに決める。磁場不均一度Eは、不均一が大きいときに
はX,Y,Z(1次)、XY,ZX,ZY,Y2,Z2,X2−Z2,Z2−Y2(2
次)等の低次数の場所依存性を持つため、測定領域を小
さくして計算に用いても、計測値から決定される補正磁
場強度に大きな誤差が生じない。従って、不均一度が大
きいときは、計算用のFOVを小さくとり、低次数の磁場
補正を行ない、均一度が上がるにつれて、X3,Y3,Z3(3
次)、Z4(4次)、Z5(5次)、Z6(6次)等の高次数
の場所依存性成分が効いてくるため、補正に用いる領域
を広げてゆき、最終的にはスキャンを行なった際の最大
FOVとする。これは、高次数の関数系による近似を行な
うためには、座標原点から遠い点のデータ数が多くない
と誤差が大きくなるためである。次に、不均一磁場ΔB
(x,y,z)を、使用するシムコイルのチャンネルSiによ
って作られる補正磁場によって近似し、各チャンネルの
電流値Aiを最小2乗法により計算する。従って、 となるように、Aiを決定する。(6)式において、使用
するチャンネルiは、計算用データの範囲FOVを大きく
するにつれて低次数から高次数へ移行して、均一度を上
げてゆく。最後に、決定された電流値Aiに従って、各シ
ムコイルチャンネルに電流を流して補正磁場を発生し、
再び前記磁場計測用のイメージングを行ない、磁場均一
度を測定する。このようにして、均一度Eが最終的に要
求される値以下になるまで、補正を繰り返す。
In the above configuration, the magnetic field measurement and correction method of this embodiment will be described below with reference to FIG. FIG. 2 is a flowchart showing a magnetic field correction method according to one embodiment of the present invention. First, a 180 ° shift time ε in the S2 scan and a pulse width τ of the RF pulse are set. These values are
It is determined by the range of the nonuniformity E (ppm) to be measured. For example, when E is ± 100 ppm, the shift time ε is 0.1 msec,
The pulse width τ is set to 0.5 msec, and when E is ± 50 ppm, the shift time ε is set to 0.2 msec, and the pulse width τ is set to 1.0 msec. Next, imaging for magnetic field measurement using the same Dickson method as in the past is performed. The scan sequence includes the S1 and S2 scans in FIG. 5C, that is, the S1 scan in which the application timing of the 180 ° inversion pulse is between the application of the RF pulse of 90 ° and the reception timing of the spin echo signal, and the time ε from the middle. Perform S2 scan with shifted timing. At this time, the shooting area FOV is set to the ultimately required maximum FOV. Next, each scan data thus obtained is image-reconstructed by 3D Fourier transform, and the static magnetic field non-uniform distribution E is obtained for each pixel of the measurement FOV.
(X, y, z) is obtained from tan -1 (S2) / (S1). here,
When the uniformity E is equal to or less than the finally required value, the correction is terminated. When the uniformity E is equal to or greater than the value, the static magnetic field inhomogeneous distribution E (x, y,
In z), specify the range of calculation data used for calculating the correction current value. Here, the designation of the FOV is based on the aforementioned ε, τ
Is determined so as to adapt to the nonuniformity E set by the above.
FIG. 3 is a schematic diagram showing the setting of the calculation FOV of this embodiment. As shown in Fig. 3, for example, the specification of the magnet is
FOV (solid line) = φ500mm Uniformity in DSV (Diameter Spher Volume) is 300ppm, uniformity in the above setting is 100ppm
Then, the FOV (dotted line) for calculation is determined as φ200 mmDSV. Field inhomogeneity E is, when uneven large X, Y, Z (1-order), XY, ZX, ZY, Y 2, Z 2, X 2 -Z 2, Z 2 -Y 2 (2
Since there is a low-order place dependency such as the following, even if the measurement area is made small and used for calculation, a large error does not occur in the correction magnetic field strength determined from the measurement value. Therefore, when the degree of inhomogeneity is large, the FOV for calculation is made small, low-order magnetic field correction is performed, and X 3 , Y 3 , Z 3 (3
Next), Z 4 (fourth order), Z 5 (fifth order), Z 6 (sixth order) and other high-order place-dependent components become effective, so the area used for correction is expanded, and finally Is the maximum when scanning
FOV. This is because, in order to perform approximation using a high-order function system, the error increases unless the number of data points far from the coordinate origin is large. Next, the inhomogeneous magnetic field ΔB
(X, y, z) is approximated by the correction magnetic field generated by the channel Si of the shim coil to be used, and the current value Ai of each channel is calculated by the least square method. Therefore, Ai is determined so that In the equation (6), the channel i to be used shifts from a low order to a high order as the range FOV of the calculation data is increased, and the uniformity is increased. Finally, according to the determined current value Ai, a current is supplied to each shim coil channel to generate a correction magnetic field,
The imaging for the magnetic field measurement is performed again to measure the magnetic field uniformity. In this way, the correction is repeated until the uniformity E becomes equal to or less than the finally required value.

上記のように本実施例の磁場補正方法及び装置によれ
ば、不均一度が大きいときは、計算用のFOVを小さくと
り、低次数の磁場補正を行ない、均一度が上がるにつれ
て、前記FOVを大きくし、高次数の磁場補正を行なうた
め、測定できる不均一度を大きくすることができる。
尚、本発明は上記実施例に限定するものではなく、特許
請求の範囲内で種々の変形が可能である。第4図
(a),(b)は本願発明の他の実施例の計算用データ
の範囲を指定方法を表す図である。前記実施例では補正
電流決定に用いる計算用データの範囲を操作者の設定に
より行なっていたが、第4図(a)のように、ある大き
さのFOV内を1、その外側を0とした重みファクターを
持つ重み付け関数を用いて、測定された不均一分布のデ
ータに重み付けを行ない、磁場計測回数が増えるに従っ
て、重みファクターを1とするFOVを広くした重み付け
関数を用いるようにして、自動的に範囲指定を行なって
も良い。更に、第4図(b)のように、得られた不均一
分布のデータの信号強度は不均一度が大きいほど弱くな
るため、得られた最大信号強度の例えば0.3倍の値以上
のFOV内を1、その外側を0とした重みファクターを持
つ重み付け関数Wを用いて、前記と同様に測定された不
均一分布のデータに重み付けを行なうようにして、自動
的に範囲指定を行なっても良い。
As described above, according to the magnetic field correction method and apparatus of the present embodiment, when the degree of inhomogeneity is large, the FOV for calculation is reduced, and low-order magnetic field correction is performed. Since the magnetic field is increased and high-order magnetic field correction is performed, the measurable nonuniformity can be increased.
It should be noted that the present invention is not limited to the above embodiment, and various modifications are possible within the scope of the claims. FIGS. 4 (a) and 4 (b) are diagrams showing a method of specifying a range of calculation data according to another embodiment of the present invention. In the above-described embodiment, the range of the calculation data used for determining the correction current is set by the operator. However, as shown in FIG. 4A, the inside of a certain FOV is set to 1 and the outside is set to 0. A weighting function having a weighting factor is used to weight the measured data of the non-uniform distribution, and as the number of times of magnetic field measurement increases, a weighting function having a wider FOV with a weighting factor of 1 is used to automatically perform the weighting. May be specified. Further, as shown in FIG. 4 (b), the signal strength of the obtained data of the non-uniform distribution becomes weaker as the degree of non-uniformity becomes larger. The range may be automatically specified by weighting the data of the non-uniform distribution measured in the same manner as described above by using a weighting function W having a weighting factor with 0 as the outside and 0 outside. .

(発明の効果) 以上の説明の通り、本発明のMRIの磁場補正方法及び
装置によれば、短時間に磁場計測を行なうとともに、正
確な磁場補正を行なうことができる。
(Effects of the Invention) As described above, according to the MRI magnetic field correction method and apparatus of the present invention, a magnetic field can be measured in a short time and accurate magnetic field correction can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本願発明の一実施例の磁場補正装置を表わす概
略図、第2図は本願発明の一実施例の磁場補正方法を表
すフローチャート、第3図は本実施例の計算用FOVの設
定を表す概略図、第4図(a),(b)は本願発明の他
の実施例の計算用データの範囲FOVを指定方法を表す
図、第5図(a),(b)は従来例のNMRプローブを用
いた磁場強度分布測定方法を表す図、第6図は従来例の
ディクソン法を用いる磁場強度分布測定方法のパルスシ
ーケンスを表すタイミングチャート、第7図(a),
(b)はRFパルスのパルス幅と帯域の関係を表す図であ
る。 1……NMRプローブ、2……水サンプル、 3……RFコイル、4……バリコン、 5……T/R回路、6……主磁場マグネット、 7……シムコイル、8……勾配磁場コイル、 9……RFコイル、10……ファントム、 11……シムコイル電源、 12……勾配磁場コイル電源、 13……RF回路、14……スキャンコントローラ、 15……コンピュータ
FIG. 1 is a schematic diagram showing a magnetic field correction apparatus according to one embodiment of the present invention, FIG. 2 is a flowchart showing a magnetic field correction method according to one embodiment of the present invention, and FIG. FIGS. 4 (a) and 4 (b) are views showing a method of designating a range FOV of calculation data according to another embodiment of the present invention, and FIGS. 5 (a) and 5 (b) are conventional examples. FIG. 6 is a timing chart showing a pulse sequence of a conventional method for measuring a magnetic field intensity distribution using the Dickson method, and FIGS.
(B) is a diagram showing the relationship between the pulse width of the RF pulse and the band. 1 ... NMR probe, 2 ... water sample, 3 ... RF coil, 4 ... variable condenser, 5 ... T / R circuit, 6 ... main magnetic field magnet, 7 ... shim coil, 8 ... gradient magnetic field coil, 9… RF coil, 10… Phantom, 11… Sim coil power supply, 12… Gradient magnetic field coil power supply, 13… RF circuit, 14… Scan controller, 15… Computer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁場分布計測用のパルスシーケンスを印加
することにより静磁場不均一分布を求める工程と、 該静磁場不均一分布の不均一度に応じて該不均一分布の
領域を変化させて、静磁場を均一にする補正磁場を発生
させる工程とを備えた核磁気共鳴撮像用の磁場補正方
法。
A step of obtaining a static magnetic field non-uniform distribution by applying a pulse sequence for measuring a magnetic field distribution; and changing a region of the non-uniform distribution according to the non-uniformity of the static magnetic field non-uniform distribution. Generating a correction magnetic field for making the static magnetic field uniform, the method for correcting a magnetic field for nuclear magnetic resonance imaging.
【請求項2】磁場分布計測用のパルスシーケンスを印加
することにより静磁場不均一分布を求める手段と、 該静磁場不均一分布の不均一度に応じて該不均一分布の
領域を変化させて、静磁場を均一にする補正磁場を発生
させる磁場補正手段を備えた核磁気共鳴撮像装置。
2. A means for obtaining a static magnetic field non-uniform distribution by applying a pulse sequence for measuring a magnetic field distribution, and changing a region of the non-uniform distribution according to the degree of non-uniformity of the static magnetic field non-uniform distribution. A nuclear magnetic resonance imaging apparatus including a magnetic field correction unit that generates a correction magnetic field that makes a static magnetic field uniform.
JP63206126A 1988-08-19 1988-08-19 Magnetic field correction method for nuclear magnetic resonance imaging and nuclear magnetic resonance imaging apparatus Expired - Fee Related JP2762277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63206126A JP2762277B2 (en) 1988-08-19 1988-08-19 Magnetic field correction method for nuclear magnetic resonance imaging and nuclear magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63206126A JP2762277B2 (en) 1988-08-19 1988-08-19 Magnetic field correction method for nuclear magnetic resonance imaging and nuclear magnetic resonance imaging apparatus

Publications (2)

Publication Number Publication Date
JPH0255039A JPH0255039A (en) 1990-02-23
JP2762277B2 true JP2762277B2 (en) 1998-06-04

Family

ID=16518219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63206126A Expired - Fee Related JP2762277B2 (en) 1988-08-19 1988-08-19 Magnetic field correction method for nuclear magnetic resonance imaging and nuclear magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP2762277B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205080A (en) * 2017-06-02 2018-12-27 日本電子株式会社 Nmr measuring device and method for operating magnetic field map
JP2019035716A (en) * 2017-08-21 2019-03-07 日本電子株式会社 Nmr measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205080A (en) * 2017-06-02 2018-12-27 日本電子株式会社 Nmr measuring device and method for operating magnetic field map
JP2019035716A (en) * 2017-08-21 2019-03-07 日本電子株式会社 Nmr measuring apparatus

Also Published As

Publication number Publication date
JPH0255039A (en) 1990-02-23

Similar Documents

Publication Publication Date Title
US5614827A (en) Method and apparatus for shimming a magnet system of a nuclear magnetic resonance tomography system
JP3431203B2 (en) Method of shimming magnetic field in examination space
US6700376B2 (en) Method and apparatus for correcting static magnetic field using a pair of magnetic fields which are the same or different from each other in intensity and direction
US5168232A (en) Method for rapid magnet shimming
CN106249184B (en) A kind of dynamic auto method for shimming for magnetic resonance imaging
JP2000037367A (en) Shimming in magnetic field
KR20140099201A (en) Method to acquire mr data and to determine a b1 magnetic field, as well as correspondingly designed magnetic resonance system
JPH0316554A (en) Method/apparatus for measuring magnetic field and vortex electric current
KR101627706B1 (en) Method to determine a subject-specific b1 distribution of an examination subject in a measurement volume in the magnetic resonance technique, magnetic resonance system, and computer-readable recording medium
US4766380A (en) Method and arrangement for determining a nuclear magnetization distribution in a part of a body
JPH08206094A (en) Nuclear spin tomography device
JP2007517571A (en) Magnetic resonance imaging method and apparatus using real-time magnetic field mapping
US20070170917A1 (en) Magnetic resonance imaging with real-time magnetic filed mapping
EP1004892A1 (en) Compensating an MRI system for residual magnetization
EP0124108B1 (en) Correction circuit for a static magnetic field of an nmr apparatus and nmr apparatus for utilizing the same
JP2762277B2 (en) Magnetic field correction method for nuclear magnetic resonance imaging and nuclear magnetic resonance imaging apparatus
CN112782628B (en) Radio frequency transmission channel synchronization method and device and magnetic resonance system
US5587658A (en) Shimming method for NMR magnet using unshielded gradient systems
US4710715A (en) Method of mapping magnetic field strength and tipping pulse accuracy of an NMR imager
JPH0418856B2 (en)
US10877119B2 (en) NMR measurement apparatus and magnetic field map calculation method
CN113075598B (en) Magnetic field distribution detection method of magnetic resonance system, magnetic resonance system and imaging method
KR20030074357A (en) Rf pulse tuning method and apparatus
US7224164B2 (en) Method of monitoring a magnetic field drift of a magnetic resonance imaging apparatus
CN115754853A (en) Optimization method for residual magnetism measurement process in magnetic resonance imaging system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees