JP2760980B2 - Method for producing polycarbonate copolymer - Google Patents

Method for producing polycarbonate copolymer

Info

Publication number
JP2760980B2
JP2760980B2 JP61230897A JP23089786A JP2760980B2 JP 2760980 B2 JP2760980 B2 JP 2760980B2 JP 61230897 A JP61230897 A JP 61230897A JP 23089786 A JP23089786 A JP 23089786A JP 2760980 B2 JP2760980 B2 JP 2760980B2
Authority
JP
Japan
Prior art keywords
minutes
propane
reaction
torr
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61230897A
Other languages
Japanese (ja)
Other versions
JPS6383129A (en
Inventor
龍也 菅野
恒久 香月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAISERU KAGAKU KOGYO KK
Original Assignee
DAISERU KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAISERU KAGAKU KOGYO KK filed Critical DAISERU KAGAKU KOGYO KK
Priority to JP61230897A priority Critical patent/JP2760980B2/en
Priority to DE87113835T priority patent/DE3779385D1/de
Priority to EP87113835A priority patent/EP0262557B1/en
Publication of JPS6383129A publication Critical patent/JPS6383129A/en
Priority to US07/782,741 priority patent/US5173347A/en
Application granted granted Critical
Publication of JP2760980B2 publication Critical patent/JP2760980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はレーザー光線により信号を記録し、或いは
レーザー光線の反射又は透過により記録された信号の読
み出しを行う光学式情報記録用ディスクに用いられるポ
リカーボネート共重合体の製造方法に関する。 〔従来の技術〕 レーザー光線のスポットビームをディスクにあて、デ
ィスクに微細なピットで信号を記録し、或いはこのよう
なピットによって記録された信号をレーザー光線の反射
又は透過光量を検出することによって読み出すDRAW,Era
sable-DRAW型光学式情報記録・再生方式は著しく記録密
度を上げることができ、特にErasable-DRAW型では記録
の消去・書き込みも可能であり、且つそれらから再生さ
れる画像や音質が優れた特性を有することから、画像や
音声の記録又は記録再生、多量の情報記録再生等に広く
実用されることが期待されている。この記録再生方式に
利用されるディスクにはディスク本体をレーザー光線が
透過するために透明であることは勿論のこと、読み取り
誤差を少なくするために光学的均質性が強く求められ
る。ディスク本体成形時の樹脂の冷却及び流動過程にお
いて生じた熱応力、分子配向、ガラス転移点付近の容積
変化等による残留応力が主な原因となり、レーザー光線
がディスク本体を通過する際に複屈折が生ずる。この複
屈折に起因する光学的不均一性が大きいことは光学式デ
ィスクとしては致命的欠陥である。 〔発明が解決しようとする問題点〕 このようにディスク成形時の樹脂の冷却及び流動過程
において生じた熱応力・分子配向・残留応力が主原因で
生ずる複屈折は成形条件を選ぶことによって、得られる
ディスクの複屈折はかなり小さくすることができるが、
成形樹脂自身のもつ固有の複屈折、即ち光弾性定数に大
きく依存している。 〔問題点を解決するための手段〕 複屈折は光弾性定数と残留応力の積として下記式
(1)で表すことができる。 式(1)の光弾性定数を小さくすれば成形条件が同じ
でも得られるディスクの複屈折が小さくなることは明ら
かである。そこで発明者らは2,2−ビス−(4−ヒドロ
キシフェニル)プロパンと2,2−ビス−(4−ヒドロキ
シ−3−イソプロピルフェニル)プロパンをカーボネー
ト結合によって共重合させることによって、芳香族ポリ
カーボネートの機械的特性を損ねることなく光弾性定数
の小さな樹脂が得られる事実を見出し、本発明に至った
ものである。 即ち、本発明は、水素化ホウ素カリウムの存在下、窒
素を導入しながら、2,2−ビス−(4−ヒドロキシフェ
ニル)プロパン99〜1モル%、好ましくは90〜10モル%
と、2,2−ビス−(4−ヒドロキシ−3−イソプロピル
フェニル)プロパン1〜99モル%、好ましくは10〜90モ
ル%とをジフェニルカーボネートを用いてエステル交換
法により重合させることを特徴とする芳香族ポリカーボ
ネート共重合体の製造方法に関する。 かくしてこの発明によれば、下記の式(I)、(II)
で示されるビスフェノールがカーボネート結合により共
重合してなる芳香族ポリカーボネート重合体が得られ
る。 式(II)の構成単位は1〜99モル%である。式(II)
の構成単位が1モル%未満であると得られる芳香族ポリ
カーボネートの光弾性定数は式(I)よりなるホモポリ
カーボネートとあまり変わらない。また式(II)の構成
単位が99モル%を超えると得られる芳香族ポリカーボネ
ートのガラス転移点が式(I)よるなるホモポリカーボ
ネートに較べて著しく低下する。 本発明の製造方法によって得られる共重合体の粘度平
均分子量は1,000〜100,000が好ましく、13,000〜50,000
が更に好ましい。1,000未満では成形品が脆くなり、ま
た100,000を越えると流動性が低下し成形性に劣り、何
れも光ディスク用樹脂として不向きである。 また、本発明のポリカーボネート共重合体の製造方法
において2,2−ビス−(4−ヒドロキシフェニル)プロ
パン、2,2−ビス−(4−ヒドロキシ−3−イソプロピ
ルフェニル)プロパンの他に第3成分を共重合してもよ
い。かかる第3成分としては、カーボネート結合をする
ものであれば何れでもよい。その重合割合は物性を損な
わない範囲で配合すればよい。 本発明のポリカーボネート共重合体の製造法は次のエ
ステル交換法である。 2,2−ビス−(4−ヒドロキシフェニル)プロパン、
2,2−ビス−(4−ヒドロキシ−3−イソプロピルフェ
ニル)プロパンの混合物、これに対し化学量論的に当量
よりやや過剰のジフェニルカーボネートに、カーボネー
ト化触媒である水素化ホウ素カリウムの存在下、約160
〜180℃の温度で常圧下、窒素ガスを導入した条件で約3
0分反応させ、2時間かけて徐々に減圧しながら約180〜
220℃の温度下で最終的に10Torr,220℃で前縮合を終了
する。その後、10Torr,270℃で30分、5Torr,270℃で20
分反応し、次いで0.5Torr以下、好ましくは0.3Torr〜0.
1Torrの減圧下で270℃で1.5時間〜2.0時間後縮合を進め
る。 このようにして得られるポリカーボネート共重合体
は、レーザー光線により信号を記録し、或いはレーザー
光線の反射又は透過により記録された信号の読み出しを
行うDRAW,E−DRAW型光学式情報記録用ディスクに有用で
ある。 〔実施例〕 以下に本発明を実施例について説明するが、本発明は
これらの実施例によって限定されるものではない。 尚、部、%は重量基準を示す。 実施例1 2,2−ビス−(4−ヒドロキシフェニル)プロパン247
部(90mol%)と、2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパン37部(10mol%)とジ
フェニルカーボネート264部を3l三つ口フラスコに入
れ、脱気、窒素パージを5回繰り返した後、シリコンバ
ス160℃で窒素を導入しながら溶融させた。溶融した
ら、カーボネート化触媒である水素化ホウ素カリウムを
予めフェノールに溶かした溶液(仕込んだビスフェノー
ル全量に対して10-3mol%量)を加え、160℃、N2下30
分攪拌醸成した。次に同温度下100Torrに減圧し、30分
攪拌したのち、同温度下でさらに50Torrに減圧し、30分
反応させた。次に徐々に温度を220℃まで上げ60分反応
させ、フェノール留出理論量の80%を留出させた。しか
る後、同温度下で10Torrに減圧し30分反応させ、温度を
徐々に270℃に上げ30分反応させた。さらに同温度下で5
Torrに減圧し30分反応させ、ここまでの反応でフェノー
ル留出理論量のほぼ全量を留出させ前縮合を終えた。次
に同温度下で0.1〜0.3Torrで2時間後縮合させた。窒素
下にて生成物のポリマーを取り出し冷却した後、ジクロ
ルメタンを溶媒に用いて20℃にて溶液粘度を測定した。
この値から算出した粘度平均分子量vは32,000であっ
た。IRスペクトルを測定すると1760〜1810cm-1にカーボ
ネート結合の特性吸収が見られた(図1)。また1H−N
MRを測定すると1.2ppmにイソプロピル基のメチル基水素
の吸収、1.7ppmにプロパンのメチル基水素の吸収、3.2p
pmにイソプロピル基メチン水素の吸収、7.2〜7.5ppmに
フェニル基に由来する吸収を観測した(図2)。またDS
C(ディファレンシャル・スキャニング・カロリメータ
ー;Perkin-Elmer2C型)からガラス転移点はTg=139℃で
あることがわかった。更に光弾性定数を測定するとC=
74 Brewsters(10-12m2/N)であることがわかった。ま
たNMRの積分値から生成したポリマーは2,2−ビス−(4
−ヒドロキシフェニル)プロパンと2,2−ビス−(4−
ヒドロキシ−3−イソプロピルフェニル)プロパンが9:
1のポリカーボネート共重合体であることが確認でき
る。 測定に使用した機器はIRスペクトルメーター;日本分
光製IR-810、1H−NMR;日本電子製JNM-MH-100、DSC;デ
ィファレンシャル・スキャニング・カロリメーターPerk
in-Elmer2C型、光弾性定数は自作のものを用いて測定し
が、光弾性定数の算出方法は試験片(50mm×10mm×1m
m)に異なる大きさの引張応力を長さ方向に印加し、発
生する複屈折を測定し、前記式(1)に各々の値を代入
してその傾きから光弾性定数を求めた。因に2,2−ビス
−(4−ヒドロキシフェニル)プロパンのポリカーボネ
ートの光弾性定数はC=82 Brewsters(10-12m2/N)で
あった。 実施例2 2,2−ビス−(4−ヒドロキシフェニル)プロパン219
部(80mol%)と、2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパン75部(20mol%)とジ
フェニルカーボネート264部を3l三つ口フラスコに入
れ、脱気、窒素パージを5回繰り返した後、シリコンバ
ス160℃で窒素を導入しながら溶融させた。溶融した
ら、カーボネート化触媒である水素化ホウ素カリウムを
予めフェノールに溶かした溶液(仕込んだビスフェノー
ル全量に対して10-3mol%量)を加え、160℃、N2下30
分攪拌醸成した。次に同温度下100Torrに減圧し、30分
攪拌したのち、同温度下でさらに50Torrに減圧し、30分
反応させた。次に徐々に温度を220℃まで上げ60分反応
させ、ここまでの反応でフェノール留出理論量の80%を
留出させた。しかる後、同温度下で10Torrに減圧し30分
反応させ、温度を徐々に270℃に上げ30分反応させた。
さらに同温度下で5Torrまで減圧し30分反応させ、フェ
ノール留出理論量のほぼ全量を留出させ前縮合を終え
た。次に同温度下で0.1〜0.3Torrで2時間後縮合させ
た。窒素下にて生成物のポリマーを取り出し冷却した
後、ジクロロメンタを溶媒として用いて20℃にて溶液粘
度を測定した。この値から算出した粘度平均分子量v
は29,000であった。IRスペクトルを測定すると1760〜18
10cm-1にカーボネート結合の特性吸収が見られた。また
1H−NMRを測定すると1.2ppmにイソプロピル基のメチル
基水素の吸収、1.7ppmにプロパンのメチル基水素の吸
収、3.2ppmにイソプロピル基のメチン水素の吸収、7.0
〜7.3ppmにフェニル基に由来する吸収を観測した。また
DSCからガラス転移点はTg=130℃であることがわかっ
た。更に光弾性定数を測定するとC=64 Brewsters(10
-12m2/N)であることがわかった。またNMRの積分値から
生成したポリマーは2,2−ビス−(4−ヒドロキシフェ
ニル)プロパンと2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパンが4:1のポリカーボネ
ート共重合体であることが確認できる。 実施例3 2,2−ビス−(4−ヒドロキシフェニル)プロパン192
部(70mol%)と、2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパン112部(30mol%)とジ
フェニルカーボネート264部を3l三つ口フラスコに入
れ、脱気、窒素パージを5回繰り返した後、シリコンバ
ス160℃で窒素を導入しながら溶融させた。溶融した
ら、カーボネート化触媒である水素化ホウ素カリウムを
予めフェノールに溶かした溶液(仕込んだビスフェノー
ル全量に対して10-3mol%量)を加え、160℃、N2下30
分攪拌醸成した。次に同温度下100Torrに減圧し、30分
攪拌したのち、同温度下でさらに50Torrに減圧し、30分
反応させた。次に徐々に温度を220℃まで上げ60分反応
させ、ここまでの反応でフェノール留出理論量の80%を
留出させた。しかる後、同温度下で10Torrに減圧し30分
反応させ、温度を徐々に270℃に上げ30分反応させた。
さらに同温度下で5Torrに減圧し30分反応させ、フェノ
ール留出理論量のほぼ全量を留出させ前縮合を終えた。
次に同温度下で0.1〜0.3Torrで2時間後縮合させた。窒
素下にて生成物のポリマーを取り出し冷却した後、ジク
ロロメタンを溶媒として用いて20℃にて溶液粘度を測定
した。この値から算出した粘度平均分子量vは30,000
であった。IRスペクトルを測定すると1760〜1810cm-1
カーボネート結合の特性吸収が見られた。また1H−NMR
を測定すると1.2ppmにイソプロピル基のメチル基水素の
吸収、1.7ppmにプロパンのメチル基水素の吸収、3.2ppm
にイソプロピル基のメチン水素の吸収、7.18〜7.5ppmに
フェニル基に由来する吸収を観測した。またDSCからガ
ラス転移点はTg=121℃であることがわかった。更に光
弾性定数を測定するとC=61 Brewsters(10-12m2/N)
であることがわかった。またNMRの積分値から生成した
ポリマーは2,2−ビス−(4−ヒドロキシフェニル)プ
ロパンと2,2−ビス−(4−ヒドロキシ−3−イソプロ
ピルフェニル)プロパンの7:3のポリカーボネート共重
合体であることが確認できる。 実施例4 2,2−ビス−(4−ヒドロキシフェニル)プロパン164
部(60mol%)と、2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパン150部(40mol%)とジ
フェニルカーボネート264部を3l三つ口フラスコに入
れ、脱気、窒素パージを5回繰り返した後、シリコンバ
ス160℃で窒素を導入しながら溶融させた。溶融した
ら、カーボネート化触媒である水素化ホウ素カリウムを
予めフェノールに溶かした溶液(仕込んだビスフェノー
ル全量に対して10-3mol%量)を加え、160℃、N2下30
分攪拌醸成した。次に同温度下100Torrに減圧し、30分
攪拌したのち、同温度下でさらに50Torrに減圧し、60分
反応させた。次に徐々に温度を220℃まで上げ60分反応
させ、ここまでの反応でフェノール留出理論量の80%を
留出させた。しかる後、同温度下で10Torrに減圧し30分
反応させ、温度を徐々に270℃に上げ30分反応させた。
さらに同温度下で5Torrまで減圧し30分反応させ、フェ
ノール留出理論量のほぼ全量を留出させ前縮合を終え
た。次に同温度下で0.1〜0.3Torrで2時間後縮合させ
た。窒素下にて生成物のポリマーを取り出し冷却した
後、ジクロロメタンを溶媒として用いて20℃にて溶液粘
度を測定した。この値から算出した粘度平均分子量v
は29,000であった。IRスペクトルを測定すると1760〜18
10cm-1にカーボネート結合の特性吸収が見られた。また
1H−NMRを測定すると1.2ppmにイソプロピル基のメチル
基水素の吸収、1.7ppmにプロパンのメチル基水素の吸
収、3.2ppmにイソプロピル基のメチン水素の吸収、7.2
〜7.4ppmにフェニル基に由来する吸収を観測した。また
DSCからガラス転移点はTg=114℃であることがわかっ
た。更に光弾性定数を測定するとC=56 Brewsters(10
-12m2/N)であることがわかった。またNMRの積分値から
生成したポリマーは2,2−ビス−(4−ヒドロキシフェ
ニル)プロパンと2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパンが3:2のポリカーボネ
ート共重合体であることが確認できる。 実施例5 2,2−ビス−(4−ヒドロキシフェニル)プロパン137
部(50mol%)と、2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパン187部(50mol%)とジ
フェニルカーボネート264部を3l三つ口フラスコに入
れ、脱気、窒素パージを5回繰り返した後、シリコンバ
ス160℃で窒素を導入しながら溶融させた。溶融した
ら、カーボネート化触媒である水素化ホウ素カリウムを
予めフェノールに溶かした溶液(仕込んだビスフェノー
ル全量に対して10-3mol%量)を加え、160℃、N2下30
分攪拌醸成した。次に同温度下100Torrに減圧し、30分
攪拌したのち、同温度下でさらに50Torrに減圧し、60分
反応させた。次に徐々に温度を220℃まで上げ60分反応
させ、ここまでの反応でフェノール留出理論量の80%を
留出させた。しかる後、同温度下で10Torrに減圧し30分
反応させ、温度を徐々に270℃に上げ30分反応させた。
さらに同温度下で5Torrに減圧し30分反応させ、フェノ
ール留出理論量のほぼ全量を留出させ前縮合を終えた。
次に同温度下で0.1〜0.3Torrで2時間後縮合させた。窒
素下にて生成物のポリマーを取り出し冷却した後、ジク
ロルメタンを溶媒として用いて20℃にて溶液粘度を測定
した。この値から算出した粘度平均分子量vは27,000
であった。IRスペクトルを測定すると1760〜1810cm-1
カーボネート結合の特性吸収が見られた(図3)。また
1H−NMRを測定すると1.2ppmにイソプロピル基のメチル
基水素の吸収、1.7ppmにプロパンのメチル基水素の吸
収、3.2ppmにイソプロピル基のメチン水素の吸収、7.1
〜7.6ppmにフェニル基に由来する吸収を観測した(図
4)。またDSCからガラス転移点はTg=107℃であること
がわかった。更に光弾性定数を測定するとC=55 Brews
ters(10-12m2/N)であることがわかった。またNMRの積
分値から生成したポリマーは2,2−ビス−(4−ヒドロ
キシフェニル)プロパンと2,2−ビス−(4−ヒドロキ
シ−3−イソプロピルフェニル)プロパンの1:1のポリ
カーボネート共重合体であることが確認できる。 実施例6 2,2−ビス−(4−ヒドロキシフェニル)プロパン110
部(40mol%)と、2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパン225部(60mol%)とジ
フェニルカーボネート264部を3l三つ口フラスコに入
れ、脱気、窒素パージを5回繰り返した後、シリコンバ
ス160℃で窒素を導入しながら溶融させた。溶融した
ら、カーボネート化触媒である水素化ホウ素カリウムを
予めフェノールに溶かした溶液(仕込んだビスフェノー
ル全量に対して10-3mol%量)を加え、160℃、N2下30
分攪拌醸成した。次に同温度下100Torrに減圧し、30分
攪拌したのち、同温度下でさらに50Torrに減圧し、60分
反応させた。次に徐々に温度を220℃まで上げ60分反応
させ、ここまでの反応でフェノール留出理論量の80%を
留出させた。しかる後、同温度下で10Torrに減圧し30分
反応させ、温度を徐々に270℃に上げ30分反応させた。
さらに同温度下で5Torrまで減圧し30分反応させ、フェ
ノール留出理論量のほぼ全量を留出させ前縮合を終え
た。次に同温度下で0.1〜0.3Torrで2時間後縮合させ
た。窒素下にて生成物のポリマーを取り出し冷却した
後、ジクロルメタンを溶媒として用いて20℃にて溶液粘
度を測定した。この値から算出した粘度平均分子量v
は28,000であった。IRスペクトルを測定すると1760〜18
10cm-1にカーボネート結合の特性吸収が見られた。また
1H−NMRを測定すると1.2ppmにイソプロピル基のメチル
基水素の吸収、1.7ppmにプロパンのメチル基水素の吸
収、3.2ppmにイソプロピル基のメチン水素の吸収、7.2
〜7.5ppmにフェニル基に由来する吸収を観測した。また
DSCからガラス転移点はTg=103℃であることがわかっ
た。更に光弾性定数を測定するとC=49 Brewsters(10
-12m2/N)であることがわかった。またNMRの積分値から
生成したポリマーは2,2−ビス−(4−ヒドロキシフェ
ニル)プロパンと2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパンの2:3のポリカーボネ
ート共重合体であることが確認できる。 実施例7 2,2−ビス−(4−ヒドロキシフェニル)プロパン82
部(30mol%)と、2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパン262部(70mol%)とジ
フェニルカーボネート264部を3l三つ口フラスコに入
れ、脱気、窒素パージを5回繰り返した後、シリコンバ
ス160℃で窒素を導入しながら溶融させた。溶融した
ら、カーボネート化触媒である水素化ホウ素カリウムを
予めフェノールに溶かした溶液(仕込んだビスフェノー
ル全量に対して10-3mol%量)を加え、160℃、N2下30
分攪拌醸成した。次に同温度下100Torrに減圧し、30分
攪拌したのち、同温度下でさらに50Torrに減圧し、60分
反応させた。次に徐々に温度を220℃まで上げ60分反応
させ、ここまでの反応でフェノール留出理論量の80%を
留出させた。しかる後、同温度下で10Torrに減圧し30分
反応させ、温度を徐々に270℃に上げ30分反応させた。
さらに同温度下で5Torrまで減圧し30分反応させ、フェ
ノール留出理論量のほぼ全量を留出させ前縮合を終え
た。次に同温度下で0.1〜0.3Torrで2時間後縮合させ
た。窒素下にて生成物のポリマーを取り出し冷却した
後、ジクロルメタンを溶媒として用いて20℃にて溶液粘
度を測定した。この値から算出した粘度平均分子量v
は25,000であった。IRスペクトルを測定すると1760〜18
10cm-1にカーボネート結合の特性吸収が見られた。また
1H−NMRを測定すると1.2ppmにイソプロピル基のメチル
基水素の吸収、1.7ppmにプロパンのメチル基水素の吸
収、3.2ppmにイソプロピル基のメチン水素の吸収、7.1
〜7.5ppmにフェニル基に由来する吸収を観測した。また
DSCからガラス転移点はTg=93℃であることがわかっ
た。更に光弾性定数を測定するとC=41 Brewsters(10
-12m2/N)であることがわかった。またNMRの積分値から
生成したポリマーは2,2−ビス−(4−ヒドロキシフェ
ニル)プロパンと2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパンの3:7のポリカーボネ
ート共重合体であることが確認できる。 実施例8 2,2−ビス−(4−ヒドロキシフェニル)プロパン55
部(20mol%)と、2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパン300部(80mol%)とジ
フェニルカーボネート264部を3l三つ口フラスコに入
れ、脱気、窒素パージを5回繰り返した後、シリコンバ
ス160℃で窒素を導入しながら溶融させた。溶融した
ら、カーボネート化触媒である水素化ホウ素カリウムを
予めフェノールに溶かした溶液(仕込んだビスフェノー
ル全量に対して10-3mol%量)を加え、160℃、N2下30
分攪拌醸成した。次に同温度下100Torrに減圧し、30分
攪拌したのち、同温度下でさらに50Torrに減圧し、60分
反応させた。次に徐々に温度を220℃まで上げ60分反応
させ、ここまでの反応でフェノール留出理論量の80%を
留出させた。しかる後、同温度下で10Torrに減圧し30分
反応させ、温度を徐々に270℃に上げ30分反応させた。
さらに同温度下で5Torrまで減圧し30分反応させ、フェ
ノール留出理論量のほぼ全量を留出させ前縮合を終え
た。次に同温度下で0.1〜0.3Torrで2時間後縮合させ
た。窒素下にて生成物のポリマーを取り出し冷却した
後、ジクロルメタンを溶媒として用いて20℃にて溶液粘
度を測定した。この値から算出した粘度平均分子量v
は27,000であった。IRスペクトルを測定すると1760〜18
10cm-1にカーボネート結合の特性吸収が見られた。また
1H−NMRを測定すると1.2ppmにイソプロピル基のメチル
基水素の吸収、1.7ppmにプロパンのメチル基水素の吸
収、3.2ppmにイソプロピル基のメチン水素の吸収、7.0
〜7.3ppmにフェニル基に由来する吸収を観測した。また
DSCからガラス転移点はTg=90℃であることがわかっ
た。更に光弾性定数を測定するとC=38 Brewsters(10
-12m2/N)であることがわかった。またNMRの積分値から
生成したポリマーは2,2−ビス−(4−ヒドロキシフェ
ニル)プロパンと2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパンの1:4のポリカーボネ
ート共重合体であることが確認できる。 実施例9 2,2−ビス−(4−ヒドロキシフェニル)プロパン27
部(10mol%)と、2,2−ビス−(4−ヒドロキシ−3−
イソプロピルフェニル)プロパン337部(90mol%)とジ
フェニルカーボネート264部を3l三つ口フラスコに入
れ、脱気、窒素パージを5回繰り返した後、シリコンバ
ス160℃で窒素を導入しながら溶融させた。溶融した
ら、カーボネート化触媒である水素化ホウ素カリウムを
予めフェノールに溶かした溶液(仕込んだビスフェノー
ル全量に対して10-3mol%量)を加え、160℃、N2下30
分攪拌醸成した。次に同温度下100Torrに減圧し、30分
攪拌したのち、同温度下でさらに50Torrに減圧し、60分
反応させた。次に徐々に温度を220℃まで上げ60分反応
させ、ここまでの反応でフェノール留出理論量の80%を
留出させた。しかる後、同温度下で10Torrに減圧し30分
反応させ、温度を徐々に270℃に上げ30分反応させた。
さらに同温度下で5Torrに減圧し30分反応させ、フェノ
ール留出理論量のほぼ全量を留出させ前縮合を終えた。
次に同温度下で0.1〜0.3Torrで2時間後縮合させた。窒
素下にて生成物のポリマーを取り出し冷却した後、ジク
ロルメタンを溶媒として用いて20℃にて溶液粘度を測定
した。この値から算出した粘度平均分子量vは25,000
であった。IRスペクトルを測定すると1760〜1810cm-1
カーボネート結合の特性吸収が見られた(図5)。また
1H−NMRを測定すると1.2ppmにイソプロピル基のメチル
基水素の吸収、1.7ppmにプロパンのメチル基水素の吸
収、3.2ppmにイソプロピル基のメチン水素の吸収、7.2
〜7.4ppmにフェニル基に由来する吸収を観測した(図
6)。またDSCからガラス転移点はTg=90℃であること
がわかった。更に光弾性定数を測定するとC=35 Brews
ters(10-12m2/N)であることがわかった。またNMRの積
分値から生成したポリマーは2,2−ビス−(4−ヒドロ
キシフェニル)プロパンと2,2−ビス−(4−ヒドロキ
シ−3−イソプロピルフェニル)プロパンの1:9のポリ
カーボネート共重合体であることが確認できる。 〔発明の効果〕 本発明の製造方法によって得られるポリカーボネート
共重合体は光弾性係数が小さいためレーザー光線により
信号を記録し、或いはレーザー光線の反射又は透過によ
り記録された信号の読み出しを行う光学式情報記録用デ
ィスクに有用である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polycarbonate used for an optical information recording disk for recording a signal by a laser beam or reading a recorded signal by reflection or transmission of the laser beam. The present invention relates to a method for producing a polymer. [Prior Art] A DRAW, in which a spot beam of a laser beam is applied to a disc and a signal is recorded in fine pits on the disc, or a signal recorded by such a pit is read out by detecting the reflected or transmitted light amount of the laser beam, Era
The sable-DRAW type optical information recording / reproducing method can significantly increase the recording density.Erasable-DRAW type, in particular, is capable of erasing / writing the recording, and has excellent characteristics of the image and sound quality reproduced from them. Therefore, it is expected to be widely used for recording or recording and reproducing images and sounds, recording and reproducing a large amount of information, and the like. The disk used in this recording / reproducing method is required not only to be transparent because a laser beam passes through the disk body, but also to have high optical homogeneity in order to reduce reading errors. Residual stress due to thermal stress, molecular orientation, volume change near the glass transition point, etc. generated during the cooling and flowing process of the resin during molding of the disk body is the main cause, and birefringence occurs when the laser beam passes through the disk body . The large optical non-uniformity caused by the birefringence is a fatal defect for an optical disc. [Problems to be Solved by the Invention] As described above, birefringence caused mainly by thermal stress, molecular orientation, and residual stress generated in the process of cooling and flowing the resin during disk molding can be obtained by selecting molding conditions. The birefringence of the resulting disc can be quite small,
It largely depends on the inherent birefringence of the molding resin itself, that is, the photoelastic constant. [Means for Solving the Problems] The birefringence can be expressed by the following equation (1) as the product of the photoelastic constant and the residual stress. Obviously, if the photoelastic constant of the formula (1) is reduced, the birefringence of the obtained disk is reduced even under the same molding conditions. Then, the present inventors copolymerized 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxy-3-isopropylphenyl) propane through a carbonate bond to obtain an aromatic polycarbonate. The present inventors have found that a resin having a small photoelastic constant can be obtained without impairing the mechanical properties, and have reached the present invention. That is, the present invention provides 99 to 1 mol%, preferably 90 to 10 mol% of 2,2-bis- (4-hydroxyphenyl) propane while introducing nitrogen in the presence of potassium borohydride.
And 1,2-99 mol%, preferably 10-90 mol% of 2,2-bis- (4-hydroxy-3-isopropylphenyl) propane are polymerized by transesterification using diphenyl carbonate. The present invention relates to a method for producing an aromatic polycarbonate copolymer. Thus, according to the present invention, the following formulas (I) and (II)
An aromatic polycarbonate polymer obtained by copolymerizing bisphenol represented by the formula (1) through a carbonate bond is obtained. The structural unit of the formula (II) is 1 to 99 mol%. Formula (II)
When the structural unit is less than 1 mol%, the photoelastic constant of the obtained aromatic polycarbonate is not much different from that of the homopolycarbonate represented by the formula (I). Further, when the constitutional unit of the formula (II) exceeds 99 mol%, the glass transition point of the obtained aromatic polycarbonate is remarkably lowered as compared with the homopolycarbonate represented by the formula (I). The viscosity average molecular weight of the copolymer obtained by the production method of the present invention is preferably 1,000 to 100,000, and 13,000 to 50,000.
Is more preferred. If it is less than 1,000, the molded article becomes brittle, and if it exceeds 100,000, the fluidity is reduced and the moldability is inferior. Further, in the method for producing a polycarbonate copolymer of the present invention, the third component other than 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxy-3-isopropylphenyl) propane May be copolymerized. As the third component, any component capable of forming a carbonate bond may be used. What is necessary is just to mix the polymerization ratio in the range which does not impair physical properties. The method for producing the polycarbonate copolymer of the present invention is the following transesterification method. 2,2-bis- (4-hydroxyphenyl) propane,
A mixture of 2,2-bis- (4-hydroxy-3-isopropylphenyl) propane, which is slightly stoichiometrically in excess of diphenyl carbonate, in the presence of potassium borohydride, a carbonation catalyst, About 160
About 180 ° C under normal pressure and with nitrogen gas introduced
Let it react for 0 min.
The pre-condensation is finally completed at 10 Torr and 220 ° C. at a temperature of 220 ° C. Then, at 10 Torr, 270 ° C for 30 minutes, at 5 Torr, 270 ° C for 20 minutes
Reaction, then 0.5 Torr or less, preferably 0.3 Torr to 0.
Post-condensation proceeds at 270 ° C. for 1.5 to 2.0 hours under a reduced pressure of 1 Torr. The polycarbonate copolymer thus obtained is useful for a DRAW, E-DRAW type optical information recording disc for recording a signal with a laser beam or reading a recorded signal by reflection or transmission of a laser beam. . EXAMPLES Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples. The parts and percentages are based on weight. Example 1 2,2-bis- (4-hydroxyphenyl) propane 247
Part (90 mol%) and 2,2-bis- (4-hydroxy-3-
37 parts (isopropylphenyl) propane (10 mol%) and 264 parts of diphenyl carbonate were placed in a 3 l three-necked flask, degassing and nitrogen purging were repeated 5 times, and the mixture was melted in a silicon bath at 160 ° C. while introducing nitrogen. Once melted, the addition of potassium borohydride is carbonate catalyst (10 -3 mol% weight with respect to the charged bisphenol total) previously phenol dissolved solution, 160 ° C., N 2 under 30
Minutes and brewed. Next, the pressure was reduced to 100 Torr at the same temperature, and the mixture was stirred for 30 minutes. Thereafter, the pressure was further reduced to 50 Torr at the same temperature, and the reaction was performed for 30 minutes. Next, the temperature was gradually raised to 220 ° C., and the reaction was carried out for 60 minutes to distill out 80% of the theoretical amount of phenol distillation. Thereafter, the pressure was reduced to 10 Torr at the same temperature, and the reaction was carried out for 30 minutes. The temperature was gradually raised to 270 ° C., and the reaction was carried out for 30 minutes. 5 at the same temperature
The pressure was reduced to Torr, and the reaction was carried out for 30 minutes. In the reaction so far, almost all of the theoretical amount of phenol was distilled off, and the pre-condensation was completed. Next, the mixture was post-condensed at 0.1 to 0.3 Torr for 2 hours at the same temperature. After removing and cooling the product polymer under nitrogen, the solution viscosity was measured at 20 ° C. using dichloromethane.
The viscosity average molecular weight v calculated from this value was 32,000. When the IR spectrum was measured, characteristic absorption of a carbonate bond was observed at 1760 to 1810 cm -1 (FIG. 1). 1 H-N
When the MR is measured, the absorption of methyl hydrogen of isopropyl group is 1.2 ppm, the absorption of methyl hydrogen of propane is 1.7 ppm, 3.2 p
Absorption of the isopropyl group methine hydrogen was observed at pm, and absorption derived from the phenyl group was observed at 7.2 to 7.5 ppm (FIG. 2). Also DS
From C (differential scanning calorimeter; Perkin-Elmer 2C type), it was found that the glass transition point was Tg = 139 ° C. When the photoelastic constant is further measured, C =
It was found to be 74 Brewsters (10 -12 m 2 / N). The polymer formed from the integrated value of NMR was 2,2-bis- (4
-Hydroxyphenyl) propane and 2,2-bis- (4-
(Hydroxy-3-isopropylphenyl) propane is 9:
It can be confirmed that the polycarbonate copolymer was No. 1. The instrument used for the measurement was an IR spectrometer; IR-810, 1 H-NMR manufactured by JASCO; JNM-MH-100, DSC manufactured by JEOL; Differential scanning calorimeter Perk
In-Elmer2C type, the photoelastic constant was measured using a self-made one, but the photoelastic constant was calculated using a test piece (50 mm × 10 mm × 1 m
In m), different magnitudes of tensile stress were applied in the length direction, and the generated birefringence was measured. Each value was substituted into the above equation (1), and the photoelastic constant was determined from the slope. Incidentally, the photoelastic constant of 2,2-bis- (4-hydroxyphenyl) propane polycarbonate was C = 82 Brewsters (10 −12 m 2 / N). Example 2 2,2-bis- (4-hydroxyphenyl) propane 219
Part (80 mol%) and 2,2-bis- (4-hydroxy-3-
75 parts (isopropylphenyl) propane (20 mol%) and 264 parts of diphenyl carbonate were placed in a 3 l three-necked flask, degassing and nitrogen purging were repeated 5 times, and the mixture was melted in a silicon bath at 160 ° C. while introducing nitrogen. Once melted, the addition of potassium borohydride is carbonate catalyst (10 -3 mol% weight with respect to the charged bisphenol total) previously phenol dissolved solution, 160 ° C., N 2 under 30
Minutes and brewed. Next, the pressure was reduced to 100 Torr at the same temperature, and the mixture was stirred for 30 minutes. Thereafter, the pressure was further reduced to 50 Torr at the same temperature, and the reaction was performed for 30 minutes. Next, the temperature was gradually raised to 220 ° C., and the reaction was carried out for 60 minutes. In the reaction so far, 80% of the theoretical amount of phenol was distilled off. Thereafter, the pressure was reduced to 10 Torr at the same temperature, and the reaction was carried out for 30 minutes. The temperature was gradually raised to 270 ° C., and the reaction was carried out for 30 minutes.
Further, at the same temperature, the pressure was reduced to 5 Torr, and the reaction was carried out for 30 minutes. Next, the mixture was post-condensed at 0.1 to 0.3 Torr for 2 hours at the same temperature. After removing and cooling the product polymer under nitrogen, the solution viscosity was measured at 20 ° C. using dichloromenter as a solvent. Viscosity average molecular weight v calculated from this value
Was 29,000. 1760-18 when measuring IR spectrum
Characteristic absorption of carbonate bond was observed at 10 cm -1 . Also
When measured by 1 H-NMR, the absorption of methyl hydrogen of isopropyl group at 1.2 ppm, the absorption of methyl hydrogen of propane at 1.7 ppm, the absorption of methine hydrogen of isopropyl group at 3.2 ppm, 7.0
Absorption due to the phenyl group was observed at 7.37.3 ppm. Also
DSC revealed that the glass transition point was Tg = 130 ° C. When the photoelastic constant was further measured, C = 64 Brewsters (10
-12 m 2 / N). The polymer formed from the integrated value of NMR was 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxy-3-
It can be confirmed that (isopropylphenyl) propane is a 4: 1 polycarbonate copolymer. Example 3 2,2-bis- (4-hydroxyphenyl) propane 192
Part (70 mol%) and 2,2-bis- (4-hydroxy-3-
112 parts (30 mol%) of isopropylphenyl) propane and 264 parts of diphenyl carbonate were put into a 3 l three-necked flask, degassing and nitrogen purging were repeated 5 times, and the mixture was melted in a silicon bath at 160 ° C. while introducing nitrogen. Once melted, the addition of potassium borohydride is carbonate catalyst (10 -3 mol% weight with respect to the charged bisphenol total) previously phenol dissolved solution, 160 ° C., N 2 under 30
Minutes and brewed. Next, the pressure was reduced to 100 Torr at the same temperature, and the mixture was stirred for 30 minutes. Thereafter, the pressure was further reduced to 50 Torr at the same temperature, and the reaction was performed for 30 minutes. Next, the temperature was gradually raised to 220 ° C., and the reaction was carried out for 60 minutes. In the reaction so far, 80% of the theoretical amount of phenol was distilled off. Thereafter, the pressure was reduced to 10 Torr at the same temperature, and the reaction was carried out for 30 minutes. The temperature was gradually raised to 270 ° C., and the reaction was carried out for 30 minutes.
Further, at the same temperature, the pressure was reduced to 5 Torr, and the reaction was carried out for 30 minutes.
Next, the mixture was post-condensed at 0.1 to 0.3 Torr for 2 hours at the same temperature. After removing the product polymer under nitrogen and cooling, the solution viscosity was measured at 20 ° C. using dichloromethane as a solvent. The viscosity average molecular weight v calculated from this value is 30,000
Met. When the IR spectrum was measured, characteristic absorption of a carbonate bond was observed at 1760 to 1810 cm -1 . 1 H-NMR
When measured, the absorption of methyl hydrogen of isopropyl group was 1.2 ppm, the absorption of methyl hydrogen of propane was 1.7 ppm, 3.2 ppm
The absorption of methine hydrogen of the isopropyl group was observed at 7.18 to 7.5 ppm. The DSC showed that the glass transition point was Tg = 121 ° C. When the photoelastic constant is further measured, C = 61 Brewsters (10 -12 m 2 / N)
It turned out to be. The polymer produced from the integrated value of NMR is a 7: 3 polycarbonate copolymer of 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxy-3-isopropylphenyl) propane. Can be confirmed. Example 4 2,2-bis- (4-hydroxyphenyl) propane 164
Part (60 mol%) and 2,2-bis- (4-hydroxy-3-
150 parts (isopropylphenyl) propane (40 mol%) and 264 parts of diphenyl carbonate were placed in a 3 l three-necked flask, degassing and nitrogen purging were repeated 5 times, and the mixture was melted in a silicon bath at 160 ° C. while introducing nitrogen. Once melted, the addition of potassium borohydride is carbonate catalyst (10 -3 mol% weight with respect to the charged bisphenol total) previously phenol dissolved solution, 160 ° C., N 2 under 30
Minutes and brewed. Next, the pressure was reduced to 100 Torr at the same temperature, and the mixture was stirred for 30 minutes. Then, the pressure was further reduced to 50 Torr at the same temperature, and the reaction was performed for 60 minutes. Next, the temperature was gradually raised to 220 ° C., and the reaction was carried out for 60 minutes. In the reaction so far, 80% of the theoretical amount of phenol was distilled off. Thereafter, the pressure was reduced to 10 Torr at the same temperature, and the reaction was carried out for 30 minutes. The temperature was gradually raised to 270 ° C., and the reaction was carried out for 30 minutes.
Further, at the same temperature, the pressure was reduced to 5 Torr, and the reaction was carried out for 30 minutes. Next, the mixture was post-condensed at 0.1 to 0.3 Torr for 2 hours at the same temperature. After removing the product polymer under nitrogen and cooling, the solution viscosity was measured at 20 ° C. using dichloromethane as a solvent. Viscosity average molecular weight v calculated from this value
Was 29,000. 1760-18 when measuring IR spectrum
Characteristic absorption of carbonate bond was observed at 10 cm -1 . Also
When 1 H-NMR was measured, the absorption of methyl hydrogen of isopropyl group at 1.2 ppm, the absorption of methyl hydrogen of propane at 1.7 ppm, the absorption of methine hydrogen of isopropyl group at 3.2 ppm, 7.2
Absorption derived from the phenyl group was observed at ~ 7.4 ppm. Also
DSC revealed that the glass transition point was Tg = 114 ° C. When the photoelastic constant was further measured, C = 56 Brewsters (10
-12 m 2 / N). The polymer formed from the integrated value of NMR was 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxy-3-
It can be confirmed that (isopropylphenyl) propane is a 3: 2 polycarbonate copolymer. Example 5 2,2-bis- (4-hydroxyphenyl) propane 137
Part (50 mol%) and 2,2-bis- (4-hydroxy-3-
187 parts (50 mol%) of isopropylphenyl) propane and 264 parts of diphenyl carbonate were placed in a 3 l three-necked flask, and after degassing and nitrogen purging were repeated 5 times, the mixture was melted in a silicon bath at 160 ° C. while introducing nitrogen. Once melted, the addition of potassium borohydride is carbonate catalyst (10 -3 mol% weight with respect to the charged bisphenol total) previously phenol dissolved solution, 160 ° C., N 2 under 30
Minutes and brewed. Next, the pressure was reduced to 100 Torr at the same temperature, and the mixture was stirred for 30 minutes. Then, the pressure was further reduced to 50 Torr at the same temperature, and the reaction was performed for 60 minutes. Next, the temperature was gradually raised to 220 ° C., and the reaction was carried out for 60 minutes. In the reaction so far, 80% of the theoretical amount of phenol was distilled off. Thereafter, the pressure was reduced to 10 Torr at the same temperature, and the reaction was carried out for 30 minutes. The temperature was gradually raised to 270 ° C., and the reaction was carried out for 30 minutes.
Further, at the same temperature, the pressure was reduced to 5 Torr, and the reaction was carried out for 30 minutes.
Next, the mixture was post-condensed at 0.1 to 0.3 Torr for 2 hours at the same temperature. After removing the product polymer under nitrogen and cooling, the solution viscosity was measured at 20 ° C. using dichloromethane as a solvent. The viscosity average molecular weight v calculated from this value is 27,000
Met. When the IR spectrum was measured, characteristic absorption of a carbonate bond was observed at 1760 to 1810 cm -1 (FIG. 3). Also
When 1 H-NMR was measured, the absorption of methyl hydrogen of isopropyl group at 1.2 ppm, the absorption of methyl hydrogen of propane at 1.7 ppm, the absorption of methine hydrogen of isopropyl group at 3.2 ppm, 7.1 ppm
Absorption derived from a phenyl group was observed at 7.67.6 ppm (FIG. 4). The DSC showed that the glass transition point was Tg = 107 ° C. When the photoelastic constant is further measured, C = 55 Brews
ters (10 −12 m 2 / N). The polymer produced from the integrated value of NMR is a 1: 1 polycarbonate copolymer of 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxy-3-isopropylphenyl) propane. Can be confirmed. Example 6 2,2-bis- (4-hydroxyphenyl) propane 110
Part (40 mol%) and 2,2-bis- (4-hydroxy-3-
225 parts (60 mol%) of isopropylphenyl) propane and 264 parts of diphenyl carbonate were placed in a 3 l three-necked flask, and after degassing and nitrogen purging were repeated five times, the mixture was melted in a silicon bath at 160 ° C. while introducing nitrogen. Once melted, the addition of potassium borohydride is carbonate catalyst (10 -3 mol% weight with respect to the charged bisphenol total) previously phenol dissolved solution, 160 ° C., N 2 under 30
Minutes and brewed. Next, the pressure was reduced to 100 Torr at the same temperature, and the mixture was stirred for 30 minutes. Then, the pressure was further reduced to 50 Torr at the same temperature, and the reaction was performed for 60 minutes. Next, the temperature was gradually raised to 220 ° C., and the reaction was carried out for 60 minutes. In the reaction so far, 80% of the theoretical amount of phenol was distilled off. Thereafter, the pressure was reduced to 10 Torr at the same temperature, and the reaction was carried out for 30 minutes. The temperature was gradually raised to 270 ° C., and the reaction was carried out for 30 minutes.
Further, at the same temperature, the pressure was reduced to 5 Torr, and the reaction was carried out for 30 minutes. Next, the mixture was post-condensed at 0.1 to 0.3 Torr for 2 hours at the same temperature. After removing the product polymer under nitrogen and cooling, the solution viscosity was measured at 20 ° C. using dichloromethane as a solvent. Viscosity average molecular weight v calculated from this value
Was 28,000. 1760-18 when measuring IR spectrum
Characteristic absorption of carbonate bond was observed at 10 cm -1 . Also
When 1 H-NMR was measured, the absorption of methyl hydrogen of isopropyl group at 1.2 ppm, the absorption of methyl hydrogen of propane at 1.7 ppm, the absorption of methine hydrogen of isopropyl group at 3.2 ppm, 7.2
Absorption derived from the phenyl group was observed at ~ 7.5 ppm. Also
DSC revealed that the glass transition point was Tg = 103 ° C. When the photoelastic constant was further measured, C = 49 Brewsters (10
-12 m 2 / N). The polymer formed from the integrated value of NMR was 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxy-3-
It can be confirmed that it is a 2: 3 polycarbonate copolymer of (isopropylphenyl) propane. Example 7 2,2-bis- (4-hydroxyphenyl) propane 82
Part (30 mol%) and 2,2-bis- (4-hydroxy-3-
262 parts (70 mol%) of isopropylphenyl) propane and 264 parts of diphenyl carbonate were placed in a 3 l three-necked flask, degassing and nitrogen purging were repeated 5 times, and the mixture was melted in a silicon bath at 160 ° C. while introducing nitrogen. Once melted, the addition of potassium borohydride is carbonate catalyst (10 -3 mol% weight with respect to the charged bisphenol total) previously phenol dissolved solution, 160 ° C., N 2 under 30
Minutes and brewed. Next, the pressure was reduced to 100 Torr at the same temperature, and the mixture was stirred for 30 minutes. Then, the pressure was further reduced to 50 Torr at the same temperature, and the reaction was performed for 60 minutes. Next, the temperature was gradually raised to 220 ° C., and the reaction was carried out for 60 minutes. In the reaction so far, 80% of the theoretical amount of phenol was distilled off. Thereafter, the pressure was reduced to 10 Torr at the same temperature, and the reaction was carried out for 30 minutes. The temperature was gradually raised to 270 ° C., and the reaction was carried out for 30 minutes.
Further, at the same temperature, the pressure was reduced to 5 Torr, and the reaction was carried out for 30 minutes. Next, the mixture was post-condensed at 0.1 to 0.3 Torr for 2 hours at the same temperature. After removing the product polymer under nitrogen and cooling, the solution viscosity was measured at 20 ° C. using dichloromethane as a solvent. Viscosity average molecular weight v calculated from this value
Was 25,000. 1760-18 when measuring IR spectrum
Characteristic absorption of carbonate bond was observed at 10 cm -1 . Also
When 1 H-NMR was measured, the absorption of methyl hydrogen of isopropyl group at 1.2 ppm, the absorption of methyl hydrogen of propane at 1.7 ppm, the absorption of methine hydrogen of isopropyl group at 3.2 ppm, 7.1 ppm
Absorption derived from the phenyl group was observed at ~ 7.5 ppm. Also
DSC revealed that the glass transition point was Tg = 93 ° C. When the photoelastic constant was further measured, C = 41 Brewsters (10
-12 m 2 / N). The polymer formed from the integrated value of NMR was 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxy-3-
It can be confirmed that it is a 3: 7 polycarbonate copolymer of (isopropylphenyl) propane. Example 8 2,2-bis- (4-hydroxyphenyl) propane 55
Part (20 mol%) and 2,2-bis- (4-hydroxy-3-
300 parts (80 mol%) of isopropylphenyl) propane and 264 parts of diphenyl carbonate were placed in a 3 l three-necked flask, degassing and nitrogen purging were repeated 5 times, and the mixture was melted in a silicon bath at 160 ° C. while introducing nitrogen. Once melted, the addition of potassium borohydride is carbonate catalyst (10 -3 mol% weight with respect to the charged bisphenol total) previously phenol dissolved solution, 160 ° C., N 2 under 30
Minutes and brewed. Next, the pressure was reduced to 100 Torr at the same temperature, and the mixture was stirred for 30 minutes. Then, the pressure was further reduced to 50 Torr at the same temperature, and the reaction was performed for 60 minutes. Next, the temperature was gradually raised to 220 ° C., and the reaction was carried out for 60 minutes. In the reaction so far, 80% of the theoretical amount of phenol was distilled off. Thereafter, the pressure was reduced to 10 Torr at the same temperature, and the reaction was carried out for 30 minutes. The temperature was gradually raised to 270 ° C., and the reaction was carried out for 30 minutes.
Further, at the same temperature, the pressure was reduced to 5 Torr, and the reaction was carried out for 30 minutes. Next, the mixture was post-condensed at 0.1 to 0.3 Torr for 2 hours at the same temperature. After removing the product polymer under nitrogen and cooling, the solution viscosity was measured at 20 ° C. using dichloromethane as a solvent. Viscosity average molecular weight v calculated from this value
Was 27,000. 1760-18 when measuring IR spectrum
Characteristic absorption of carbonate bond was observed at 10 cm -1 . Also
When measured by 1 H-NMR, the absorption of methyl hydrogen of isopropyl group at 1.2 ppm, the absorption of methyl hydrogen of propane at 1.7 ppm, the absorption of methine hydrogen of isopropyl group at 3.2 ppm, 7.0
Absorption due to the phenyl group was observed at 7.37.3 ppm. Also
DSC revealed that the glass transition point was Tg = 90 ° C. When the photoelastic constant was further measured, C = 38 Brewsters (10
-12 m 2 / N). The polymer formed from the integrated value of NMR was 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxy-3-
It can be confirmed that it is a 1: 4 polycarbonate copolymer of (isopropylphenyl) propane. Example 9 2,2-bis- (4-hydroxyphenyl) propane 27
Part (10 mol%) and 2,2-bis- (4-hydroxy-3-
337 parts (90 mol%) of isopropylphenyl) propane and 264 parts of diphenyl carbonate were placed in a 3 l three-necked flask, degassing and nitrogen purging were repeated 5 times, and the mixture was melted in a silicon bath at 160 ° C. while introducing nitrogen. Once melted, the addition of potassium borohydride is carbonate catalyst (10 -3 mol% weight with respect to the charged bisphenol total) previously phenol dissolved solution, 160 ° C., N 2 under 30
Minutes and brewed. Next, the pressure was reduced to 100 Torr at the same temperature, and the mixture was stirred for 30 minutes. Then, the pressure was further reduced to 50 Torr at the same temperature, and the reaction was performed for 60 minutes. Next, the temperature was gradually raised to 220 ° C., and the reaction was carried out for 60 minutes. In the reaction so far, 80% of the theoretical amount of phenol was distilled off. Thereafter, the pressure was reduced to 10 Torr at the same temperature, and the reaction was carried out for 30 minutes. The temperature was gradually raised to 270 ° C., and the reaction was carried out for 30 minutes.
Further, at the same temperature, the pressure was reduced to 5 Torr, and the reaction was carried out for 30 minutes.
Next, the mixture was post-condensed at 0.1 to 0.3 Torr for 2 hours at the same temperature. After removing the product polymer under nitrogen and cooling, the solution viscosity was measured at 20 ° C. using dichloromethane as a solvent. The viscosity average molecular weight v calculated from this value is 25,000
Met. When the IR spectrum was measured, characteristic absorption of a carbonate bond was observed at 1760 to 1810 cm -1 (FIG. 5). Also
When 1 H-NMR was measured, the absorption of methyl hydrogen of isopropyl group at 1.2 ppm, the absorption of methyl hydrogen of propane at 1.7 ppm, the absorption of methine hydrogen of isopropyl group at 3.2 ppm, 7.2
Absorption derived from a phenyl group was observed at about 7.4 ppm (FIG. 6). The DSC showed that the glass transition point was Tg = 90 ° C. When the photoelastic constant is further measured, C = 35 Brews
ters (10 −12 m 2 / N). The polymer produced from the integrated value of NMR is a 1: 9 polycarbonate copolymer of 2,2-bis- (4-hydroxyphenyl) propane and 2,2-bis- (4-hydroxy-3-isopropylphenyl) propane. Can be confirmed. [Effect of the Invention] Since the polycarbonate copolymer obtained by the production method of the present invention has a small photoelastic coefficient, a signal is recorded by a laser beam, or an optical information recording for reading a recorded signal by reflection or transmission of a laser beam. Useful for discs.

【図面の簡単な説明】 図1、図3、図5はそれぞれ実施例1、5、9で得られ
た本発明の共重合体のIRスペクトル、図2、図4、図
6、はそれぞれ実施例1、5、9で得られた本発明の共
重合体のNMRスペクトルである。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1, 3 and 5 are IR spectra of the copolymers of the present invention obtained in Examples 1, 5 and 9, respectively. FIGS. 1 is an NMR spectrum of the copolymer of the present invention obtained in Examples 1, 5 and 9.

Claims (1)

(57)【特許請求の範囲】 1.水素化ホウ素カリウムの存在下、窒素を導入しなが
ら、2,2−ビス−(4−ヒドロキシフェニル)プロパン9
9〜1モル%と2,2−ビス−(4−ヒドロキシ−3−イソ
プロピルフェニル)プロパン1〜99モル%とをジフェニ
ルカーボネートを用いてエステル交換法により重合させ
ることを特徴とする芳香族ポリカーボネート共重合体の
製造方法。
(57) [Claims] In the presence of potassium borohydride, 2,2-bis- (4-hydroxyphenyl) propane 9
Aromatic polycarbonates characterized in that 9 to 1 mol% and 1 to 99 mol% of 2,2-bis- (4-hydroxy-3-isopropylphenyl) propane are polymerized by transesterification using diphenyl carbonate. A method for producing a polymer.
JP61230897A 1986-09-29 1986-09-29 Method for producing polycarbonate copolymer Expired - Lifetime JP2760980B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61230897A JP2760980B2 (en) 1986-09-29 1986-09-29 Method for producing polycarbonate copolymer
DE87113835T DE3779385D1 (en) 1986-09-29 1987-09-22
EP87113835A EP0262557B1 (en) 1986-09-29 1987-09-22 Polycarbonate and optical disk therefrom
US07/782,741 US5173347A (en) 1986-09-29 1991-10-16 Polycarbonate and optical disk therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61230897A JP2760980B2 (en) 1986-09-29 1986-09-29 Method for producing polycarbonate copolymer

Publications (2)

Publication Number Publication Date
JPS6383129A JPS6383129A (en) 1988-04-13
JP2760980B2 true JP2760980B2 (en) 1998-06-04

Family

ID=16915010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61230897A Expired - Lifetime JP2760980B2 (en) 1986-09-29 1986-09-29 Method for producing polycarbonate copolymer

Country Status (1)

Country Link
JP (1) JP2760980B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574013B2 (en) * 1988-11-07 1997-01-22 帝人株式会社 Optical processing of molded products such as polycarbonate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330664A (en) 1979-12-26 1982-05-18 General Electric Company Polycarbonate transesterification with catalyst containing aluminum hydride or borohydride group

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649750B2 (en) * 1984-08-24 1994-06-29 三菱化成株式会社 Injection molding material consisting of polycarbonate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330664A (en) 1979-12-26 1982-05-18 General Electric Company Polycarbonate transesterification with catalyst containing aluminum hydride or borohydride group

Also Published As

Publication number Publication date
JPS6383129A (en) 1988-04-13

Similar Documents

Publication Publication Date Title
EP0274092A2 (en) Polycarbonate copolymer and optical disk
JP2575691B2 (en) Polycarbonate copolymer
JP2760980B2 (en) Method for producing polycarbonate copolymer
JP2568413B2 (en) Polycarbonate copolymer
JP2562619B2 (en) Polycarbonate copolymer
JP2559391B2 (en) Polycarbonate copolymer
JP2513725B2 (en) Polycarbonate copolymer
JP2580255B2 (en) Polycarbonate resin composition
JP2613038B2 (en) Polycarbonate copolymer
JP2588727B2 (en) Polycarbonate copolymer
JP2001131279A (en) Molding material for optical recording medium
JP2575683B2 (en) Polycarbonate copolymer
JP2565718B2 (en) Polycarbonate copolymer
JP2565719B2 (en) Polycarbonate copolymer
US5173347A (en) Polycarbonate and optical disk therefrom
JPS63207822A (en) Aromatic polycarbonate terpolymer
JPS63207821A (en) Aromatic polycarbonate terpolymer
JP2515993B2 (en) Optical disk
JP2596732B2 (en) Optical disk
JP2581547B2 (en) Optical disc
JP2513717B2 (en) Polycarbonate polymer
JP2606832B2 (en) Optical disk
JPH0299521A (en) Aromatic polycarbonate copolymer
EP0262557A1 (en) Polycarbonate and optical disk therefrom
JPH0518325B2 (en)